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Abstract

Recent high-dimensional single-cell technologies such as mass cytometry are enabling time series experiments
to monitor the temporal evolution of cell state distributions and to identify dynamically important cell states,
such as fate decision states in differentiation. However, these technologies are destructive, and require analysis
approaches that temporally map between cell state distributions across time points. Current approaches to
approximate the single-cell time series as a dynamical system suffer from too restrictive assumptions about
the type of kinetics, or link together pairs of sequential measurements in a discontinuous fashion.

We propose Dynamic Distribution Decomposition (DDD), an operator approximation approach to infer a
continuous distribution map between time points. On the basis of single-cell snapshot time series data, DDD
approximates the continuous time Perron-Frobenius operator by means of a finite set of basis functions. This
procedure can be interpreted as a continuous time Markov chain over a continuum of states. By only assuming
a memoryless Markov (autonomous) process, the types of dynamics represented are more general than those
represented by other common models, e.g., chemical reaction networks, stochastic differential equations.
Additionally, the continuity assumption ensures that the same dynamical system maps between all time points,
not arbitrarily changing at each time point. We demonstrate the ability of DDD to reconstruct dynamically
important cell states and their transitions both on synthetic data, as well as on mass cytometry time series of
iPSC reprogramming of a fibroblast system. We use DDD to find previously identified subpopulations of
cells and to visualize differentiation trajectories.

Dynamic Distribution Decomposition allows interpreting high-dimensional snapshot time series data as
a low-dimensional Markov process, thereby enabling an interpretable dynamics analysis for a variety of
biological processes by means of identifying their dynamically important cell states.

Author summary

High-dimensional single-cell snapshot measurements are now increasingly utilized to study dynamic processes.
Such measurements enable us to evaluate cell population distributions and their evolution over time. However,
it is not trivial to map these distribution across time and to identify dynamically important cell states,
i.e. bottleneck regions of state space exhibiting a high degree of change. We present Dynamic Distribution
Decomposition (DDD) achieving this task by encoding single-cell measurements as linear combination of basis
function distributions and evolving these as a linear system. We demonstrate reconstruction of dynamically
important states for synthetic data of a bifurcated diffusion process and mass cytometry data for iPSC
reprogramming.
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Introduction 1

Data-driven reconstruction of dynamic processes constitutes a central aim of systems biology. High-dimensional 2

single-cell molecularly resolved time series data is becoming a key data source for this task [1, 2]. However, 3

these technologies are destructive, and consequently result in snapshot time series data originating from 4

batches of cells collected at time points of interest. A longstanding and still challenging problem is to 5

reconstruct dynamic biological processes from this data, to the end of identifying dynamically important 6

states, i.e. regions of state space that cells preferentially pass through, these include transitionary states 7

(bottlenecks) when differentiation decisions are made, and terminal states. With snapshot time series, it is 8

challenging to identify these states as we cannot track the state of an individual cell from one time point to a 9

new state at a later time point, one has to temporally map between state distributions. 10

Chemical reaction networks are a popular class of parametric models assuming that the temporal state 11

evolution is well described by chemical kinetics. Ordinary differential equations (ODEs) are used to describe 12

smooth deterministic dynamics, and stochastic differential equations (SDEs) for dynamics in the low copy 13

number/concentration regimes affected by stochastic fluctuations. Chemical reaction network models require 14

explicit definition of the model structure, i.e. set of reactions or interactions among the system components. 15

This task is manageable for small, well defined systems, such as small signaling systems [3]. However, by 16

means of high-dimensional measurements, we typically observe larger systems comprising at least dozens of 17

components with largely a priori undefined interactions. This situation results in a combinatorial explosion 18

of model variants that cannot be exhaustively evaluated [4, 5]. Alternative approaches are agnostic with 19

regards to parametric form and model structure and use a probabilistically-motivated rule to map between 20

distributions, e.g., one optimal transport method maps neighbours at one time point to the nearest neighbour 21

at the next time point [6]. However, such generic approaches are rather extreme in their agnosticism and 22

abandon reasonable assumptions on the dynamics of cellular systems, e.g., that cells can be modelled as an 23

autonomous dynamical systems in continuous time, such as a Markov chain, where the cell’s current state 24

infers its likely future state independent of the current time within the experiment. 25

Operator approximation methods constitute an alternative class of models that are agnostic to model 26

structure and yet allow for encoding of general system properties such as autonomy, conservation of mass, 27

and boundary conditions. These methods approximate both the Perron–Frobenius operator [7] and the 28

Koopman operator [8]. These operators describe the evolution of distributions and other functions of a 29

dynamical system’s state. The early theory on these operators was developed to describe systems in classical, 30

statistical, and quantum mechanics [9–13], and in probability theory [14, 15]. The operators fully describe a 31

nonlinear dynamical system as a linear system in higher, possibly infinite, dimensions. Hence, techniques 32

from linear analysis can be utilised to gain insight from the systems; in particular, calculation of eigenvalues 33

and eigenfunctions allow for timescale separation. Eigenfunctions of linear operators show the fundamental 34

building blocks of possible behaviours available to a dynamical system, e.g., exponential growth/decay, 35

oscillations, a steady state. Data-driven approximations to the operators have been investigated in the past 36

years, originating in the computational fluid dynamics community [16–20]. Their focus is to approximate 37

finite-dimensional projections of the Koopman operator with a family of algorithms known as Dynamic 38

