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3 Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin,
Germany

* kaehne@physik.hu-berlin.de

Abstract

Spontaneous waves in the developing retina are essential in the formation of the
retinotopic mapping in the visual system. From experiments in rabbits, it is known that
the earliest type of retinal waves (stage I) is nucleated spontaneously, propagates at a
speed of 451±91 µm/sec and relies on gap junction coupling between ganglion cells.
Because gap junctions (electrical synapses) have short integration times, it has been
argued that they cannot set the low speed of stage I retinal waves. Here, we present a
theoretical study of a two-dimensional neural network of the ganglion cell layer with gap
junction coupling and intrinsic noise. We demonstrate that this model can explain
observed nucleation rates as well as the comparatively slow propagation speed of the
waves. From the interaction between two coupled neurons, we estimate the wave speed
in the model network. Furthermore, using simulations of small networks of neurons
(N≤260), we estimate the nucleation rate in form of an Arrhenius escape rate. These
results allow for informed simulations of a realistically sized network, yielding values of
the gap junction coupling and the intrinsic noise level that are in a physiologically
plausible range.

Author summary

Retinal waves are a prominent example of spontaneous activity that is observed in
neuronal systems of many different species during development. Spatio-temporally
correlated bursts travel across the retina at a few hundred µm/sec to facilitate the
maturation of the underlying neuronal circuits. Even at the earliest stage, in which the
network merely consists of ganglion cells coupled by electric synapses (gap junctions), it
is unclear which mechanisms are responsible for wave nucleation and transmission speed.
We propose a model of gap-junction coupled noisy neurons, in which waves emerge from
rare stochastic fluctuations in single cells and the wave’s transmission speed is set by
the latency of the burst onset in response to gap-junction currents between neighboring
cells.

1 Introduction 1

Spontaneous activity spreads through neuronal systems of many different mammal 2

species during development. Crucial roles are attributed to this spontaneous activity [1]. 3
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Among the most prominent roles is the synaptic refinement in the retina, where 4

spatio-temporally correlated bursts of activity are observed, and it was found that 5

blocking these waves disrupts eye-specific segregation into the visual thalamus [2, 3]. 6

Therefore, much effort has been devoted in recent years (e.g. [4–7]) to understand the 7

responsible mechanisms of retinal waves. The observed patterns of spontaneous activity 8

in the developing retina are remarkably similar across many species [1]. These patterns 9

have been characterized as spatially correlated bursts of activity in the ganglion cell 10

(GC) layer, which are followed by periods of silence [8–10]. 11

Retinal waves are mediated by three distinct circuits at different developmental 12

stages that have been described in rodents, (for review see e.g. [1]). In stage I (E17-P1), 13

bursts of activity spread between retinal ganglion cells. In this stage, few synapses are 14

identifiable and waves are mediated by gap junctions (GJs) and adenosine [11]. Stage II 15

waves begin with the onset of synaptogenesis and end with the maturation of 16

glutamatergic circuits while stage III waves end with eyeopening and the onset of 17

vision [12,13]. Here, we exclusively focus on stage I waves, observed prior to the 18

emergence of functional chemical synapses in the retina. These waves show random 19

initiation sites, no directional bias, and a propagation speed of about 450 µm/s. Via 20

patch-clamp recordings, stage I retinal waves were found to be initiated and propagated 21

in the GC layer [11]. 22

In this work we develop a theoretical model of the retina and limit ourselves to a GC 23

layer of bursting neurons which are diffusively coupled by GJs. These electrical 24

synapses are formed between each of the major neuron types in the vertebrate 25

retina [14–18] and play a major role in signal processing and transmission of visual 26

information (for a review, see [18]). GJs are formed by two apposed hemichannels, each 27

one formed by an hexameric array of proteins know as connexins. In mammals, 28

connexin-36 and connexin-45 were clearly identified in neurons located in the inner 29

retina [15,19]. Both types of connexins follow a distinct expression pattern during 30

retinal development [20]. However, their involvement in the maturing process of the 31

retina is not yet fully understood [21]. GJs have been proposed as the responsible 32

mediator of stage I retinal waves but not yet been used in a model of such waves [5], 33

which is the gap that we intend to fill with our study. 34

While there is convincing experimental evidence that stage I retinal waves are 35

mediated by GJs, thus far they have not been explicitly addressed with theoretical 36

approaches. (GJ coupling between neurons has been studied theoretically before, 37

e.g. [22, 23]). From a physical perspective, GJs are electrical synapses acting with 38

integration times of the order of milliseconds and were thus argued not to be the 39

mediator of stage I waves [5, 9], which are much slower compared to this time-scale. In 40

this work, we present a model of stage I retinal waves, formed by a network of bursting 41

cells, which are coupled by instantaneously acting diffusive GJs. We show that under 42

certain conditions, the wave propagation can be sufficiently slow to be the responsible 43

mediator for stage I retinal waves. We discuss analytical estimations of the propagation 44

velocities and wave nucleation rate. 45

2 Methods 46

2.1 Model for the Single Retinal Ganglion Cell 47

We use the phenomenological Izhikevich neuron model, known for displaying biologically
plausible dynamics. It similar to conductance-based neuron models of the
Hodgkin-Huxley type, while being very efficient from a computational point of
view [24,25]. The model can be regarded as a quadratic integrate-and-fire neuron for
the membrane voltage Vi(t) of the ith neuron with an additional slow recovery variable
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ui(t), also referred to as gating variable (cf. Fig. 1(a) for the nullclines of the system):

τV
dVi
dt

= a(Vi − Vrest)(Vi − Vcrit)− ui +RIi, (1)

τu
dui
dt

= bVi − ui, (2)

if : Vi ≥ Vpeak →

{
Vi = Vreset,

ui = ui + d.
(3)

