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Abstract 15 
 16 
Scientific output is not a linear function of amounts of federal grant support to individual 17 
investigators.  As funding per investigator increases beyond a certain point, productivity 18 
decreases.  This study reports that such diminishing marginal returns also apply for National 19 
Institutes of Health (NIH) research project grant funding to institutions.  Analyses of data (2006-20 
2015) for a representative cross-section of institutions, whose amounts of funding ranged from 21 
$3 million to $440 million per year, revealed robust inverse correlations between funding (per 22 
institution, per award, per investigator) and scientific output (publication productivity and citation 23 
impact productivity).  Interestingly, prestigious institutions had on average 65% higher grant 24 
application success rates and 50% larger award sizes, whereas less-prestigious institutions 25 
produced 65% more publications and had a 35% higher citation impact per dollar of funding.  26 
These findings suggest that implicit biases and social prestige mechanisms (e.g., the Matthew 27 
effect) have a powerful impact on where NIH grant dollars go and the net return on taxpayers’ 28 
investments.  They support evidence-based changes in funding policy geared towards a more 29 
equitable, more diverse and more productive distribution of federal support for scientific 30 
research.  Success rate/productivity metrics developed for this study provide an impartial, 31 
empirically based mechanism to do so. 32 
 33 
Keywords 34 
 35 
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 37 
Call-Out Quotes 38 
 39 
“Giving the lion’s share of grant dollars to a small minority of institutions seems 40 
counterproductive and wasteful—whether or not the disparities in funding are driven by bias.” 41 
 42 
“A more egalitarian distribution of funding among institutions would yield greater collective gains 43 
for the research enterprise and the taxpayers who support it.”  44 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/367847doi: bioRxiv preprint 

https://doi.org/10.1101/367847
http://creativecommons.org/licenses/by/4.0/


	 	 	