Mode Decomposition (DMD). The algorithm has further been applied to other areas such as neuroscience, 39

infectious disease epidemiology, and control theory [21–23] and parameter estimation [24, 25]. When carrying 40

out approximations of these operators, eigenvalues can be ordered in terms of magnitude to extract slow 41

behaviour (approximated well) to fast behaviour (representative of noise) [25]. Dynamic Mode Decomposition 42

assumes that the data is recorded at equally spaced time points, whilst our work extends the technique to 43

support data recorded at arbitrary time points. 44

We adapt Dynamic Mode Decomposition to identify dynamically important states from single-cell snapshot 45

time series. Our method is based on representing the distribution at each time point via basis functions 46

and calculating an approximation to the Perron–Frobenius operator by minimising an error term — akin 47

to least squares when fitting ODEs. The error terms then give an indication of how well the data fits 48

into the model assumptions: primarily that the data is generated by an autonomous dynamical system. 49
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Because the Perron–Frobenius operator describes the evolution of distributions, we name our approach 50

Dynamic Distribution Decomposition (DDD) in keeping with the DMD naming convention. DDD leads to 51

the calculation of a Markov rate matrix but over a continuum of states — as opposed to discrete states. 52

As previously mentioned, one can then use standard methods of analysis for linear operators based on 53

eigen-decompositions. As Markov processes can be represented as directed weighted graphs, our graph can 54

be evaluated in two dimensions and then the high-dimensional operator and its corresponding eigenfunctions 55

have a natural low dimensional representation. Our approach also allows for visualisation of inferred state 56

trajectories as a branching structure when cell fates are stochastic, and approximation of fitting error when 57

matching model prediction to sample data. By using a Markov rate approach over distributions, we overcome 58

the difficulties listed above. We demonstrate DDD on a synthetic stochastic dynamical system representing 59

cells making a cell differentiation decision as well as for a mass cytometry time series taken from an iPSC 60

reprogramming of a fibroblast cell line taken from Zunder et. al. [26] to re-identify subpopulations of cells as 61

first elucidated in the original manuscript. 62

Results 63
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Fig 1. Illustration of DDD workflow. (a.) Gaussian mixture models as basis functions: single-cell profiles from each time
point are fitted to a basis of Gaussian mixture model, two distributions shown in red and blue; (b.) identification of the
coefficients c(t) at each time point, t = t1, . . . , tR; (c.) the Perron–Frobenius matrix P enables us us to infer the likely state for
all time points and generate errors ε1, . . . , εR; (d.) examination of the eigenfunctions in low dimensions; or in high dimensions
(e.) using graphical visualisations; and (f.) a Lasso regularisation can reveal sparse structure.

Inference of State Distribution Dynamics by Approximation of the Perron– 64

Frobenius Operator 65

We developed a method herein referred to as Dynamic Distribution Decomposition to analyse snapshot 66

time series, consisting of the following stages (illustrated in Figure 1): (a.) data at each recorded time 67

point t1, . . . , tR are fitted to a set of basis functions and (b.) encoded into coefficient vectors c1, . . . , cR; (c.) 68
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Fig 2. (a.) Three simulated trajectories are shown from the stochastic dynamical system described by equation (1)–(2). (b.)
The potential well as described in equation (2) is shown. (c.) Log-log error plot showing time point against log10 of the
percentage error; the original data set(black solid line) has a mean error of 2.0%; the perturbed data set (dashed red line) has a
mean error of 3.9%; the perturbed data set with the erroneous data point removed (dotted red line) has an error of 1.3%; and
the data set with systematic error (dashed blue line) has a mean error of 1.9%.

a fitting procedure is carried out to infer the most likely continuous linear map between the coefficients, 69

generating fitting errors ε1, . . . , εR; (d.) eigenfunctions are then analysed; and (e.) in high dimensions graph 70

based visualisations can be used for eigenfunctions, for full details see Methods section. In the case where 71

probability density functions are used as basis functions, the linear map denoted P can be interpreted as a 72

Markov rate matrix; the structure of this matrix is often dense but its dominating structure can be elucidated 73

via Lasso regularisation, see Figure 1(f). We applied our method to two systems: first, simulated particles in 74

a potential well; and second, experimental data of iPSC reprogramming of a fibroblast system. 75

Particles in Potential Well with Fluctuations 76

The first numerical example is for illustrative purposes whereby we know the stochastic process generating
the sample points. We consider simulated particles in a bistable potential well undergoing fluctuations.
After initialisation around point (1, 1)ᵀ/2, particles stochastically switch between one of two paths: y = 2x
or y = x/2 to finally settle in one of the two final state (2, 4)ᵀ or (4, 2)ᵀ. We model this process by the
two-dimensional SDE {Xt = (X1t, X2t)

ᵀ ∈ R2
+ : t ≥ 0}

dXt = −∇V (Xt)dt+
√

2D dW t , (1)

where W t is a two-dimensional Wiener process. The potential well is of the form

V (x) =

(
1

2
[‖x‖2 − x1x2]− 1

10
‖x‖2

)2

− 1

2
e−

1
2‖x−( 1

2 ,
1
2 )ᵀ‖2 − e−‖x−(4,2)ᵀ‖2 − e−‖x−(2,4)ᵀ‖2 . (2)

As an initial condition at t = t1, the sample is placed with a multivariate normal distribution with mean 77

µ = (1, 1)ᵀ/2 and covariance matrix Σ = I2/2 where I2 is the identity matrix. The diffusion constant is 78

chosen to be D = 1/4. Along the lines x = 0 and y = 0, the system has reflecting boundaries imposed. 79

For simulations, the Euler–Maruyama numerical scheme is used1 with time step δt = 2−9. Three sample 80

trajectories are visualised, see Figure 2(a); and the potential well is plotted, see Figure 2(b). 81

The system is simulated 2000 times and observed at the time points t = 0, 1, 2, 3, 5, 8, 13, 21, 34, 55. The 82

time points are only partially observed where half the samples are (uniformly) randomly discarded. Using 83

Gaussian mixture models of various sizes, we choose to use 3 basis functions for each time point totalling 84

N = 30 basis functions. 85

1This numerical scheme coincides with a Milstein scheme (and is of order 1).
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Fig 3. Dynamic distribution decomposition applied to data generated by stochastic dynamical system described by equation
(1)–(2). Plots (a)–(c) show a plot of the two dimensional eigenfunction, and plots (d)–(f) shows a corresponding graph
representation of the eigenfunctions, for full details see Methods section.