The membrane recovery variable provides negative feedback to the voltage (cf. Fig. 1(b) 48

and Fig. 1(c) top). The parameters a, b, d as well as Vrest, Vcrit, Vreset, and Vpeak 49

determine the spiking regime of the neuron, with Vrest < Vcrit < Vpeak. The time-scales 50

of the voltage and gating variable are defined by τV and τu, respectively. For u(t) ≡ 0 51

and I(t) ≡ 0, Vrest and Vcrit are the stable and the unstable fixed points of the 52

dynamics, respectively. If Vi ≥ Vpeak, the membrane potential is reset to Vreset, the kth 53

spike time, ti,k, is registered, and the recovery variable is increased by the constant 54

value d. We choose parameters such that the burst characteristics of our model neuron
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Fig 1. Burst mechanism of the single neuron model. (a) shows the nullclines of
the Izhikevich neuron model in phase space (V, u) without current, RI = 0. The green
dashed line shows the voltage nullcline and the blue dashed line shows the gating
variable nullcline, respectively. Intersections of these two lines are fixed points of the
system. The lower fixed point, indicated in red, is stable and represents the resting
state of the neuron at (V, u) = (Vr, ur) = (−64mV,−19.4mV). The gray vertical lines
indicate the peak voltage Vpeak and the reset voltage Vreset. (b) shows the path in phase
space of a neuron that is initially in the resting position, but exposed to an external
current with RI = 2 mV from t = 0. The temporal evolution of the separate
components u and V is illustrated in (c).

55

illustrated in Fig. 1 roughly agree with experimental measurements from Syed et al. [11]. 56

Specifically, we aim at a burst duration of about 1− 2 seconds (cf. Fig. 1(c) bottom) 57

and a spike frequency during bursts of about 5− 15 Hz. We find those characteristics 58

reasonably met for: a = 0.1, b = 0.3, d = 1.2, τV = 100 ms, τu = 0.0003−1 ms, 59

Vrest = −76 mV, Vcrit = −48 mV, Vpeak = 30 mV, Vreset = −50 mV. The bursting 60

mechanism is illustrated in Fig. 1. 61

The total current RIi = R[Igap,i + Inoise,i] is a superposition of the intrinsic noise
current and GJ currents from neighboring cells (see below). The intrinsic noise
originates from fluctuations of the various channel populations (sodium, calcium, and
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different potassium channels, see e.g. [26]) and is approximated by white Gaussian noise:

RInoise,i = τV
√

2Dξi(t), (4)

with 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 = δijδ(t− t′) and D is the noise intensity. We perform 62

simulations at discrete times with a time step of ∆t = 0.1 msec according to an 63

Euler-Maruyama integration scheme, see Appendix Sec. 5. 64

2.2 Retinal Network 65

Ganglion cells are distributed within the ganglion cell layer with a decreasing density 66

towards the outer regions of the retina. For instance, the density in rabbits covers a 67

range from 5000 cells/mm2 down to 200 cells/mm2 (the mean value is 800) [27]. In a 68

previous study of retinal waves observed in rats, Butts et al. [4] used a ganglion cell 69

density of ∼ 4000 cells/mm2. In their simulations they placed neurons in a regular 70

triangular lattice for which the given density translates to a lattice spacing of 17 µm. 71

Because we focus on the rabbit retina, we assume a triangular lattice with a different 72

lattice spacing of 38 µm, reflecting the lower cell density (800 cells/mm2) for this 73

system. The reported experimental observations on characteristics of stage I retinal 74

wave were obtained from retina patches of roughly 3× 5 mm. A mean cell density of 75

800 cells/mm2 translates to a total cell number estimate of 12,000 cells in the studied 76

system. For comparability, we use a similar number of cells for simulations (i.e. 77

12,100 = 110 × 110). 78

Here, we ignore for simplicity the inhomogeneous and irregular structure of the
ganglion cell layer. We place N = n× n single ganglion cells in a rectangular domain on
a triangular lattice such that every cell is connected with GJs to six nearest neighbors,
see Fig. 2(c). For illustrative purposes, we will also consider a one-dimensional chain, in
which each neuron has only two neighbors. Because we are interested only in stage I
waves, prior to synaptogenesis, these cells are not connected to any other cells, i.e.
bipolar and amacrine cells are not part of our model. We choose a common approach
(e.g. [22]) to model the GJ current as diffusive and instantaneous coupling by

RIgap,i = G
∑

n=neighbor

(Vn − Vi), (5)

where G is the rescaled dimensionless GJ coupling, i.e. G = R/Rgap. The membrane 79

resistance R of retinal ganglion cells can experimentally be measured and is in the range 80

of 100-500 MΩ, e.g. [28]. Rgap is the GJ resistance between neighboring ganglion cells in 81

the retina, which depends on the connexin type and the transjunctional voltage 82

difference and is roughly Rgap ≈ 1GΩ [29,30]. The values of R and Rgap imply a 83

physiological range for our parameter of G ∈ [0.1, 0.5]. Because the time course of the 84

action potential produced by our neuron model is only a coarse approximation of the 85

electrophysiological shape of a spike, the GJ coupling may be stronger or weaker than 86

assumed here. This gives additional justification for choosing a wider range of G. 87

For the two-dimensional setup, we apply two different boundary conditions. For 88

estimating the noise dependence of propagation velocities and nucleation rates, we 89

perform small system simulations (N∼50-260) with periodic boundary conditions in 90

both directions (system on a torus) in order to avoid strong finite-size effects. 91

Simulations of the full system with N∼12,000 are carried out with two additional layers 92

of neurons on the boundary, that are not exposed to intrinsic noise (cells on the system 93

boundary have fewer neighbors, between 2 and 5 instead of 6). Neurons in the two outer 94

layers of the large simulations are discarded from all statistical evaluations. 95
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Single propagating waves running through the network can be captured by the
population activity [31]