	 2	

Introduction 45 
 46 
There is strength in diversity.  Diversity in scientific research includes the perspectives and 47 
creative ideas that are harnessed, the model systems and experimental tools employed, the 48 
types of investigators supported, and the regions in which research is conducted.  Multiple 49 
levels of diversity increase the likelihood of scientific breakthroughs and maximize the return on 50 
taxpayers’ investments in federally sponsored research (Lorsch, 2015; Peifer, 2017a).  51 
Unfortunately, there are barriers to maximizing diversity. 52 
 53 
A landmark study in Science reported that black investigators are much less likely to get their 54 
National Institutes of Health (NIH) research grant applications funded than white applicants, 55 
even after for controlling for other factors (Ginther et al., 2011).  There are also large differences 56 
in success rates for investigators grouped by age (Levitt & Levitt, 2017).  While there does not 57 
seem to be a gender gap for new NIH grants, female applicants have lower success rates than 58 
their male counterparts for competitive renewals (Kaatz et al., 2016; Magua et al., 2017; 59 
Pohlhaus et al., 2011).  There are also large differences in success rates for investigators 60 
grouped by state (Wahls, 2016).  The differences in success rates affect where federal research 61 
dollars go, contributing to heavily skewed distributions of support among all investigators.  For 62 
example, just 1% of funded investigators receive about 11% of NIH research grant dollars and 63 
10% of funded investigators get about 40% of the money (Basson et al., 2016; Collins, 2017). 64 
 65 
One way to visualize the distribution of wealth, the magnitude of disparity and the degree of 66 
skew is through Pareto plots (Figure 1).  The histograms (left Y-axis) display the amount of NIH 67 
research project grant funding to each bin (there are 52 bins in each plot).  For example, the first 68 
bin of investigators, which contains the top-funded 1.9% of awardees, received more than twice 69 
as many dollars as the second bin (Figure 1, top panel).  The cumulative curves (right Y-axis) 70 
display the fraction of funding that is allocated to a given bin and all higher-funded bins (i.e., 71 
those to its left).  For example, the first two bins of investigators (the top-funded 3.8%) received 72 
22% of all research dollars.  Strikingly, the distributions of research dollars among institutions 73 
and states (Wahls, 2016, 2018) are even more heavily skewed than that for investigators 74 
(Basson et al., 2016; Collins, 2017).  Half of all NIH research project grant dollars go to about 75 
19% of funded investigators, 2% of funded institutions and 10% of states (Figure 1).  The actual 76 
magnitude of disparity is even higher than depicted here because many well-qualified scientists 77 
who apply for support go unfunded.  About three-quarters of applicants are denied funding each 78 
year (Rockey, 2014) and less than one in three applicants get any of their research project grant 79 
applications funded over a five-year period (Lauer, 2016c). 80 
 81 
This “funding inequality has been rising since 1985, with a small segment of investigators and 82 
institutes getting an increasing proportion of funds, and investigators who start in the top funding 83 
ranks tend to stay there” (Katz & Matter, 2017).  While the rich get richer, there is increasing 84 
hyper-competition elsewhere in the ranks for the remaining funds.  This creates a barrier for the 85 
entry of talented young scientists into the biomedical workforce, threatening the future of the 86 
research enterprise (Carr, 2013).  Similarly, the approximately 70% of awardees who hold a 87 
single NIH grant are at increased risk of losing that support, their research laboratories, and 88 
even their livelihood (Peifer, 2017a).  Consequently, scientists, agency officials and 89 
organizations such as the Federation of American Societies for Experimental Biology have 90 
advocated for a more equitable distribution of funding among investigators to help sustain the 91 
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biomedical research enterprise (e.g., Alberts et al., 2014; FASEB, 2015; Lorsch, 2015; Peifer, 92 
2017a; Wahls, 2018). 93 
 94 
Among all types of disparities in allocations of NIH funding described to date, one is 95 
preeminent—and poorly defined as to its causes and consequences.  The fact that the NIH 96 
gives the majority of its extramural research project grant dollars to tiny minority (about 2%) of 97 
funded organizations (Figure 1) raises two fundamental, important questions.  First, what 98 
factors, other than the number of applicants, contribute to the unbalanced allocations of funding 99 
among institutions?  Second, are the disparities beneficial or detrimental to the national 100 
research enterprise?  These questions are addressed below. 101 
 102 
Results 103 
 104 
Differences in success rates, funding rates, award sizes and funding per investigator 105 
contribute to disparity 106 
 107 
To gain insight into potential causes of the funding disparities, funding and productivity metrics 108 
were analyzed, encompassing data over a ten-year period, for fifteen institutions whose 109 
amounts of funding ranged from about $3 million to $440 million per year (mean of values for 110 
fiscal years 2006-2015, Supplementary Table S1).  This range extends through the first twelve 111 
bins of organizations shown in Figure 1, providing a broad cross section of institutions based on 112 
amounts of funding.  For analyses of returns on investments, in a subsequent section of the 113 
Results, data were analyzed using continuous variable statistics.  However, for part the 114 
analyses reported in this section the data were placed into groups of prestigious and less-115 
prestigious institutions based on published rankings (Bastedo & Bowman, 2010; US News & 116 
World Report, 2016). 117 
 118 
The first two variables examined have to do with likelihood of funding.  The application-level 119 
success rate is essentially the fraction of applications that get funded in a given fiscal year, 120 
although revised applications in the same fiscal year are not counted in the denominator 121 
(Rockey, 2014).  The investigator-level funding rate is the fraction of applicants that get one or 122 
more of their applications funded in a given fiscal year (Rockey, 2014).  The success rates and 123 
funding rates of the institutions were obtained through a Freedom of Information Act request to 124 
the NIH (FOI case no. 46152).  For fiscal years 2006 to 2015 there were about 137,000 type 1 125 