Extrema of Eigenfunctions Identify Steady State and Bistable Paths 86

The eigenfunctions of the approximated Perron–Frobenius operator allow us to identify the steady state and 87

bistable paths in the above system. In low dimensions we visualise eigenfunctions of P as a continuous function, 88

see Figure 3(a,b,c); or a graph, see Figure 3(d,e,f) and Methods section. Eigenfunctions corresponding to 89

eigenvalues with large absolute value are approximated with larger error than in cases with small eigenvalues, 90

a point also noted in Ref. [25]; notice in Figure 3(c,f) there are a few small fluctuations around (1, 1)ᵀ/2. 91

Also, eigenvalues and eigenfunctions are basis function dependent, so changes in basis functions change the 92

eigen-decomposition. However, regardless of changes to the basis functions, the key dynamic states (as visible 93

in the eigenfunctions) remain the same provided the changes to the basis functions are not drastic. Since 94

we use 30 basis functions, hypothetically we can find 30 eigenfunctions. However, we just plot the first 95

three eigenfunctions; these are real with no imaginary component. From these figures, it is clear that three 96

basins around (2, 4)ᵀ and (4, 2)ᵀ and at the initial condition (1, 1)ᵀ/2 are dynamically important. Therefore, 97

examination of the first few eigenfunctions allows for detection of dynamically important states. 98

Dynamic Distribution Decomposition is Robust to Noisy Observations 99

We evaluated the robustness of our inference procedure to measurement noise. Specifically, three further 100

modified data sets are also considered: (i.) considering a single time point perturbed by additive random 101

noise; (ii.) removing this perturbed time point and fitting the model; and (iii.) randomly perturbing all time 102

points by additive random noise. For all perturbations, sample points are modified by an additive error term 103

drawn from a zero-mean multivariate Gaussian with covariance matrix Σ = I2/4. 104

We plot the time points transformed by log10(x+ 1) against the log-percentage error, i.e., 2 + log10(εr) 105
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Fig 4. Dynamic distribution
decomposition applied to data
generated by stochastic dynamical
system described by equation (1)–(2).
The representation of P as a Markov
rate matrix, colours of edges denote
magnitude of rate change from one
node to another, and node colours
denote rate at which node decays.
Colours scaled to unit interval. (a.)
Markov transition matrix P plotted
without Lasso regularisation; and (b.)
Markov transition matrix P plotted
with Lasso regularisation,
β = 1/[100×mean(M)], see Methods
section.

for r = 1, . . . , R, see Figure 2(c). We find that all data sets have consistently low error, but with an 106

increase in error at the beginning of the realisation; this is due to the boundary conditions which were 107

not incorporated into the choice in basis functions, which one would typically do when solving PDEs via a 108

Galerkin approximation. The data set perturbed at time t = 8 (dashed red line) leads to increased error 109

immediately before and after this time point (circled in black); after removing this erroneous data (fitting 110

without t = 8) one obtains reduced errors comparable to the original data set (dotted red line). When adding 111

systematic error to all time points (dashed blue line), one observes similar errors to the original data set; the 112

reason for this is that the Gaussian basis functions now have a covariance matrix with larger entries (whilst 113

the means remain similar). The eigenfunction plots are also similar to those generated by the original data set 114

but more spread out (not plotted). Therefore we see that DDD is robust with regards to noisy observations. 115

Lasso Regularisation Reveals Sparse Topology 116

We utilize Lasso regularization to identify key transition states, see Methods section. Specifically, P as a 117

Markov rate matrix with the nodes located at the mean of the components of the Gaussian mixture model. 118

The resulting network is cluttered and is hard to identify meaningful states or transition, see Figure 4(a). 119

Lasso regularisation encourages sparsity and reveals the simple underlying structure, see Figure 4(b). The 120

skeletal structure shows that around the initial condition the particle becomes strongly committed to one 121

branch over the other — an accurate reflection of the dynamical system. 122

Mass Cytometry Data: iPSC Fibroblast Reprogramming 123

We studied the process of iPSC reprogramming using Dynamic Distribution Decomposition. We considered 124

data from a study established by Zunder et. al. [26]. Specifically, the reprogramming of a fibroblast cell 125

line differentiating into an induced pluripotent stem cell state was studied using mass cytometry. Cells 126

are labelled using mass-tag cell barcoding, stained with antibodies before being measured via CyTOF. We 127

focus our study to the cell line with the largest amount of cell events, i.e. on a Nanog-Neo secondary mouse 128

embroyic fibroblasts (MEF) that expresses neomycin resistance gene from the endogenous Nanog locus. 129

Reprogramming was monitored by Dox induction for 16 days followed by subsequent addition of LIF; the 130

experiment was carried out over 30 days. Experiments were initialised together and cells harvested every 2 131

days until 24 days with a final measurement taken at the final time point; 18 protein markers were used as 132

proxies to measure pluripotency, differentiation, cell cycle status, and cellular signalling. 133

We now briefly state our method for choosing basis functions. In the synthetic data example, we used 134

prior information that there were 3 clusters, so used a 3 component Gaussian mixture model for each time 135

(therefore N = 30 for 10 time points). For non-synthetic data we do not necessarily have this information, 136
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Fig 5. Dynamic distribution
decomposition applied to
Nanog-Neo cell line data taken
from Zunder et. al. [26]. (a.)
Fitting error plot showing log10
transformed percentage error
plotted against time for different
values of α (described in main
text); (b.) log-log plot of mean
fitting error plotted against
− log10(α), mean error decreases as
alpha decreases; (c.) complex plot
of eigenvalues λ of
Perron–Frobenius matrix P for
different values of α; (d.) Fitting
error plot showing log10
transformed percentage error
plotted against time for α = 0.05,
two further Perron–Frobenius
matrices are fitted using only the:
first 8 time points; and last 6 time
points.