A(t) =
1

N∆tA

N∑
i=1

∑
k

∫ t+∆tA

t

dtδ(t− ti,k), (6)

which is a firing rate that is averaged over the network and over a time-bin ∆tA. We 96

use ∆tA = 0.5 seconds, which is comparatively large and covers multiple spikes when 97

the cells are bursting. 98

3 Results 99

3.1 Wave Propagation 100

If we couple cells in a chain and initiate a burst in one of them, we see a propagation of 101

the burst along the chain (Fig. 2(a)). A higher propagation speed can be achieved by 102

increasing the GJ conductance parameter G Fig. 2(b). The picture is similar in our 103

two-dimensional setup, for which snapshots are shown in Fig. 2(c). In this case, the 104

wave has been evoked by enforcing a burst in the lower left corner. It propagates as a 105

circularly shaped wave front, which is a consequence of the regularity and rotational 106

symmetry of the system. The gating variable u (lower row in Fig. 2(c)) can be 107

associated with the experimentally accessible calcium dynamics and resembles calcium 108

fluorescences images [11]. Compared to the membrane potential (top row), the 109

wavefront of the gating variable lags behind, as it slowly builds up during the burst. 110

In both, one-dimensional and two-dimensional simulations in Fig. 2, we have set the 111

intrinsic noise intensity to zero in order to illustrate that wave propagation does not 112

hinge on the presence of fluctuations. We note already here, that the propagation speed 113

in the two-dimensional system matches the order of magnitude of biologically observed 114

values. To determine the speed of the waves from simulation such as shown in Fig. 2(c), 115

we approximate the wave’s shape as circular with a fixed center. We define a wavefront 116

as the group of neurons that spike within the same time bin of ∆t = 0.1 seconds (see 117

left illustration in Fig. 3(a)) and measure the front’s mean distance from the center and 118

its mean time instance of occurrence. From the differences of these distances and times, 119

we determine the mean velocity, which we find to be weakly distance dependent, but 120

saturating at about 350 µm from the origin of the wave, cf. Fig. 3(b). In the following, 121

all velocity values are averaged over measurements for the range of distances 122

350− 650 µm (shaded area in Fig. 3(b)) from the point of initiation and we refer to this 123

measuring method as concentric method. The velocities are shown in Fig. 3(c) as a 124

function of the GJ parameter for the physiologically relevant range of G (see methods). 125

We obtain velocities that are in the range of values observed in the rabbit retina [11], cf. 126

the shaded area in Fig. 3(b). The experimental mean value of about 450 µm/sec is 127

attained for G ≈ 0.4. 128

The propagation and its speed can be theoretically understood as follows. Assuming 129

a steep wave profile, the speed of the wave is given by the inverse of the time it takes a 130

bursting neuron to excite its neighbors, times the displacement of the corresponding 131

wave fronts. We refer to this time as burst onset time difference (BOTD). For simplicity, 132

we neglect noise and consider in the following a one-dimensional setup consisting of 133

three neurons: one initially quiescent neuron (i) is connected to a bursting neuron (i− 1) 134

on one side and to a quiescent neuron (i+ 1) on the other side. They are separated by 135

the lattice spacing ` = 38 µm, hence the velocity is defined as v1D = `/TB. Therein, TB 136

denotes the analytical approximation of the BOTD for this one-dimensional case. 137

The approximation TB for the BOTD between neighboring neurons can be derived
using three assumptions (details in the Appendix, Sec. 5). First, we assume a constant

July 5, 2018 5/19

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 12, 2018. ; https://doi.org/10.1101/368019doi: bioRxiv preprint 

https://doi.org/10.1101/368019
http://creativecommons.org/licenses/by/4.0/


0 1 2 3

t [sec]

V
(t

)
[m

V
]

(a) (b)

(c)

V

u

G = 0.1

0 1 2 3

t [sec]

V
(t

)
[m

V
]

G = 0.5

t = 1 sec t = 2 sec t = 3 sec t = 4 sec

Fig 2. Wave propagation in the deterministic system (D = 0). Voltage traces
for five model neurons (vertically shifted for better visibility), coupled in a
one-dimensional chain with G = 0.1 (a) and G = 0.5 (b). The respective first neuron
(bottom trace) was initialized in the bursting regime, i.e.
(u(t = 0), V (t = 0)) = (urest, Vreset). Snapshots of waves on a two-dimensional triangular
lattice (voltage and recovery variable in top and bottom panels, respectively) with
G = 0.1 at different time instances as indicated (c).

gating variable (u(t) ≈ ur = const), which is reasonable on a short time scale, because
τu � τV. Second, we replace the voltage variable of the bursting neuron Vi−1(t) by its
temporal average V̄b = const, that can be analytically calculated (see Appendix) and for
our standard parameters is V̄b = −34 mV. Third, we replace the voltage of the
quiescent neuron that is not directly connected to the bursting neuron by the resting
potential, Vi+1 = Vr. Consequently, the GJ current seen by the driven neuron reads
RIgap,i = G(Vi−1 + Vi+1 − 2Vi) ≈ G(V̄b + Vr − 2Vi(t)), and the resulting dynamics until
the voltage Vi reaches the peak potential for the first time is effectively one-dimensional
and can be recast to the form (refer to Sec. 5 for details):

τV
dVi
dt
≈ a(Vi − Vrest)(Vi − Vcrit)− ur +G(V̄b + Vr − 2Vi). (7)

This first order ordinary differential equation can be solved via separation of variables
to find t(V ). We obtain it by first calculating the difference of the times from the
voltage being at its peak potential and its resting potential. However, the driven neuron
is already exposed to the driving GJ current while the voltage of the bursting neuron
travels to its first spike time. Therefore, for simplicity we subtract the first inter-spike
interval TISI from the beforehand calculated time difference:

TB(G) = t(Vpeak)− t(Vr)− TISI. (8)