(new) and type 2 (competing renewal) research project grant applications and the average rates 126 
for each institution in that time frame were compared.  The grant application success rate for 127 
each of the prestigious institutions exceeded that for each of the less-prestigious institutions 128 
(Figure 2A).  As a group, investigators at the prestigious institutions were, on average, 1.7-129 
times more likely to get each grant application funded than those at the less-prestigious 130 
institutions (33.9% vs 20.5%, p < 0.001).  Similarly, the investigator funding rate of each 131 
prestigious institution exceeded that of each less-prestigious institution, and investigators at the 132 
prestigious institutions were, on average, 1.7-times more likely to get at least one application 133 
funded each year that they applied (37.6% vs 22.4%, p = 0.003) (Figure 2B). 134 
 135 
The next two variables examined have to do with amounts of funding.  A search of the NIH 136 
RePORTER database (US Department of Health and Human Services, 2017) identified 41,021 137 
research project grant awards from fiscal years 2006 to 2015 (each year of funding for a project 138 
counts as an award) and these were allocated to 6,021 principal investigators.  The total amount 139 
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of funding to each institution over the ten years was divided by the number of investigators who 140 
received funding in one or more years to yield overall funding per investigator.  The overall 141 
funding per investigator at each prestigious institution was higher than that per investigator at 142 
each less-prestigious institution (Figure 2C).  Investigators at the prestigious institutions were 143 
awarded, on average, 2.4-times more funding than those at less-prestigious institutions 144 
($3,508,000 vs $1,465,000, p < 0.001).  The mean annual award size for each prestigious 145 
institution was larger than that for each less-prestigious institution, giving investigators at the 146 
prestigious institutions, on average, 1.5-times more dollars per award each year ($466,000 vs 147 
$310,000, p < 0.001) (Figure 2D). 148 
 149 
In summary, from 2006 to 2015, each of the prestigious institutions outperformed, by every 150 
metric, each of the less-prestigious institutions in securing NIH research project grant funding.   151 
 152 
The placement of institutions into prestigious and less-prestigious groups was part of the 153 
experimental plan, which was laid out before any data were acquired, and the assignments 154 
were based on published rankings (Bastedo & Bowman, 2010; US News & World Report, 155 
2016).  Nevertheless, these groupings could be considered arbitrary and might affect the 156 
results, so the data (Supplemental Table S1) were also analyzed as continuous variables 157 
without regard to prestige rank.  Linear least squares regression analyses revealed robust 158 
positive correlations between success rates (R2 = 0.53, p = 0.002), funding rates (R2 = 0.48, p = 159 
0.004), award sizes (R2 = 0.75, p < 0.001), and funding per investigator (R2 = 0.62, p < 0.001) 160 
versus the total amounts of funding to each organization. 161 
 162 
The conclusions are straightforward.  Differences in grant application success rates, investigator 163 
funding rates, annual award sizes, and funding per investigator contribute significantly to 164 
disparities in the number of research project grant dollars allocated to institutions.  Moreover, 165 
the impacts of the differences in success rates (Figure 2A) and award sizes (Figure 2D) are 166 
multiplicative, giving the prestigious institutions about 240% more dollars of funding per 167 
investigator (Figure 2C).  In short, differences in likelihood of funding and award sizes are 168 
proximate causes of the heavily skewed distribution of funding among institutions (Figure 1).  169 
Consequences of these imbalances are documented in subsequent sections of the Results and 170 
are described in the Discussion. 171 
 172 
Less-prestigious institutions produce greater returns on investments 173 
 174 
The disparities in allocations of funding by the NIH might be justified if the prestigious 175 
institutions were of greater value to the national research enterprise than the less-prestigious 176 
institutions.  To see if this is the case, I examined two variables for their primary scientific 177 
outputs, which are funding-normalized publication productivity and the citation impacts of those 178 
publications. 179 
 180 
There were 41,021 research project grant awards from 2006 to 2015.  The project numbers for 181 
awards to each institution were used to search the PubMed database (US National Library of 182 
Medicine and National Institutes of Health, 2017), which identified 95,035 scientific publications 183 
(based on their unique PMIDs) that were supported by those projects from 2006 to 2015.  The 184 
total number of project-associated publications of each institution was divided by total funding to 185 
yield publication productivity.  Each of the less-prestigious institutions produced more scientific 186 
publications per dollar of research project grant funding than each of the prestigious institutions 187 
(Figure 2E).  They were, on average, 65% more productive (8.7 vs 5.3 publications per million 188 
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dollars of funding, p = 0.003).  Of course, it is possible that the scientific impact of publications 189 
might differ between institutions. 190 
 191 
To gain insight into this possibility, the relative citation ratio (RCR) (Hutchins et al., 2016) was 192 
compiled for each grant-supported research article during the survey period.  Citations to 193 
reviews, editorials, and other non-research article types were excluded from analysis.  The RCR 194 
value, which is being used by the NIH to assess portfolio performance and to guide funding 195 
decisions (e.g., Lauer, 2016a, 2016b, 2016d, 2017), is a time-normalized, field-normalized 196 
metric for citation impact (Hutchins et al., 2016).  These normalizations allow one to compare, in 197 
an appropriately weighted fashion, the impact factors for articles published at different times in 198 
the survey period.  Since article-level citation impact factors follow a log-normal distribution 199 
(Eom & Fortunato, 2011; Hutchins et al., 2016; Stringer et al., 2008), RCR (+ 1) values were 200 
log-transformed (e.g., Kaltman et al., 2014).  The sum of log-RCR values for each institution 201 
was normalized to total funding, which provides a measure of productivity based on the citation 202 
impact of publications.  All but one of the less-prestigious institutions outperformed each of the 203 