therefore we developed an approach to choose an expressive set of basis functions without letting their number 137

grow too large and thereby ensure efficient solving of the minimisation problem later presented in equation 138

(17). We fit multiple Gaussian mixture models to each time point, varying the number of components until 139

the AIC curve flattened out [27]; in our case this happens at approximately 8 basis functions per time point. 140

To avoid overfitting, we use regularisation to specify minimum diagonal entries of the covariance matrix. 141

As our data has been scaled via the commonly used transformation function f(x) = arcsin(x/5) and then 142

standardised by z-scoring, we choose a regularisation value of 1/2; smaller values can be used should one 143

wish to capture sharp peaks, but at the cost of additional basis functions. Finally, for each time point we 144

cluster the data into these Gaussian mixture models and remove poorly populated components. Here, after 145

clustering, we remove any basis functions which represent less than α× 100% of the data. Therefore, it should 146

be noted that obtaining a good fit to the matrix P is a payoff between: (i.) number of basis functions per 147

time point (i.e., what is the maximum number of clusters per time point?); (ii.) the regularisation value (i.e., 148

how sharp peaks can one fit?); and (iii.) the drop rate α (i.e., what fraction of data points does each basis 149

function have to represent?). 150

We now decrease α and evaluate whether we have sufficient basis functions. We plot the percentage 151

fitting error at each time point and the mean percentage error as a function of α, see Figure 5(a,b). These 152

figures show that as α decreases, the error only minimally decreases for large increases in the total number of 153

basis functions N . We can also view the eigenvalues plotted in the complex plane for various values of α, see 154

Figure 5(c). We rescaled time to the unit interval, therefore one will not be able observe eigenfunctions with a 155

corresponding non-zero eigenvalue <(λ) > −1, i.e., we cannot observe timescales slower than the observation 156

window. We notice for α = 0.005 that <(λ1) = −1.06 so we are confident decreasing α will not offer much 157

benefit. Additionally in the cases where α = 0.01 and α = 0.005, the extrema of the first few eigenfunctions 158

correspond to the same basis functions (not plotted). 159
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Loss of Dynamic Autonomy after Stimulus Removal 160

When a stochastic dynamical system is autonomous, the current state of the system determines the likely 161

future states; here we show that after and including t = 16 days the system becomes less autonomous, once 162

the Dox induction had ended. We see the error plotted again at each time point for α = 0.005, see Figure 163

5(d). We notice that time points after and including t = 16 days contain the vast majority of fitting error. 164

To rule out the possibility that the dynamical system instantaneously changed at t = 16 days, we fit two 165

Perron–Frobenius matrices, one using the first 8 time points and a second using the last 6 time points with 166

all fits using the same basis functions. We find that there is still much more error contained in the final 6 167

time points compared to the first 8. 168

The autonomous dynamical system assumption means that using the data presented, the future states 169

of the system depend on the current state. While this is likely true within a cell culture system, we only 170

observe a tiny fraction of the state space of the dynamical system as we do not measure the transcriptome 171

and the vast majority of the proteome. Therefore, it seems reasonable to assume that from t = 16 days, we 172

are not observing enough of the dynamical system to obtain a linear map between distributions. This insight 173

suggests further single-cell experiments at these later time points using technologies allowing greater ‘omic’ 174

profiling, e.g., single-cell RNA-Seq. 175

Inferred Dynamically Important States Agree with Previously Described Cell Subpopulations 176

We evaluated the extreme of the eigenfunctions of the approximated Perron–Frobenius operator to re-identify 177

cell subpopulations found in Zunder et. al. [26]. We first plot the first 6 eigenfunctions, see Figure 6. Nodes 178

that are close together to each other in 18 dimensions (using Euclidean distance) as plotted as close to each 179

other in 2 dimensions. Protein expression of the basis functionsare also plotted using the same coordinates as 180

the graph, see extra figure in Appendix. 181

When examining the extrema of the eigenfunctions, basis functions seem to cluster in 3 groups: group A 182

centred around basis function 32; group B with members 56, 61, and 65; and group C with one member, 183

basis function 66. Our algorithm recovers the same populations as stated in Zunder et. al. [26]: cells with 184

low Ki-67 expression do not successfully reprogram and remain MEF-like (group A); cells with high Ki-67 185

expression then subdivide into two populations, an embryonic stem cell-like (ESC-like) population with 186

Nanog+, Sox2+, and CD54+(group C) and a mesendoderm like population with Nanog−, Sox2−, Lin-28+, 187

CD24+expression (group B). As our basis functions were added sequentially per time point, the MEF-like 188

population appeared first. 189

DDD suggests a few new insights previously not elucidated in Zunder et. al. [26]. We find according to 190

the fitted Perron–Frobenius operator, MEF-like cells form the steady state (when λ = 0). Therefore, the 191

model predicts all cells would revert to fibroblasts if enough time passes — although one has to be careful 192

over interpreting predictions due to the higher error after t = 16 days. 193

Lasso Regularisation Reveals Sparse Topology of iPSC Dynamics 194

Reminiscent of the SDE example, the graph as induced by the transition matrix P is cluttered due to an 195

abundance of low weighted edges, see Figure 7(a); we apply the Lasso modification to reveal a two branching 196

points, see Figure 7(b) and Methods section. Finally, to focus on the 3 groups previously identified, we prune 197

edges leading to unannotated nodes to obtain an easily interpretable branching structure, see Figure 7(c). 198

This figure suggests that at basis function 53 (close to basis function 1, i.e., the initial state), a cell moves 199

to towards branching basis function 16 (CD73−, CD140a+, CD54+, Oct-4+), and then has a decision to 200

move towards basis function 32 (group A, MEF-like) or to reach a second branching point at basis function 201

29 (CD73+, CD140a+, CD54−, Oct-4+, KLF4+). At basis function 29, the cell will then choose between 202

basis functions 56, 61 and 65 (group B, mesendoderm population), or towards basis function 66 (group C, 203

ESC-like); there is also a weakly weighted edge back to basis function 32 (group A, MEF-like). The state 204
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a.)
λ = 0

b.)
<(λ = −1.06± 3.55i)

c.)
=(λ = −1.06± 3.55i)

d.)
<(λ = −3.23± 6.75i)

e.)
=(λ = −3.23± 6.75i)

f.)
λ = −7.64

Fig 6. Dynamic distribution decomposition applied to Nanog-Neo cell line data taken from Zunder et. al. [26]. Groups as
defined in the text are circled and coloured in: red (group A, MEF-like); blue (group B, mesendoderm); and green (group C,
ESC-like).
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a.) b.)

c.)