The explicit expression is lengthy and derived in the appendix (resulting in eq. (24)). 138

Comparing TB to simulations of a one-dimensional chain shows a reasonable agreement 139

(see Appendix), although the theory overestimates the simulated values, in particular, 140

for larger values of G. 141

In the two-dimensional setup at larger times, the wave attains a planar shape as
indicated in Fig. 3(a), where red circles represent bursting neurons and blue and yellow
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Fig 3. Wave speed: measurement and dependence on GJ coupling. Neural
groups with simultaneous burst onset of an exemplary simulation (time resolution
∆t = 0.1 seconds) are shown in the panel (a) left, for three consecutive time bins in
different colors. At large distances from the origin, the shape of a wavefront can be
approximated as planar, cf. (a) middle. The mechanism of burst propagation can then
be mimicked by a one-dimensional situation. Therefore in our theoretical derivations,
the distance and coupling strength has to be modified, cf. (a) right and details in the
main text. Squares in (b) represent the speed of the concentric wave (G = 0.4) as a
function of the distance from the wave’s origin (lower left corner of the simulation
domain), measured as described in the text. Alternatively, the speed can be assessed by
measuring burst onset times along different fixed directions of the network, i.e. at blue
and green sites shown in the inset of (b). The resulting wave speeds as functions of
distance (blue and green lines) agree closely with the concentric method (squares in
(b)). The speed shown in (c) is the mean value of simulation data (symbols) of the
shaded area in (a) as a function of the GJ coupling G. Simulation results are compared
to v2D(G), eq. (9). The vertical and horizontal shadings indicate the physiological range
of G (see methods) and the observed velocities in the rabbit retina [11], respectively.

circles represent driven and quiescent neurons. Now, we assume that the wave front is
perfectly flat and all neurons shown in the same color share an identical voltage. In that
case, the propagation mechanism simplifies to two bursting neurons exciting one
quiescent neuron, whose membrane potential is further affected by two quiescent
neurons. Hence, we can mimic the quasi one-dimensional situation by doubling the
value of G and additionally taking into account the modification of the effective length,
i.e. `eff = (3/4)1/2`, see Fig. 3(a). Consequently, we can approximate the velocity in the
two-dimensional system as

v2D(G) =

√
3/4 · `

TB(2G)
. (9)

Calculated velocities v2D(G) are shown in Fig. 3(c) by the blue line, underestimating 142

the true velocity (circles) but providing a correct order-of-magnitude estimate. Note 143

that so far we restricted the considerations to a purely deterministic setup. Our 144
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simulations with noise indicate that moderate fluctuations have only little impact on 145

the mean velocities. 146

3.2 Wave Nucleation 147

In the stochastic version of our system, we observe spontaneous waves that resemble 148

those found in experiments [11]. Experimentally, it was observed by Syed et al. [11] that 149

the spontaneously nucleated waves appear with a mean inter-wave interval TIWI of 36 150

seconds. In our model, waves are initiated by noise, since neurons are set in the 151

excitable regime and cannot generate periodic spiking or bursting without external 152

input. We expect that the nucleation rate per neuron depends strongly on the noise 153

intensity D. To characterize this dependence, we simulate small systems (N∼50-260, see 154

methods) with periodic boundary conditions for two different values of GJ coupling and 155

different noise intensities, cf. Fig. 4.
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Fig 4. Arrhenius Plot. Spontaneous nucleation rate as function of the inverse noise
intensity obtained from four two-dimensional systems with different system sizes as
indicated and periodic boundary conditions. From the linear fit of these data, an
effective potential barrier ∆U and a rate prefactor r0 can be estimated (dependence of
∆U on system size shown in inset).

156

With the understanding that every neuron has the same chance to trigger a wave,
the global nucleation rate should be linear with N to a first approximation. Thus we
measure the nucleation rate per neuron as r = 1/(TIWIN). As demonstrated in Fig. 4
by the linear dependence of the rate’s logarithm on the inverse noise intensity, we obtain
an Arrhenius rate

r = r0 exp(−∆U/D). (10)

The effective potential barrier ∆U depends on G and the system size N and saturates 157

for sufficiently large systems (inset) for both values of G. 158

The increase of the potential barrier with G can be understood to first approximation 159

by the effective change of the current-voltage relation in the single neuron. The GJ 160

coupling term eq. (5) leads to an effective increase in the leak current that stabilizes the 161

resting potential and makes it harder to initiate a burst. This mechanism is dominant in 162

comparison to the influence of other coupling effects and the stochasticity of the 163

neighbors on the nucleation rate (supported by additional simulations, see appendix). 164

The more subtle dependence of ∆U on the system size can be explained as follows: 165

Coupling stochastic neurons in small systems with periodic boundary conditions leads 166

to spatial correlations and thus effectively to stronger noise. This effect can be 167
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neglected for large system sizes or weak coupling, but has a measurable effect otherwise 168

(cf. Fig. 4 and Fig. 4 inset). 169

3.3 Discussion of Large-Scale Simulation Results 170

Our results so far can be used to predict the mean inter-wave interval and the 171

propagation speed of retinal waves for a system size N = 12,100 that roughly 172

corresponds to the experimentally studied patch size in Ref. [11]. Vice versa, we can 173

infer an approximate value of the noise intensity D that leads to the experimentally 174

observed value of TIWI = 36 seconds and test this in numerical simulations of the full 175

system. 176

For our estimation of the rough value of the noise intensity in a large system, we
have to take into account that the single neuron undergoes a substantial refractory
period of Tref ≈ 14 seconds after bursting (estimated from small-system simulations
investigating the minimal inter-wave interval for various noise intensities). The mean
inter-wave interval is then given by TIWI = Tref + 1/[N · r(D)] and the estimated value
of the noise intensity follows from the Arrhenius law, eq. (10), as

D∗ = −∆U/ln[N(TIWI − Tref)r0] ≈ 0.050 (11)