prestigious institutions, and as a group they had a 35% higher productivity (Figure 2F, p = 204 
0.006). 205 
 206 
In summary, from 2006 to 2015, the overall, funding-normalized productivity of the less-207 
prestigious institutions was greater than (35% based on citation impact) or substantially greater 208 
than (65% based on publication rate) that of the prestigious institutions.  I conclude that the 209 
scientific output-based of value of these institutions to the national research enterprise does not 210 
justify the strong disparities in allocations of funding (significant differences in success rates, 211 
funding rates, award sizes, and funding per investigator) between the prestigious and less-212 
prestigious institutions. 213 
 214 
It should be emphasized that the differences in productivity do not necessarily mean that 215 
investigators at the less-prestigious institutions are “better scientists” or are “more meritorious” 216 
than those at the prestigious institutions.  Reasons for this are documented in a subsequent 217 
section of the Results and are described in the Discussion. 218 
 219 
A more comprehensive measure for the magnitude of disparity 220 
 221 
Previous studies of funding disparities have focused primarily on differences in grant application 222 
success rates (e.g., Ginther et al., 2011; Kaatz et al., 2016).  However, results of this study and 223 
those recently reported elsewhere (Murray et al., 2016; Wahls, 2016) show that there are also 224 
disparities in amounts of funding per award.  When investigators who are in a group that is 225 
disadvantaged by lower success rates do get their applications funded, they often receive 226 
substantially less money per award (e.g., Figure 2D).  Moreover, there can be substantial 227 
differences in productivity between groups (e.g., Figure 2E-2F), which is germane to whether 228 
differences in success rates and award sizes are warranted.  These various factors can be 229 
evaluated simultaneously by using the SR/P value, which is success rate divided by 230 
productivity.  Differences in SR/P values for investigators grouped in any way that is desired 231 
(e.g., by race, gender, age, institution or state) and using any measure of productivity that is 232 
desired (e.g., publication rate or citation impact per unit of funding), reveal the success rate-233 
normalized, funding amount-normalized, scientific output-normalized magnitude of funding 234 
disparities. 235 
 236 
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For all four of the different ways that the data were analyzed, the SR/P value (and a related 237 
metric, below) of each prestigious institution exceeded that of each less-prestigious institution 238 
(Figure 2G-2H and Supplementary Table S1).  When publications were used as the basis for 239 
productivity, the mean SR/P value of the prestigious institutions was 2.6-fold higher than that for 240 
the less-prestigious institutions (Figure 2G, p = 0.003).  When citation impact values were used 241 
to gauge productivity, there was a 2.2-fold difference between groups (Figure 2H, p < 0.001).  242 
Substituting per investigator funding rates (FR) for per application success rates (SR) produced 243 
essentially identical results, with intergroup FR/P quotients of 2.7 (p = 0.003) and 2.2 (p = 244 
0.003), respectively (Supplementary Table S1).  The fact that four distinct approaches yielded 245 
concordant results (mean of 2.41 ± 0.27 standard deviation) suggests that SR/P and FR/P 246 
metrics developed for this study provide robust measures for the magnitude of disparity. 247 
 248 
Inverse correlations between amounts of funding and productivity 249 
 250 
To gain insight into consequences of the funding disparities, publication-based and citation 251 
impact-based productivity values were analyzed as a function of total funding, mean annual 252 
funding per award, and funding per principal investigator at each institution (Figure 3).  For 253 
each of these six analyses, linear regression statistics revealed a robust inverse correlation 254 
between amounts of funding and productivity (R2 = 0.53 to R2 = 0.78; p < 0.001 to p = 0.003).  I 255 
conclude that there are diminishing marginal returns on allocations of NIH research project grant 256 
dollars among these institutions, as reported for amounts of NIH funding among individual 257 
grants (e.g., Lauer, 2016a, 2016b), investigators (e.g, Basson et al., 2016; Lorsch, 2015), and 258 
quartiles of states (Wahls, 2016).  The causes of such diminishing marginal returns, their 259 
impacts on the national research enterprise, and implications for funding policy are presented in 260 
the Discussion section. 261 
 262 
Generalizability of the findings 263 
 264 
The analyses encompassed institutions whose amounts of funding ranged from $3 million to 265 
$440 million per year and the conclusions are based on statistically significant differences in 266 
data from more than 100,000 research project grant applications, 40,000 awards, and 95,000 267 
publications acknowledging support from those grants over a ten-year period.  Inspection of the 268 
literature revealed that the differences in grant application success rates reported here for a 269 
subset of institutions (65% difference between groups) are virtually identical to those reported 270 
for all institutions placed in groups by their amounts of grant funding (Eblen et al., 2016) and, in 271 
another study, for all institutions grouped by size (Murray et al., 2016).  Similarly, the differences 272 
in award sizes reported here are like those reported for all institutions (Murray et al., 2016).  The 273 
findings of this study, using a cross section of institutions whose amounts of funding cover a 274 
broad (about 150-fold) range, can thus be considered representative of the broader population 275 
of institutions. 276 
 277 
Discussion 278 
 279 
There are three key findings described in this study.  First, allocations of NIH research project 280 
grant funding to institutions are extremely skewed, favoring a tiny minority and disfavoring the 281 
vast majority (Figure 1).  Second, differences in grant application success rates and award 282 
sizes contribute to these disparities (Figure 2A, 2D).  The impacts of differences in success 283 
rates and award sizes are multiplicative, giving the favored institutions about 240% more dollars 284 
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per investigator (Figure 2C).  Third, the scientific productivity of the disfavored institutions 285 
exceeds that of the favored institutions (Figure 2E-2F) and there are robust inverse correlations 286 