Oct-4+

KLF4+
CD73−
CD140a+

CD54+

Oct-4+ CD73+

CD140a+

CD54−
Oct-4+

KLF4+

MEF-like
Ki-67−

ESC-like
Nanog+

Sox2+

Ki-67+

Mesendoderm
Nanog−
Sox2−
Ki-67+

Fig 7. Dynamic distribution
decomposition applied to
Nanog-Neo cell line data taken
from Zunder et. al. [26]. (a.)
Markov transition matrix P plotted
without Lasso regularisation; and
(b.) Markov transition matrix P
plotted with Lasso regularisation,
β = 1/[800×mean(M)], see
Methods section. In (c.) the graph
structure from (b.) has
unannotated end nodes removed
and is rearranged into a simple
branching structure. Groups as
defined in the text are circled and
coloured in: red (group A,
MEF-like); blue (group B,
mesendoderm); and green (group
C, ESC-like).

described by basis function 29 was previously described in Zunder et. al. [26], but we are able to include an 205

additional transitionary state by means of basis function 16. We can conclude that the cell decision towards 206

becoming remaining MEF-like is made early during the course of the experiment: basis function 16 was 207

placed with the data recorded at 6 days; basis function 29 was placed with the data recorded at 12 days. 208

Methods 209

We now give the mathematical set-up to our problem, additional technical details are given in the appendix. 210

The method follows the following steps: (i.) the statement is posed that the temporal evolution of cell states 211

follows a linear partial differential equation; (ii.) the distribution of the sample points at each time point 212

can be encoded into a sequence of basis functions; (iii.) the weights of these basis functions can change 213

dynamically interpolating between sample points; and (iv.) we fit the form of the matrix approximation of 214

differential operator around these changing basis functions; and (v.) study the eigenfunctions. The workflow 215

of the method is also as an illustration in Figure 1. 216

Mathematical Set-Up 217

Assume we have a sequence of R experimental readings at time points t1 < · · · < tR; without loss of 218

generality we choose t1 = 0. At each time point, nr cells are harvested with states Xr = {xr,1, . . . ,xr,nr} for 219

r = 1, . . . , R. The state of each cell is located in a (measurable) space, x ∈M. We note that this space may 220

not be the full dimension of the data set, but after a dimensionality reduction technique has been applied, 221

e.g., PCA, diffusion maps etc. For example, in the case of RNA-Seq data, the state of a cell would consist of 222

thousands of genes which would be too high to apply kernels to. We wish to find a probability distribution 223

% = %(t,x) such that when t = tr, the probability of observing cells in states Xr would be highly probable 224

for r = 1, . . . , R. 225
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Immediately necessary to ensure conservation of mass, we require∫
M
%(t,x)dx = 1, and %(t,x) ≥ 0, (3)

for all t ∈ (t1, tR). We now make the crucial assumption that our method relies on: each cell follows a
(well behaved) autonomous dynamical system — implicit in this assumption is that cells do not interact,
alternatively cell interactions can be accounted for via stochastic noise terms. Under these assumptions, we
can interpret %(t,x)∆x as the probability a randomly selected cell has state in the interval [x,x+ ∆x) at
time t. We write down the (continuous-time) Perron–Frobenius equation for the dynamics of the density
profile as

∂

∂t
%(t,x) = P%(t,x) , (4)

for initial condition %(t = 0,x) = %0(x). The P term is the continuous-time Perron–Frobenius operator 226

[19, 20]. This operator is known by many names depending on the underlying dynamical system for the state 227

evolution x(t) ∈M for t ∈ (t1, tR). For example, within SDEs equation (4) is a second order parabolic PDE 228

known as the Fokker–Planck equation [28]; and for chemical reaction networks equation (4) is a system of 229

coupled ODEs known as the chemical master equation [29]. 230

Finite Dimensional Approximation 231

We would like to find a finite dimensional approximation of of P; we can do this with non-negative basis
functions ψ(x) = [ψ1(x), . . . , ψN (x)]ᵀ. We take the ansatz that for all t ∈ (t1, tR), we can expand % as the
linear combination

%(t,x) = cᵀ(t)ψ(x) =
N∑
j=1

cj(t)ψj(x) , (5)

where c(t) = [c1(t), . . . , cN (t)]ᵀ. To ensure the probability density integrates to one, we require c ∈ Λ where

Λ =
{
c ∈ RN : cᵀω = 1 and cᵀψ(x) ≥ 0

}
for ω = [ω1, . . . , ωN ]ᵀ and ωj =

∫
M
ψj(x)dx . (6)

If the basis functions are themselves probability density functions, then Λ is the probability simplex. In 232

Figure 1(a), we show how a distribution can be represented as a sum of normal distributions, that is, the 233

density is given by a Gaussian mixture model. 234

We can derive a linear system of ODEs for the coefficients c(t). We do this by noting in weak form [30, 31]
equation (4) is

〈g, %̇〉M = 〈g,P%〉M for 〈g, %〉M =

∫
M
g%dx . (7)