(for G = 0.4, and r0 = 6 and ∆U = 0.71, fit parameters from Fig. 4, solid line with 177

N = 256). 178

The estimated parameters, G = 0.4 and D = 0.050, can now be used in a large-scale 179

simulation. In Fig. 5(a), we show snapshots of the full system’s gating variable (a proxy 180

for the experimentally accessible calcium concentration). The wave front seen in the 181

experimentally observable area (box in Fig. 5(a)) looks similar to experimental 182

measurements, cf. Ref. [11]. From Fig. 5(b), it becomes evident that the mean 183

inter-wave interval becomes much shorter for a slight increase in D. The mean 184

inter-wave interval at these parameter values is not exactly 36 seconds, but somewhat 185

larger: these statistics depend very sensitively on the value of the noise intensity (i.e. on 186

the second leading digit, cf. Fig. 5(c) middle). This is seen in the global population 187

activity, that reveals a wave going through the system as a single peak vs. time. 188

The dependence of crucial neural statistics on the noise intensity is illustrated in 189

Fig. 5(c). In contrast to the mean inter-wave interval, the mean velocity of the wave 190

does not depend strongly on the noise (Fig. 5(c), top) but stays close to the 191

experimentally observed mean value (dashed line). The fine tuning of the noise intensity 192

shows that the experimental value of 〈TIWI,exp〉 = 36 seconds is attained for a noise level 193

of D = 0.052, slightly larger than D∗ (estimated above). How realistic is this noise 194

level? To address this question, we show at the bottom of Fig. 5(c) the standard 195

deviation of the subthreshold voltage fluctuations, σV, as a function of the noise 196

intensity D. σV increases only slightly with D and attains values around 1.6 mV. 197

To our knowledge, there are no detailed investigations of intrinsic noise sources in 198

retinal ganglion cells at embryonic age. Because in this developmental stage there are 199

no chemical synapses present [32], the synaptic background fluctuations can be excluded 200

for our system. One likely source of variability is channel noise that typically leads to 201

small membrane potential fluctuations with a standard deviation σV below 0.6 202

mV [33,34]. The noise intensity that is required for the experimentally observed 203

inter-wave interval results in sub-threshold voltage fluctuations that are three times 204

bigger, cf. Fig. 5(c) bottom, suggesting that besides ion channel noise there are 205

additional sources of fluctuations present. These could result from stochasticity of GJs 206

itself but also indirectly from GJs via differences in individual resting potentials (for the 207

heterogeneity of the resting potential in similarly sized cells, pyramidal cells in the 208

cortex, see [35]). In any case, the apparent voltage fluctuations of about 1.6 mV are well 209
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Fig 5. Large-Scale Simulations. A network of 12,100 GJ coupled and noisy
Izhikevich neurons display spontaneously nucleated waves that propagate with velocities
the are comparable to experimentally observed values. (a) Snapshots of the gating
variable (associated to a proxy for the calcium concentration) at different time instances
during one wave running through the system (G = 0.4, D = 0.05). The small rectangle
indicates the dimensions of the experimentally accessible observation area [11]. (b)
Population activity A(t) (with ∆tA = 0.5 seconds, see eq. (6)) of the entire system over
a larger time window for different noise levels. One wave, as shown in (a) collapses here
into a single peak; time differences between adjacent peaks are the inter-wave intervals
TIWI,i (one indicated by an arrow). (c) Mean velocity, mean inter-wave interval and
standard deviation of the subthreshold membrane voltage as a function of the noise
intensity for a small range around the estimated value Dtarget = 0.05. Dashed black
lines indicate experimental mean values from Ref. [11], solid red line shows the wave
speed for D = 0, extracted from the circle at G = 0.4 in Fig. 3.

within the range of experimentally observed voltage noise in embryonic ganglion cells 210

(cf. Fig. 1 in Ref. [11]). 211

4 Summary 212

The investigations presented in this paper propose a GJ-based model of stage I waves in 213

the developing retina. Starting with a neuron model that roughly reproduces the 214

spiking properties of a burst of one single retinal ganglion cell, we incorporated GJ 215

coupling of physiologically plausible strength and temporally uncorrelated fluctuation. 216

This allowed us to reproduce the characteristics of wave nucleation and slow wave 217

propagation in the early retina. Earlier it was believed that GJs can play a role in fast 218

neural transmissions only [5, 9], since the current in electrical synapses responds much 219

quicker than neurotransmitters in chemical synapses. As shown in our paper, however, 220

it is possible to obtain a limited transmission speed in a simple Ohmic model of the GJ 221

coupling. Furthermore, although stochastic fluctuations are strong enough to ignite 222

bursts with the correct nucleation rate, they do not distort the propagating fronts very 223

much, i.e. the wave propagation is still a reliable process. 224

The reason for the slow transmission we observe can be found in the nonlinear 225

dynamics of the single neuron. The Izhikevich model that we use for the ganglion cell is 226

essentially a quadratic integrate-and-fire neuron model with a slow adaptation variable. 227
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This model is the normal form of a saddle-node bifurcation and has a pronounced 228

latency if close to this bifurcation, i.e. the spike response to a current step (in our case 229

provided by a neighboring bursting cell) is considerably delayed because the system 230

experiences the ”ghost of the former fixed point”, see Ref. [36]. The presence of weak 231

noise modifies this picture only slightly [37]. 232

Although our model accounts for the most important features of wave nucleation 233

and propagation for stage I retinal waves, it cannot explain the strong variability of the 234

experimentally measured statistics (error of velocity ±91 µm/sec [11]). This is due to a 235

number of model simplifications, which we now concludingly discuss. Firstly, the real 236

system is much more heterogeneous than in our model; secondly, GJs may couple more 237

than next neighbors and their conductivity may be noisy and voltage gated; thirdly, the 238

detailed dynamics of ganglion cells is certainly more complex than can be captured by 239

the Ihzikevich model; last but not least, the white Gaussian noise in our model is a 240

rather coarse approximation of the channel noise and other fluctuations in the system. 241