between funding (total, per award, per investigator) and productivity (Figure 3).  These findings 287 
provide important new insight into causes and consequences of disparities in federal funding for 288 
scientific research, and they support evidence-based changes in funding policy. 289 
 290 
Funding allocations are biased by institution 291 
 292 
The extreme disparities in NIH funding to institutions (e.g., 1% of funded organizations get about 293 
34% of the dollars), which favor a tiny minority and disfavor the vast majority (Figure 1), are not 294 
matched by extreme differences in distributions of talent.  For example, a congressionally 295 
mandated study found that the talent to carry out research resides throughout the United States 296 
(National Academies, 2013).  All institutions have access to a surplus of highly trained 297 
investigators and supporting scientists (Alberts et al., 2014; Carr, 2013) and the value of an 298 
investigator to the nation’s research enterprise is largely independent of institutional affiliation 299 
(Deville et al., 2014).  Moreover, this study revealed that large differences in grant application 300 
success rates and award sizes among institutions are discordant with their productivity-based 301 
value to the national research enterprise (Figure 2).  It thus appears that the NIH funding 302 
process is biased by institution, as has been reported for funding by the Natural Sciences and 303 
Engineering Research Council of Canada (Murray et al., 2016). 304 
 305 
Subconscious bias and social prestige mechanisms 306 
 307 
It seems unlikely that grant reviewers and NIH officials at-large are overtly biased, so what are 308 
potential sources of bias and how could they possibly have such a strong impact on allocations 309 
of funding among institutions? 310 
 311 
Most bias is subconscious and these pervasive, implicit biases even affect the actions of 312 
individuals who are not overtly biased (Lai et al., 2013; Staats et al., 2016).  Our actions are also 313 
strongly affected by social prestige mechanisms that encompass non-meritocratic factors such 314 
as the wealth, reputation and selectivity of institutions (Bastedo & Bowman, 2010; Burris, 2004; 315 
Clauset et al., 2001).  The preferential allocation of NIH funding to prestigious institutions 316 
(Figure 2), despite their lower productivity, is an excellent example of the Matthew effect (a type 317 
of bias/social prestige mechanism) (Merton, 1968; Perc, 2014) in action.  As another example, 318 
manuscripts are more frequently accepted for publication when they come from prestigious 319 
institutions than from less-prestigious institutions, and the acceptance rate gap closes when 320 
author identity and institutional affiliation are withheld from the reviewers (Tomkins et al., 2017).  321 
We are hard-wired, biologically, to make conscious and subconscious distinctions between 322 
groups of people and those distinctions, however unjustified they might be, can affect 323 
allocations of funding. 324 
 325 
A little bias goes a long way.  Even small differences in reviewers’ scores for preferred and non-326 
preferred applicants produce large differences in grant application success rates (Day, 2015).  327 
There are at least four distinct steps of the funding process, involving both scientific merit review 328 
(peer review) and administrative funding decisions, at which bias can occur (Figure 4).  329 
Consequently, the effects of even minor, subconscious biases at each step can multiply 330 
exponentially through successive steps of the process.  Their net impact at population scale can 331 
be inferred by measuring differences in SR/P values, which take into account differences in 332 
likelihood of funding, amounts of funding, and scientific output between investigators grouped in 333 
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any way desired.  Four different permutations of this metric yielded similar results (Figure 2G-334 
2H, Supplementary Table S1) for the magnitude of disparity between the groups of prestigious 335 
and less-prestigious institutions analyzed (mean of 2.41 ± 0.27 standard deviation).  The SR/P 336 
metric thus provides a potentially useful benchmark for ameliorating disparities and, as 337 
described below, for optimizing the efficiency with which research dollars are expended. 338 
 339 
Disparities in funding affect the return on taxpayers’ investments 340 
 341 
The principle that unbalanced allocations of grant funding yield diminishing marginal returns 342 
(incremental output for each additional dollar of funding) has been documented extensively at 343 
the level of investigators (e.g., Basson et al., 2016; Berg, 2010; Cook et al., 2015; Doyle et al., 344 
2015; Fortin & Currie, 2013; Lauer, 2016a, 2016b; Lorsch, 2015; Mongeon et al., 2016).  It 345 
stems from the fact that individual investigators each have a finite capacity to carry out grant-346 
related duties and their productivity declines when their amounts of funding exceed those 347 
capacity limits (Alberts, 1985).  At population scale these diminishing marginal returns, which 348 
are a direct consequence of giving a disproportionately large share of grant funding to a minority 349 
of investigators, have profound impacts on how efficiently research dollars are being expended.  350 
For example, analyses of National Institute of General Medical Sciences (NIGMS) award data 351 
revealed that funding for one R01 grant to an investigator produces, on average, about five 352 
scientific publications in the funding period, whereas the same amount of funding for a third R01 353 
grant yields only about one additional publication (Lorsch, 2015).  As another example, based 354 
on NIH-wide funding data and citation impact factors (median RCR values), marginal returns for 355 
investigators with $400,000 of annual research project grant funding are about five-times 356 
greater than those for investigators with a million dollars of funding (Lauer et al., 2017).  The 357 
diminishing marginal returns persist even when investigator award data are parsed by NIH 358 
institute, for “elite” investigators, and by human versus non-human model systems (Lauer et al., 359 
2017). 360 
 361 
This study revealed that diminishing marginal returns also apply at the level of institutions 362 
(Figure 3).  The ramifications of this finding are like those for returns on investments at the level 363 
of investigators.  Because the NIH gives half of all research project grant dollars to about 2% of 364 
supported institutions (the very well-funded ones) (Figure 1) and very well-funded institutions 365 