Choosing g = ψi and expanding % as in equation (5), then

M ċ(t) = Qc(t) , (8)

where Mij = 〈ψi, ψj〉 and Qij = 〈ψi,Pψj〉. Assuming M is invertible, define

P := M−1Q , (9)
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which is the projection of P onto the basis functions {ψ1, . . . , ψN}. That is, for g(x) = cᵀψ(x), we have the
equality Pg(x) = (Pc)

ᵀ
ψ(x). In order to preserve probability density and positivity, we require P ∈P for

P =

{
P ∈ RN×N :

N∑
k=1

ωkPkj = 0 and Pij ≥ 0 for i, j = 1, . . . , N and i 6= j

}
. (10)

The explanation behind equation (10) is contained in the Appendix. 235

We can solve the dynamics for equation (4) using the approximation in equation (5) by using the matrix 236

exponential operation, specifically 237

c(t) = etP c∗ , (11)

where c∗ are the coefficients at corresponding to the chosen initial condition %0 = cᵀ∗ψ(x). 238

Selection of P matrix 239

We now need to address the issue of how to determine P from data. Consider a linear operator P with matrix 240

representation P on the space spanned by ψ. The L2 norm gives a measure of how well P represents the 241

evolution of the densities. 242

For an initial condition of

%0 = cᵀ∗ψ(x) , (12)

the squared relative prediction error at time t = tr for r = 1, . . . , R is

ε2
r(P, %0) :=

‖etrP%0(·)− %(tr, ·)‖2L2

‖%(tr, ·)‖2L2

=

∫
M
[
etrP%0(x)− %(tr,x)

]2
dx∫

M [%(tr,x)]
2

dx
. (13)

Notice that we specify that the error is a function of both the Perron–Frobenius operator and the initial
condition, which is then treated as a parameter of the model. We then define the mean squared relative
prediction error as

ε2(P, %0) =
1

R

R∑
r=1

ε2
r(P, %0) . (14)

It would be ideal now to find

{P, %0} := arg min
P, %0≥0,%0∈L1

ε2(P, %0) = arg min
P, %0≥0,%0∈L1

1

R

R∑
r=1

ε2
r(P, %0) . (15)

Of course, we do not know what this error is without using our finite dimensional approximation; therefore,
by using equation (5) we calculate the time t = tr error as

ε2
r(P, c∗) :=

[etrP c∗ − cr]ᵀM [etrP c∗ − cr]
cᵀrMcr

. (16)

and therefore, our objective function is modified by using this finite dimensional approximation to

{P, c∗} := arg min
P∈P, c∗∈Λ

ε2(P, c∗) = arg min
P∈P, c∗∈Λ

1

R

R∑
r=1

ε2
r(P, c∗) . (17)

Unmentioned at this point is that: for a large quantity of basis functions the size over which this
optimisation problem occurs is challenging. That is: one has N2 free parameters in the matrix P , with zero
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Algorithm 1 Algorithm to Determine Rate Matrix

Require: Data X = {Xr}Rr=1 and observation times t1 < · · · < tR.
Require: Choose basis functions ψ(x) = [ψ1(x), . . . , ψN (x)]

ᵀ
.

1: Solve

{P, c∗} := arg min
P∈P,c∗∈Λ

1

R

R∑
r=1

ε2
r(P, c∗).

2: return P

column sums one has N(N − 1) degrees of freedom; but one also has the initial condition to choose adding
N parameters, so N − 1 degrees of freedom with unit column sum — in total (N − 1)(N + 1) degrees of
freedom. Therefore, the problem is unapproachable without gradient calculations to speed up the optimization
algorithm. Using the exponential matrix derivative (see Appendix), one can calculate the t = tr relative error
with respect to P as

∂ε2
r

∂P
=

2

cᵀrMcr

∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

(P k−j)
ᵀ
M(etrP c∗ − cr)cᵀ∗(P j)

ᵀ
(18)

=
2

cᵀrMcr

∞∑
k=0

tk+1

(k + 1)!
Sk , (19)

and the derivative with respect to c∗ as

∂ε2
r

∂c∗
=

2

cᵀrMcr
[etrP ]ᵀM [etrP c∗ − cr] . (20)

The terms

Sk =
k∑
j=0

(P k−j)
ᵀ
M(etrP c∗ − cr)cᵀ∗(P j)

ᵀ
(21)

can be calculated using the recursion relation

Sk = P ᵀSk−1 + Sk−1P
ᵀ − P ᵀSk−2P

ᵀ where S−1 = 0 and S0 = M(etrP c∗ − cr)cᵀ∗ . (22)

Lasso Regularisation 243

For display purposes, we can promote sparsity in P by using a Lasso regularisation. We modify the error
term in equation (17) to

ε2
†(P, c∗) =

1

R

R∑
r=1

ε2
r(P, c∗) + β‖vec(M ◦ P )‖1 =

1

R

R∑
r=1

ε2
r(P, c∗) + β

N∑
i=1

N∑
j=1

|Mi,jPi,j | , (23)

where ◦ denotes the Hadamard product (or entrywise product) and vec(·) denotes the vectorisation of a
matrix. In the case where the basis functions are probability density functions, we can calculate the derivative
of this expression as

∂

∂P
(‖vec(M ◦ P )‖1) =


−M1,1 M1,2 . . . M1,N

M2,1 −M2,2

...
...

. . .