In our model, we arranged the neurons on a highly regular lattice with a cellular 242

spacing according to an experimentally determined mean value of cell density, 243

neglecting the strong heterogeneities in the distribution [27]. On this lattice, each cell is 244

connected to exactly six nearest neighbors. Given the aforementioned heterogeneity, the 245

numbers and distances between neighbors will be more broadly distributed than in our 246

model. Incorporating these heterogeneous features in the simulations would likely 247

broaden the range of observed velocities and thus better reflect the considerable 248

variability found in experimentally measured values. 249

The soma size of (rabbit) retinal ganglion cells (< 30µm, e.g. Ref [27]) is smaller 250

than our employed lattice spacing, implying GJ coupling between dendrites rather than 251

soma-soma coupling only. The size of the dendritic arbor of retinal ganglion cells is 252

∼ 100− 130µm, thus suggesting direct communication between cells that are up to the 253

threefold of the lattice spacing apart. In our simulations with only next-neighbor 254

coupling, we could reproduce the experimentally observed velocity with a comparatively 255

large coupling constant of G = 0.4 (physiological range was G ∈ [0.1, 0.5], see methods). 256

It is conceivable, that this large G value is an effective description of a system with 257

larger effective gap-junction neighborhood but with a smaller (and possibly 258

distance-dependent) coupling value G. Put differently, we expect similar results for the 259

wave speed in a system with extended coupling neighborhood but reduced coupling 260

strength per connection (with the latter still being within the physiological range). 261

Regarding the neuron model and the incorporation of noise, we note that for 262

developed retinal ganglion cells detailed multi-compartment conductance-based models 263

with stochastic ion channels exist [26]. With more electrophysiological data available, it 264

will certainly be possible to develop biophysically more realistic models of the bursting 265

ganglion cell at the early stage. Furthermore important for our problem will be the 266

incorporation of stochastic models of GJs [38] with voltage-dependent kinetics [39,40] 267

and the heterogeneity of physiological parameters such as the resting potential. Such 268

detailed models are certainly difficult to simulate for large networks but could be 269

employed to estimate the total noise intensity in the system and to identify the 270

dominant noise source, cf. similar approaches in Refs. [26, 41,42]. 271

5 Appendix 272

In the main text we used an analytical approximation of the mean membrane potential 273

during a burst to derive an estimate for the propagation speed of gap junction mediated 274

waves. In the following, we provide all details necessary to arrive at the equations that 275

we discussed above. 276
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5.1 Approximate solution of the voltage equation with 277

constant parameters 278

All approximations are based on solving the time dependence of the membrane 279

potential, eq. (1), which becomes analytically feasible only by decoupling the system 280

Eq. (1- 3). We are specifically interested in the propagation mechanism, and thus in the 281

time the voltage needs to go from the vicinity of the resting potential to the peak 282

potential that marks the occurrence of the first spike. Consequently, the reset 283

mechanism eq. (3) can be discarded. Until this first spike time, the gating variable u 284

can roughly be regarded as constant, cf. the phase space trajectory displayed in 285

Fig. 1(b). Accordingly, we replace ui in eq. (1) by the constant ur = −19.2 mV., i.e. the 286

resting value of the gating variable. The resulting expression is still a system of coupled 287

differential equations, due to the interaction with neighboring neurons in the network, 288

that is given by the gap junction current eq. (5). To circumvent this problem we simply 289

replace the membrane potential of a bursting neighboring neuron by the constant value 290

V̄b, an estimate of the temporal average of a neuron’s voltage during the burst, which is 291

described in detail below. The voltage of the silent neighbors is replaced by the resting 292

potential. For the discussion of the propagation mechanism these replacements are fairly 293

reasonable, because the propagation process can be thought of as a certain number of 294

synchronously bursting neurons (typically, one or two) exciting a connected neighbor 295

with additional quiescent neighbors. 296

Under these conditions, the dynamics eq. (1) can generally be recast into the form

dV

dt
=

a

τV
(V − V1)(V − V2). (12)

This equation can be solved by separating the variables and integrating. It is however
necessary to distinguish the two cases of V1 and V2 being real valued (corresponding to
the situation with a stable resting potential) or complex valued (unstable situation). We
will refer to real valued (V1, V2) as (Vr, Vc) with Vr < Vc. Real values are e.g. obtained
for the case of an isolated neuron, or equivalently G = 0, and are related to our original
parameters as follows

Vr =
Vrest + Vcrit

2
−
√

(Vcrit − Vrest)2

4
+
ur

a

Vc =
Vrest + Vcrit

2
+

√
(Vcrit − Vrest)2

4
+
ur

a
(13)

leading to (Vr, Vc) = (−64 mV,−60 mV) for our parameter choice. In this case, the
integration of eq. (12) yields

t =
τV
a

∫ V (t)

V (t=0)=V0

dV ′
1

(V ′ − Vr)(V ′ − Vc)

=
τV

a(Vr − Vc)
ln

(
V (t)− Vr

V (t)− Vc
· V0 − Vc

V0 − Vr

)
. (14)

which can be inverted and thus leads to the explicit solution for the voltage trajectory:

V (t) =
Vr − Vc

V0−Vr

V0−Vc
ea(Vr−Vc)t/τV

1− V0−Vr

V0−Vc
ea(Vr−Vc)t/τV

. (15)

Turning to the case of complex valued (V1, V2), we will refer to them as
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(Vm + iγ, Vm − iγ). Integration of eq. (12) yields

t =
τV
a

∫ V (t)