tend to be considerably less productive than more modestly funded institutions (Figure 2E-2F, 366 
Figure 3), the unbalance allocations have profound implications for the efficiency with which 367 
research dollars are being expended.  Giving the lion’s share of grant dollars to a small minority 368 
of institutions seems counterproductive and wasteful—whether or not the disparities in funding 369 
are driven by bias.  As is the case for the distribution of research dollars among individual 370 
investigators (Lorsch, 2015; Mongeon et al., 2016; Peifer, 2017a, 2017b; Wahls, 2017, 2018), a 371 
more egalitarian distribution of funding among institutions would yield greater collective gains for 372 
the research enterprise and the taxpayers who support it. 373 
 374 
SR/P values provide impartial way to reduce disparity and increase return on 375 
investments 376 
 377 
To effectively reduce systemic disparities in allocations of funding (e.g., Figure 1), the NIH 378 
would have to close gaps in grant application success rates and award sizes for investigators 379 
grouped by race (Ginther et al., 2011), gender (Kaatz et al., 2016; Magua et al., 2017; Pohlhaus 380 
et al., 2011), age (Levitt & Levitt, 2017), institution (this study) and state (Wahls, 2016).  The 381 
mechanism for remediation would also have to address the impacts of diminishing marginal 382 
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returns (e.g., Figure 3) and, furthermore, must do so in proportion to their variable magnitude.  383 
Overall, the process would have to strike a balance between three fundamental needs:  First, 384 
ensure that investigators at-large are allowed to compete on equal footing for grants and grant 385 
dollars.  Second, accommodate the possibility that some groups of investigators might be of 386 
greater value to the research enterprise than other groups.  Third, maximize the net return on 387 
taxpayers’ investments.  The SR/P metrics developed for this study provide a straightforward 388 
and impartial way to satisfy, simultaneously, these three fundamental needs. 389 
 390 
The differences in SR/P values between institutions (Figure 2G-2H) encompass the impacts of 391 
diminishing marginal returns on scientific output (productivity) as well as controllable factors 392 
(differences in success rates and award sizes) that contribute to the diminishing marginal 393 
returns.  Thus, SR/P values provide useful parameters with which to optimize the net return on 394 
taxpayers’ investments.  To do so, the NIH would adjust success rates and award sizes to the 395 
extent that is necessary to establish parity or near parity of SR/P values between institutions.  396 
Success rates and award sizes could still vary between institutions (according to their 397 
productivity-based merit), up to but not exceeding the point at which their SR/P values depart 398 
from the target range.  This approach would treat systematically and proportionately the 399 
proximate causes of institutional funding disparities and their deleterious impacts on net 400 
productivity of the research enterprise.  Moreover, because SR/P values can be derived for 401 
investigators grouped in any way desired, the proposed mechanism is of broad utility for 402 
addressing imbalances in funding allocations and net productivity among populations of 403 
investigators grouped in other ways (e.g., by race, gender, age and state). 404 
 405 
Summary and implications for funding policy 406 
 407 
In conclusion, this study and others (e.g., Basson et al., 2016; Berg, 2010; Cook et al., 2015; 408 
Doyle et al., 2015; Fortin & Currie, 2013; Lauer, 2016a, 2016b; Lauer et al., 2017; Lorsch, 2015; 409 
Mongeon et al., 2016; Wahls, 2016) support evidence-based changes in funding policy geared 410 
towards a more equitable, more diverse and more productive distribution of federal support for 411 
scientific research.  A wealth of data, such as differences in SR/P values (Figure 2) and returns 412 
on taxpayers’ investments (Figure 3), document unambiguously the need for such changes—413 
and provide empirical benchmarks for remediation. 414 
 415 
Methods 416 
 417 
Data sets 418 
 419 
Data on funding and productivity by institution for FY2006 to FY2015 are provided in 420 
Supplementary Table S1.  The institutions were selected from published rankings (US News & 421 
World Report, 2016).  Five institutions were from the top of the list and the remainder were 422 
selected at random from mid-ranked, low-ranked, rank not posted, and unranked regions of the 423 
list to provide a cross-section of institutions.  Data on research project grant application success 424 
rates and investigator funding rates of each institution for FY2006 to FY2015 were obtained 425 
from the NIH Office of Extramural Research (Tables #96-17-1 and #96-17-2; in response to FOI 426 
case no. 46152).  The means of all type 1 (new) and type 2 (competing renewal) applications 427 
from FY2006 to FY2015 were determined.  Data on total number of research project grant 428 
awards, investigators, and funding from FY2006 to FY2015 were obtained by searching the NIH 429 
RePORTER database (US Department of Health and Human Services, 2017).  Search 430 
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parameters were institution (using organization-specific DUNS numbers), fiscal year (2006-431 
2015), and funding mechanism (research project grants).  A list of each institution’s grant 432 
numbers from the RePORTER search was constructed and was used to search the PubMed 433 
database (US National Library of Medicine and National Institutes of Health, 2017) for the 434 
number of grant-supported publications from 2006 to 2015.  The list of PMIDs for grant-435 
supported publications of each institution was used to search the iCite database (Hutchins et al., 436 
2016) to obtain the relative citation ratio of each publication.  Additional data sets were derived 437 
algebraically as described in the Results and Supplementary Table S1. 438 
 439 
Statistical tests 440 
 441 
Grouped data sets were analyzed using the Mann Whitney test; continuous variable data sets 442 
were analyzed using linear least squares regression; analyses were conducted in Prism 443 
(GraphPad Software, Inc., La Jolla, CA, USA).   444 
 445 
Data availability 446 
 447 
All relevant data are contained in the manuscript and its Supplementary Information file.  448 
Additional datasets (e.g., raw results from searches of NIH RePORTER and PubMed) are 449 
available from the corresponding author upon request. 450 
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 605 