MN,1 . . . −MN,N

 . (24)
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By using the mass matrix M as a weighting in front of the Perron–Frobenius matrix P , we are promoting 244

edges between basis functions located apart from each other. 245

Graph Visualisations 246

P matrix visualisations 247

One can interpret the matrix P as a Markov rate matrix, in which case the entry Pi,j shows the rate at which 248

state j transitions into state i. Therefore, a cell in cluster i will switch to cluster j in time interval [t, t+ ∆t) 249

for ∆t > 0 with probability Pi,j∆t+O(∆t2). To reiterate, cells exist in states between the basis functions so 250

instead of being at a single state, they are in a state which is a weighted combination of the basis functions. 251

However, this interpretation allows us to plot a directed network with weighted adjacency matrix Pi,j . Nodes 252

can then be placed using one of a multitude of algorithms, in our case we use force-directed node placement 253

with weights inversely proportional to the mass matrix M . We also plot the size of node i proportional to 254

Pi,i (as this is the rate at which state i remains in state i). 255

Eigenfunction visualisation 256

To investigate key dynamical behaviours of a linear operator, a common theme is the study of the corresponding 257

eigenproblem. By solving the eigenproblem, one can decompose the solution of the operator into components 258

(known as eigenfunctions or eigenvectors) that will dynamically change with respect to the eigenvalue. 259

By studying the eigenproblem, one can break down the solution into key behaviours and find important 260

transitionary states. 261

For an eigenfunction satisfying

P%λ(x) = λ%λ(x) , (25)

using the finite dimensional Galerkin approximation, there is the corresponding eigenvector

Pvλ = λvλ . (26)

In low dimensions, one can simply plot this function as a linear combination

%λ(x) = vᵀλψ(x) =

N∑
j=1

vλ,jψj(x) . (27)

To ensure consistent scales when plotting, we demand

‖%λ‖L2 = 〈%λ, %λ〉M = 1 , (28)

or in our finite dimensional representation

‖vλ‖M = 〈vλ,vλ〉M = vᵀλMvλ = 〈M 1
2 vλ,M

1
2 vλ〉2 = 1 . (29)

In high dimensions, our ability to visualise functions is limited. However, we have represented the function as
a linear combination of basis functions and so we only need to present the coefficients in the eigenvector.
To visualise if the eigenvector values have similar or dissimilar values, we can consider representing the
eigenfunction as a graph. We specify the adjacency matrix for an undirected weighted graph as the outer
product

Gλ = (M
1
2vλ)⊗ (M

1
2 vλ) = M

1
2vλv

ᵀ
λM

1
2 . (30)
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For Perron–Frobenius eigenfunctions with eigenvalue λ 6= 0, the function will have both a positive part and a 262

negative part (indicating where probability mass is flowing from and to). Therefore, by examining Gλ, a 263

positive value in entry (i, j) in Gλ indicates basis functions i and j both have the same sign (positive or 264

negative) and a negative value indicates they have opposite signs. By using the weighting of M
1
2 in front of 265

the eigenvector vλ we ensure that the sizes of the eigenvectors are bounded. Occasionally it is the case that 266

we get complex eigenvalues, in which case they appear as complex conjugates and one can plot the real and 267

imaginary parts separately. 268

Conclusion 269

We presented Dynamic Distribution Decomposition for identification of dynamically important states of 270

biological processes. This method operates on snapshot time series data and infers dynamically important 271

states by mapping between distributions. We applied our approach to synthetic data generated for a simple 272

test system, and then further to a mass cytometry time series data set for iPSC reprogramming. Our 273

approach performed well for both systems showing key dynamical states. For the experimental system of 274

iPSC reprogramming of fibroblasts, we could also identify key time points where the current experimental 275

set-up is insufficient elucidate the reprogramming process and where further investigation is warranted. 276

DDD can be computed efficiently, e.g., via the recursion relation given by equation (55), but we have not 277

optimised the implementation. In the case where there is more than 100 basis functions, our minimisation 278

procedure using the inbuilt MATLAB multivariate minimisation algorithm can be unreasonably slow; therefore, 279

we will investigate more efficient implementations. 280

DDD depends on a few design decisions, such as the choice of basis functions. In this manuscript, we 281

used basis functions as components of a Gaussian mixture model and gave parameters that needed tuning to 282

alter the fit. Our method for choosing basis functions does not have an optimal configuration with regards 283

to minimising error. This is because by sending the regularisation value to infinity one obtains perfect fits, 284

and sending the regularisation value to zero can lead to ill fitting solution (basis functions with same mean 285

etc). However, one can use the α parameter as a rule of thumb to ensure enough basis functions are included. 286

For other applications other choices in basis functions are conceivable, for example, radial basis functions 287

[32]; piecewise linear basis functions [33]; and global basis functions [19, 25] to name a few. When the basis 288

functions have finite support, the mass matrix M will be sparse, in which case the Lasso step will not be 289

necessary. It would also make sense to use basis functions built around the data type, for example negative 290

binomial distributions are often used to model UMI counts from single-cell RNA-Seq data. When one uses a 291

single basis function centred around each data point, one refers to this as kernel density estimation, of which 292

there are optimal methods to choose the basis function [34]; when using a small number of basis functions for 293

a large number of sample points, there are likely optimal ways of choosing them which we will investigate in 294

future work. 295

DDD could be applied to investigate pseudo-time ordered single-cell data of single time point experiments. 296

Here, one uses single-cell data measured at only a single time point to carry out trajectory inference and 297

subpopulation identification to infer biological processes, e.g., the cell cycle; a review of such methods can be 298

found in Ref. [35]. It may be possible to improve our fits by combining approaches: while cells are monitored 299

with regards to experimental time, individual cell time coordinates might deviate due to asychronity of 300

process initiation; this could be incorporated to get smoother Perron–Frobenius operators between time 301

points, see Ref. [36]. This would then be a biologically motivated method to account for delays in the system. 302

The work presents Dynamic Distribution Decomposition, linking operator theory to the practical world of 303

high-dimensional data analysis. While we focus on application of DDD to mass cytometry measurements, 304

it is conceivable to expand to applications to single-cell RNA sequencing time series as well as biological 305

processes other than an iPSC reprogramming. We expect DDD and method variations will be instrumental 306

in providing intuitive understanding of such biological processes. 307
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Additional Mathematical Details

Choice in basis functions

One option for choosing the basis functions is to use probability density functions, so∫
M
ψj(x)dx = 1 , (31)

for j = 1, . . . , N . We can find the values of c at the observed time points by noting that the value of the
coefficient at time t = tr must be proportional to the probability that basis function j created the data at
that time point, so

cj(tr) ∝
nr∑
i=1

ψj(xr,i) . (32)