V0

dV ′
1

V (t)2 − 2V (t)Vm + V 2
m + γ2

=
τV
aγ

[
arctan

(
V (t)− Vm

γ

)
− arctan

(
V0 − Vm

γ

)]
. (16)

The explicit expression of Vm and γ depend on the specific setup of the neighbors (see 297

below). 298

5.2 Approximation of the mean voltage during a burst 299

To analytically understand the propagation of the burst from cell to cell, we
approximate the time-dependent driving voltage of the bursting cell by its time average,
V̄b, resulting in the GJ current:

RIgap(t) ≈ G(V̄b − V (t)). (17)

This replacement is justified because during the period of interest (the time needed for 300

the driven cell to generate a spike), the bursting neuron generates at least a few spikes, 301

i.e. changes rapidly compared to the voltage of the driven neuron. 302

The mean voltage during the burst can be estimated by integrating the voltage over
one inter-spike interval TISI, for simplicity considered for an isolated cell (G = 0) that is
started at V (t = 0) = Vreset, u(t = 0) = ur,

V̄b =
1

TISI

∫ TISI

0

dtV (t), (18)

where TISI = t(Vpeak)− t(Vreset). Using eq. (14), we find

TISI =
τV

a(Vr − Vc)
ln

(
Vpeak − Vr

Vpeak − Vc
· Vreset − Vc

Vreset − Vr

)
. (19)

Using eq. (15) and eq. (19) in eq. (18), we can calculate the integral and further simplify
the resulting expression

V̄b =
1

TISI

∫ TISI

0

dtV (t)

=
1

TISI

[
Vrt−

τV
a

ln

(
1− Vreset − Vr

Vreset − Vc
ea(Vr−Vc)t/τV

)]TISI

0

= Vr −
τV
aTISI

ln
1− Vreset−Vr

Vreset−Vc
ea(Vr−Vc)TISI/τV

1− Vreset−Vr

Vreset−Vc

=
Vrln

Vpeak−Vr

Vreset−Vr
+ VclnVreset−Vc

Vpeak−Vc

ln
Vpeak−Vr

Vreset−Vr
+ lnVreset−Vc

Vpeak−Vc

. (20)

For our standard parameters this gives V̄b ≈ −34 mV (TISI ≈ 73 msec). 303

5.3 Approximation of the propagation speed 304

Let us now turn to the situation, where an initially quiescent neuron is driven to a burst
due to the gap junction current that results from one bursting neighbor in a
one-dimensional chain. To this end, we consider the three neurons i− 1 (bursting), i (to
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be excited), and i+ 1 (quiescent). Neuron i is brought from the resting potential Vr to
the peak potential Vpeak in a period TISI + TB that approximately consists of one
inter-spike interval TISI (the time needed by neuron i− 1 to go from reset to peak
potential for the first time) and the BOTD TB that determines the speed of the wave via

v1D =
`

TB
. (21)

During the period t ∈ [−T, TB] (light blue shaded area in Fig. 6), we approximate the

i− 1 i i+ 1

0.2 0.0 0.2 0.4 0.6
t [sec]

80
60
40
20

0
20
40

V
(t

) [
m

V
]

t= − TISI t= 0 t= T sim
B

(a)

(b)

0.1 0.3 0.5 0.7 0.9
G

0.0
0.1
0.2
0.3
0.4
0.5
0.6

BO
TD

 [s
ec

]

(c)

T sim
B

TB (theory)

Fig 6. Burst propagation and burst onset time difference in the
one-dimensional chain. Schematic illustration of the one-dimensional setup (a).
Voltage traces of the neurons in (a) for G = 0.1 shown in (b) in respective colors. The
shaded area indicates the time period relevant for the excitation of neuron i (blue line)
by the GJ current from neuron i− 1 (gray line). The membrane potential of neuron i+ 1
(green line) is approximately constant at Vi+1 ≈ Vr during this period. Burst onset time
difference as function of G is shown in (c); simulations (symbols) of a one-dimensional
chain without noise (eq. (1-5) with D = 0) compared to eq. (24) (solid line).

membrane potentials of the bursting and quiescent neurons as Vi−1 = V̄b and Vi+1 = Vr,
respectively, leading to

τV
dVi
dt

= a(Vi − Vr)(Vi − Vc) +G(Vi−1 + Vi+1 − 2Vi)

≈ a(Vi − Vr)(Vi − Vc) +G(V̄b − Vi) +G(Vr − Vi)

This equation can be recast into the form of eq. (12) with complex V1,2 = Vm ± iγ in
the case of propagating bursts, where

Vm =
Vr + Vc + 2G/a

2
, (22)

and

γ =
√
VrVc + (V̄b + Vr)G/a− V 2

m. (23)
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For the calculation of TB we can then employ eq. (16), yielding

TB = −TISI+ (24)

τV
γa

[
arctan

(
Vpeak − Vm

γ

)
− arctan

(
Vr − Vm

γ

)]
.

A comparison between calculated burst onset times according to eq. (24) and TB 305

obtained from the simulation of a one-dimensional chain is shown in Fig. 6(c). The 306

approximation of TB (eq. (24), solid line) shows reasonable agreement with the 307

simulation results (symbols). As stated in the main text, we approximate the 308

propagation speed of waves passing through a two-dimensional network of neurons by 309

eq. (9). This corresponds to the assumption that the wave’s front is reasonably well 310

approximated by a planar shape, if far enough from its origin. As displayed in Fig. 3(b), 311

the propagation mechanism can then be mimicked by a one-dimensional situation with 312

rescaled distance and coupling strength. 313

In order to see this, note that neurons of the same color in Fig. 3(b) that are part of 314

a perfectly planar wave front share exactly the same state (V, u). If the voltage of all 315

horizontal neighbors is identical, links between these neurons can be discarded, because 316

the GJ current is zero. We set the first spike time of the bursts of all red neurons as 317

time origin. Now, every single blue neuron feels an excitatory current from two bursting 318

neurons (connected via the links indicated in red/blue). The leak current of this one 319

blue neuron is affected by the two links connecting this neuron to two yellow neurons 320