 606 
 607 
Figure 1.  Heavily skewed distributions of NIH grant funding favor a minority and disfavor 608 
the majority. 609 
 610 
A search of the NIH RePORTER database identified 25,674 investigators who received 611 
research project grant funding in FY2015.  These individuals were ranked in descending order 612 
by the amount of funding they received, and then grouped into 52 bins, each of which contained 613 
493 investigators (the remaining, lowest-funded 38 investigators were not binned).  The same 614 
process was applied for amounts of funding to 2,038 organizations (39 per bin) and to 52 states, 615 
including Washington DC and Puerto Rico (1 per bin).  Pareto plots display amounts of funding 616 
(histograms, left Y axis) to each bin.  Cumulative curves (right Y axis) display fraction of total 617 
funding to a given bin and all higher-funded bins (i.e., those to its left).  Reproduced with 618 
permission from (Wahls, 2018) under a CC-BY 4.0 international license. 619 
 620 
  621 
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 622 
 623 
Figure 2.  Funding allocations, productivity, and comprehensive measures of disparity. 624 
 625 
Values are for NIH research project grants, 2006-2015, grouped by prestigious (P, red) and 626 
less-prestigious (LP, blue) institutions.  Funding metrics by institution are: (A) mean application 627 
success rate; (B) mean investigator funding rate; (C) total funding per investigator; and (D) 628 
mean annual funding per award.  Productivity metrics are: (E) total publications and (F) total 629 
citation impact of research publications [sum of log (RCR+1)], each normalized to total funding.  630 
Differences in success rate/productivity (SR/P) ratios, using either (G) publication productivity or 631 
(H) citation impact productivity, reveal the success rate-normalized, funding amount-normalized, 632 
scientific output-normalized magnitude of disparity.  Statistical values are from Mann Whitney 633 
test; lines denote mean and 95% confidence interval.  Prestigious institutions: Harvard Medical 634 
School; Stanford University; Johns Hopkins University; University of California San Francisco; 635 
University of Pennsylvania.  Less-prestigious institutions: Indiana University-Purdue University 636 
at Indianapolis; University of Nebraska Medical Center; University of Oklahoma Health Sciences 637 
Center; West Virginia University; University of South Dakota; Eastern Virginia Medical School, 638 
State University of New York at Buffalo; University of Mississippi Medical Center; University of 639 
North Dakota; Louisiana State University Health Sciences Center Shreveport. 640 
  641 
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 642 
 643 
Figure 3.  Effects of funding disparities on productivity.   644 
 645 
(A-C) Publication productivity and (D-F) citation impact productivity are plotted as a function of 646 
(A, D) total funding; (B, E) annual funding per project; and (C, F) funding per investigator at 647 
each institution.  Data for prestigious and less-prestigious institutions are shown in red and blue, 648 
respectively.  Lines and statistical values are from linear regression; curvatures in panels A and 649 
D are due to plotting total funding on a log scale. 650 
  651 
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 652 
 653 
 654 
Figure 4.  Multiple opportunities for bias.   655 
 656 
The impacts of even minor, subconscious biases at individual steps of the funding process 657 
(shaded) can multiply exponentially [effects of (bias 1) ´ (bias 2) ´ (bias 3) ´ (bias 4) = (net 658 
impact of bias)]. 659 
 660 
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Rank 1 DUNS No. 2 Organization Success 
Rate 3