One can then normalise
∑N
j=1 cj = 1 for j = 1, . . . , N to find the coeffient vector cr. Assuming multivariate

Normal distributions as basis functions, we have

ψj(x) = N (x ;µj ,Σj) , (33)

where N is the probability density function for a multivariate Normal distribution with mean µ and covariance
matrix Σ. To determine the mass matrix, adapting results from Ref. [37] we can analytically calculate the
inner product between two multivariate normal distributions as

〈ψ1, ψ2〉M =

∫
M
N (x ;µ1,Σ1)N (x ;µ2,Σ2)dx (34)

=
exp

{
1
2

[
ηᵀ

1Σ1η1 + ηᵀ
2Σ2η2 − η

ᵀ
∗(Σ

−1
1 + Σ−1

2 )−1η∗
]}√

(2π)d|Σ1| |Σ2| |Σ−1
1 + Σ−1

2 |
, (35)

for

η1 = Σ−1
1 µ1 , η2 = Σ−1

2 µ2 , and η∗ = η1 + η2 . (36)

Requirements on Perron–Frobenius matrix approximation

To preserve probability, it must be the case that

N∑
i=1

ωiPij = 0 ∀j = 1, . . . , N , (37)
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which is identical to the condition for continuous time Markov chains. This is because we require

d

dt

∫
M
%(t,x)dx = 0 (38)

=
d

dt

∫
M
cᵀ(t)ψ(x)dx (39)

=

∫
M
ċᵀ(t)ψ(x)dx (40)

= ċᵀ(t)ω = ωᵀċ(t) (41)

= ωᵀPc(t) (42)

=
N∑
i=1

ωi

 N∑
j=1

Pijcj(t)

 (43)

=
N∑
j=1

cj(t)

(
N∑
i=1

ωiPij

)
(44)

Therefore, for mass to be conserved, equation (10) holds.
We also require the operator etP preserves positivity, that is, etPu0 ≥ 0 for functions u0 ≥ 0. This implies

that the off-diagonal entries of P must be non-negative. The reason is as follows. As ψ ≥ 0, the function
u0 = cᵀuψ must have cu ≥ 0 due to linear independence of the normalised basis functions. It therefore follows
that etP ≥ 0 element wise, because the positivity condition and linear independence of the normalised basis
functions require that cᵀue

tP ≥ 0 element wise. Thus, 0 ≤ etP = I + tP + O(t2) for all t ≥ 0, which in
particular means that tPi,j +O(t2) ≥ 0 for i 6= j. The condition Pi,j ≥ 0 follows by considering arbitrarily
small t > 0. This is sufficient for etP to be element wise non-negative, as the matrix exponential of a matrix
with non-negative off-diagonal elements is always non-negative element wise. Note that this, together with
the mass conservation condition, implies that the diagonal entries of P are all negative.

Gradient Calculation

For relevant background reading on functions of matrices, see Ref. [38]. Let H denote the Hilbert space
RN with inner product 〈p, q〉H = pᵀMq, P ∈ RN×N . For t > 0, and p, q ∈ H, we derive the gradient
of f(P ) = ‖etPq − p‖2H that is used for the gradient calculation in Equation (18). Let Df (P ; dP ) be the
directional derivative of f at P , in the direction dP . Let 〈·, ·〉F denote the Frobenius inner product on RN×N .
The gradient of f is the matrix G ∈ RN×N such that Df (P ; dP ) = 〈G, dP 〉F for any dP ∈ RN×N .

First, note that
Df (P ; dP ) = 2(etPq − p)ᵀM [Det·(P, dP )]q. (45)

We therefore need an expression for the directional derivative Det·(P ; dP ) of P → etP . By definition of the
matrix exponential, we have that

et(P+dP ) = etP +
∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

P k−j(dP )P j + o(‖dP‖H→H). (46)

The directional derivative is thus

Det·(P ; dP ) =
∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

P k−j(dP )P j . (47)
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By combining (45) and (47) we see that the directional derivative of f is

Df (P ; dP ) = 2
〈
etPq − p,

( ∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

P k−j(dP )P j
)
q
〉
H

(48)

= 2
∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

〈etPq − p, (P k−j(dP )P j)q〉H. (49)

The final step is to derive G such that Df (P ; dP ) = 〈G, dP 〉F . Note that 〈q, Ap〉H = 〈Mqpᵀ, A〉F for
arbitrary p, q ∈ RN and A ∈ RN×N . Thus, (49) becomes

Df (P ; dP ) = 2
∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

〈etPq − p, (P k−j(dP )P j)q〉H (50)

= 2
∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

〈(P k−j)ᵀM(etPq − p)qᵀ(P j)
ᵀ
, dP 〉F . (51)

It therefore follows that the gradient of f at P is the matrix

G = 2

∞∑
k=0

tk+1

(k + 1)!

k∑
j=0

(P k−j)
ᵀ
M(etPq − p)qᵀ(P j)

ᵀ
(52)

= 2

∞∑
k=0

tk+1

(k + 1)!
Sk . (53)

The terms

Sk =

k∑
j=0

(P k−j)
ᵀ
M(etPq − p)qᵀ(P j)

ᵀ
, (54)

can be calculated using the recursion relation

Sk = P ᵀSk−1 + Sk−1P
ᵀ − P ᵀSk−2P

ᵀ, where S−1 = 0 , S0 = M(etPq − p)qᵀ . (55)
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Additional Figures

Fig 8. Protein expression of Nanog-Neo cell line data taken from Zunder et. al. [26]. Locations are plotted using positions of
nodes in Figure 6. After the raw data is transformed via f(x) = arcsin(x/5) and z-scored, we limit the colour scale to the
middle 50% of the data (lower quartile in dark blue, upper quartile in dark red).
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