(indicated by blue/yellow lines in Fig. 3(b)), which are to a good approximation at rest 321

at this instant of time. Doubling the excitatory current and the additional leak current 322

via gap junctions can be expressed by doubling the GJ conductance parameter G in 323

eq. (24). Last but not least, the propagation of the wave within one burst onset time 324

difference is not in direction of the link, but we have to consider the reduced distance 325√
3/4 · `. Putting everything together, we obtain eq. (9). 326

5.4 Numerical Simulation Methods 327

The numerical simulations of our system were performed according to the following
Euler-Maruyama integration scheme:

Vi(tk+1) =Vi(tk) +
∆t

τV

(
a(Vi(tk)− Vrest)(Vi(tk)− Vcrit)

− ui(tk)

)
+
√

2D∆tξi,k +RIi(tk), (25)

ui(tk+1) =ui(tk) +
∆t

τu

(
bVi(tk)− ui(tk)

)
, (26)

where ξi,k are independent Gaussian random numbers with unit variance [43]. The 328

simulation results shown in Fig. 1, Fig. 2, and Fig. 3 are deterministic, i.e. D = 0. The 329

wave nucleation rates shown in Fig. 4 correspond to an average of three independent 330

simulations for each set of parameters G, N , and D, where every single simulation was 331

run until a fixed number of spikes was generated (7500 ·N), such that a single 332

simulation returned roughly 200 inter-wave intervals; for cases with very low nucleation 333

rates (< 10−6), fewer inter-wave intervals were simulated due to a hard-coded time limit. 334

All simulations were performed at discrete times with a step of ∆t = 0.1 msec. To test 335

the stability of the Euler-Maruyama integration scheme for our network model for 336

D > 0, we compared simulations for the nucleation rate, cf. Fig. 4, with different 337

integration time steps at the set of parameters: G = 0.4, N = 100, D = 1/18. We found 338
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that reducing the integration time step by a factor 10 had no significant impact on the 339

result of the nucleation rate. 340

In Fig. 4, we find a finite size effect that vanishes for larger system sizes. The
boundary conditions introduce a measurable effect on the spontaneous nucleation rate
of retinal waves for smaller system sizes. This effect is due to correlations of distant
neighbors in the system. To gain a better understanding of the magnitude of correlation
on voltage fluctuations, we simulated a one-dimensional chain of neurons. Because we
are interested in the sub-threshold voltage fluctuations we simplified the neuron model
to a version that does not generate spikes, i.e. with a linearized deterministic part of the
dynamics (GJ and noise current unchanged) at the stable fixed point:

τV V̇ = f(V ) +RI

≈ f(Vr) +
∂f

∂V
|V=Vr

(V − Vr) +RI

= a(Vr − Vc)(V − Vr) +RI (27)

Simulation results for the Pearson correlation coefficient of the membrane potential as 341

function of distance for a ring of 15 coupled neurons are illustrated in Fig. 7(a). With

0 1 2 3 4 5 6 7 8

d(i, j)
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V
j
)〉
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G= 0. 2
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) 
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]

(b)

Fig 7. GJ coupling leads to correlations that effect the noise intensity.
Pearson correlation coefficient of the voltage as function of the distance between
neurons in (a). Standard deviation of the membrane potential as function of the chain
length for G = 0.5 and D = 0.05 in (b). Each point corresponds to an average of 100
simulations of 1000 seconds for a single neuron (the result of single simulations is
illustrated by transparent symbols).

342

increasing coupling strength, there is a non-zero correlation between the voltages, even 343

for neurons as far as 4 space units apart. This leads to a measurable increase of the 344

overall membrane fluctuations of a ring with chain length up to 5 neurons for G = 0.5, 345

cf. Fig. 7(b). For larger chain lengths, the periodicity has no effect on the voltage 346

fluctuations, which is in agreement of the saturation observed for ∆U in Fig. 4. 347

The results for the wave speed shown in Fig. 5 were obtained by averaging the 348

properties of roughly the 20 first waves (by limiting the total number of evaluated 349

spikes to 600 ·N) from one large scale simulation. The results for the inter-wave 350

intervals were obtained by averaging over all recorded inter-wave intervals of one 351

simulation for every set of parameter. Simulations were run for 5000 seconds with a 352

break criteria at approximately 300 waves (7500 ·N spikes). Panel (b) of Fig. 5 shows 353

the first 2000 seconds of the population activity for three exemplary noise intensities. 354

Separate simulations were performed to estimate the amplitude of the subthreshold 355

voltage fluctuations; to this end, we used the membrane potential of 20 neurons for 20 356

seconds, in which no wave was observed. 357
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15. Güldenagel M, Söhl G, Plum A, Traub O, Teubner B, Weiler R, et al. Expression 401

patterns of connexin genes in mouse retina. J Comp Neurol. 2000;425(2):193–201. 402

doi:10.1002/1096-9861(20000918)425:2¡193::AID-CNE3¿3.0.CO;2-N. 403

16. Han Y, Massey SC. Electrical synapses in retinal ON cone bipolar cells: 404

subtype-specific expression of connexins. Proc Natl Acad Sci. 405

2005;102(37):13313–13318. doi:10.1073/pnas.0505067102. 406

17. Hansen KA, Torborg CL, Elstrott J, Feller MB. Expression and function of the 407

neuronal gap junction protein connexin 36 in developing mammalian retina. J 408

Comp Neurol. 2005;493(2):309–320. doi:10.1002/cne.20759. 409

18. Bloomfield SA, Völgyi B. The diverse functional roles and regulation of neuronal 410

gap junctions in the retina. Nat Rev Neurosci. 2009;10(7):495–506. 411

doi:10.1038/nrn2636. 412
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