Funding 
Rate 3 Projects 4 Funding 4

Funded 
PIs 4

Funding / 
Projects

1 047006379 Harvard Medical School 38.3% 43.4% 2,634 $1,297,809,360 316 $455,023 

2 009214214 Stanford University 34.7% 39.9% 5,771 $2,625,937,078 687 $455,022 

3 (tie) 001910777 Johns Hopkins University 30.9% 31.2% 9,534 $4,412,893,242 1,411 $462,859 

3 (tie) 094878337 University of California, San Francisco 34.8% 38.5% 7,453 $3,493,270,490 1,054 $529,085 

3 (tie) 042250712 University of Pennsylvania 30.7% 35.1% 8,159 $3,506,420,297 1,103 $429,761 

47 603007902 Indiana University-Purdue University at Indianapolis 22.3% 25.3% 2,597 $911,515,992 477 $350,998 

63 168559177 University of Nebraska Medical Center 21.6% 24.1% 1,122 $383,461,292 210 $341,766 

72 878648294 University of Oklahoma Health Sciences Center 26.4% 29.5% 860 $276,457,268 150 $321,462 

86 191510239 West Virginia University 17.8% 18.8% 454 $120,706,995 118 $265,874 

88 929930808 University of South Dakota 20.9% 21.7% 102 $30,274,425 23 $296,808 

RNP 058625146 Eastern Virginia Medical School 13.6% 15.2% 130 $35,552,814 29 $273,483 

RNP 038633251 State University of New York at Buffalo 24.0% 26.1% 1,401 $454,795,551 257 $324,622 

UR 928824473 University of Mississippi Medical Center 23.5% 24.1% 411 $148,645,596 98 $361,668 

UR 102280781 University of North Dakota 20.5% 23.3% 122 $32,202,013 34 $263,951 

UR 095439774 Louisiana State University Health Sciences Center Shreveport 14.7% 16.2% 271 $81,206,676 64 $299,656 

1 Rank order from 2016 US News & World Report list of "Best Medical Schools: Research" (RNP, rank not posted; UR, unranked).
2 Organization-specific DUNS numbers were used for searches of NIH RePORTER.

Table S1.  Prestige rank, funding, publication, citation impact, and funding-normalized productivity data by organization (2006-2015).

3 Rates are means of all type 1 (new) and type 2 (renewal) RPG applications, FY2006-FY2015, from NIH OER Tables #96-17-1 and #96-17-2.
4 Totals for FY2006-FY2015 are from searches of NIH RePORTER conducted from 06/17/2016 to 06/21/2016.
5 Grant-supported publications in 2006-2015 from searches of PubMed on 06/24/2016.
6 From searches of iCite RCR database on 01/23/2017.  Citation Impact is sum of log(RCR+1), excluding values for non-research publication types.
7 Differences in success rate/productivity (SR/P) and funding rate/productivity (FR/P) ratios reveal the magnitude of funding bias.
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Funding / PIs Publications 5
Pubs  / $M 
Funding 

Citation 
Impact 6

Impact / $M 
Funding

Publication-
based  SR / P 7

Impact-based 
SR / P 7

Publication-
based FR / P 7

Impact-based 
FR / P 7

$4,106,992 7,004 5.40 2577 1.99 0.071 0.192 0.080 0.218
$3,822,325 14,541 5.54 4971 1.89 0.063 0.184 0.072 0.211
$3,127,493 23,884 5.41 7552 1.71 0.057 0.181 0.058 0.182
$3,314,298 16,692 4.78 5668 1.62 0.073 0.215 0.081 0.238
$3,167,199 18,333 5.28 5832 1.66 0.058 0.185 0.066 0.211
$1,910,935 6,588 7.23 1861 2.04 0.031 0.109 0.035 0.124
$1,826,006 2,844 7.23 924 2.41 0.030 0.090 0.033 0.100
$1,843,048 2,092 7.57 565 2.04 0.035 0.129 0.039 0.145
$1,022,941 1,244 10.31 319 2.64 0.017 0.067 0.018 0.071
$1,316,279 303 10.01 90 2.97 0.021 0.070 0.022 0.073
$1,225,959 275 7.74 76 2.14 0.018 0.064 0.020 0.071
$1,769,632 3,136 6.90 840 1.85 0.035 0.130 0.038 0.141
$1,516,792 1,484 9.98 392 2.64 0.024 0.089 0.024 0.091

$947,118 339 10.53 92 2.86 0.019 0.072 0.022 0.081
$1,268,854 771 9.49 188 2.32 0.015 0.063 0.017 0.070
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