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ABSTRACT  

We have previously identified associations of two circulating secondary bile acids (glycocholenate and 

glycolithocolate sulfate) with atrial fibrillation (AF) risk among blacks. We aimed to replicate these 

findings in an independent sample including both whites and blacks, and performed a new metabolomic 

analysis in the combined sample. We studied 3,922 participants from the ARIC cohort followed between 

1987 and 2013. Of these, 1,919 had been included in the prior analysis and 2,003 were new samples. 

Metabolomic profiling was done in baseline serum samples using gas and liquid chromatography mass 

spectrometry. AF was ascertained from electrocardiograms, hospitalizations, and death certificates. We 

used multivariable Cox regression to estimate hazard ratios (HR) and 95% confidence intervals (95%CI) 

of AF by one standard deviation difference of metabolite levels. Over a mean follow-up of 20 years, 608 

participants developed AF. Glycocholenate sulfate was associated with AF in the replication and 

combined samples (HR 1.10, 95%CI 1.00, 1.21 and HR 1.13, 95%CI 1.04, 1.22, respectively). 

Glycolithocolate sulfate was not related to AF risk in the replication sample (HR 1.02, 95%CI 0.92, 1.13). 

An analysis of 245 metabolites in the combined cohort identified three additional metabolites 

associated with AF after multiple-comparison correction: pseudouridine (HR 1.18, 95%CI 1.10, 1.28), 

uridine (HR 0.86, 95%CI 0.79, 0.93) and acisoga (HR 1.17, 95%CI 1.09, 1.26). To conclude, we replicated a 

prospective association between a previously identified secondary bile acid, glycocholenate sulfate, and 

AF incidence, and identified new metabolites involved in nucleoside and polyamine metabolism as 

markers of AF risk. 
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INTRODUCTION 

Atrial fibrillation (AF), a common cardiac arrhythmia, is a major risk factor for stroke and other 

cardiovascular diseases.1 Application of metabolomics, the systematic investigation of all small 

molecules in a biological system, to the study of AF risk could deepen our understanding of AF 

pathogenic pathways as well as contribute to the discovery of novel disease biomarkers.2 To date, 

however, metabolomic studies in this area have been few and limited in sample size. In an analysis of 

metabolomic data from 1,919 black participants in the community-based Atherosclerosis Risk in 

Communities (ARIC) study, including 183 who were newly diagnosed with AF, we reported an 

association of higher circulating levels of two secondary bile acids, glycolithocholate sulfate and 

glycocholenate sulfate, with incidence of AF, but no replication in independent cohorts was available.3 

More recently, a report from the mostly European-American Framingham Heart Study including 2,458 

participants with targeted metabolomic profiling, of which 156 developed AF, did not identify any 

molecule significantly associated with AF incidence after adjustment for multiple comparisons.4 

Additional studies are required to replicate previous findings and increase statistical power for novel 

discoveries. 

In this manuscript, as a follow-up to our previous study in the ARIC cohort, we extend the 

metabolomic assessment to 2,003 additional ARIC participants. We aimed to replicate the findings from 

the prior ARIC analysis in the additional ARIC participants and to conduct a new hypothesis-generating 

analysis in the combined sample of 3,922 participants. 

 

METHODS 

Study population 

In 1987-89, the ARIC study examined 15,792 men and women 45-64 years of age recruited from four 

communities in the United States (Forsyth County, NC; Jackson, MS; Minneapolis suburbs, MN; 
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Washington County, MD).5 Participants were mostly white in the Minneapolis and Washington County 

sites, white and black in Forsyth County, while only black were recruited in Jackson. After their baseline 

exam, participants underwent follow-up visits in 1990-92, 1993-95, 1996-98, 2011-13, and 2016-17. 

Participants have been followed up via annual phone calls (semiannual since 2012). For the current 

analysis, we included 3,922 participants with available metabolomic data and without evidence of AF at 

baseline. The ARIC study has been approved by institutional review boards at all participating 

institutions (University of Minnesota, University of North Carolina, University of Mississippi Medical 

Center, Johns Hopkins University, and University of Texas Health Sciences Center). Participants provided 

written informed consent at baseline and follow-up visits. This research was conducted in accordance 

with relevant guidelines and regulations pertaining to human subjects research in the United States. 

 

Metabolomic profiling 

As previously described, 1,977 randomly selected blacks in the Jackson field center had serum 

metabolomic profiling performed in 2010 in samples obtained at study baseline in 1987-89.6 The 

samples had been stored at -80°C and were assayed with an untargeted, gas chromatography/mass 

spectrometry and liquid chromatography/mass spectrometry-based metabolomic protocol by 

Metabolon, Inc. (Durham, NC). Similarly in 2014, serum samples from an additional 2,055 randomly 

selected participants (76% white, 24% black) collected in 1987-89 and stored since then at -80°C were 

assayed by Metabolon, Inc. using the same protocol. Brief methodological details are provided here. 

Sample preparation begins with four different fractionation steps to extract all polar and nonpolar 

molecules with a mass of 50–1,500 daltons. Once these small molecules have been separated out 

through these four extraction steps, they are pooled back together, and that sample is then split for 

analysis by two different platforms—a liquid chromatography–mass spectrometry system (LC-MS) and a 

gas chromatography–mass spectrometry system (GC-MS). Both of these platforms are used because 
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small molecules can be very polar as well as very nonpolar; the two chromatography methods work well 

together for profiling of most of the small molecules in the samples. In house software is then used to 

identify all of the ions that are scanned by the spectrometers. Using automated processing techniques 

based on the biological variation of the compounds within samples, the researchers are able to 

reconstruct the original molecules to which the ions belonged before going through the system. With 

the help of a standard chemical library, the molecules are identified, and their amounts are quantified. 

The end result is a data set that identifies all the small molecules seen in the sample and their relative 

amounts. 

We selected a set of 97 samples to measure their metabolome profiles using baseline serum 

samples at both 2010 and 2014. We calculated the Pearson correlation coefficients (r) between the 97 

pairs for shared metabolites. For the present study, we limited the analysis to metabolites with:  1) no 

more than 25% missing values, and 2) Pearson correlation coefficients ≥ 0.3 between 2010 and 2014 

measurements. After applying these criteria, 245 named metabolites were included. To evaluate the 

stability of samples in long-term storage, we compared metabolomic measures done at 2014 and 2016 

with standard clinical laboratory measures done at ARIC baseline (1989) for urea, glucose, and 

cholesterol. All three metabolites showed Pearson correlation coefficients ≥0.65. 

 

Ascertainment of atrial fibrillation 

We have described elsewhere the details about AF ascertainment in the ARIC cohort.7 Briefly, we 

identified AF cases through the end of 2013 from three sources: electrocardiograms (ECG) done at 

scheduled study visits, discharge diagnosis codes from hospitalizations, and death certificates. At all 

study visits, participants underwent a standard 12-lead 10-second ECG, which was transmitted 

electronically to the ARIC ECG reading center at EPICARE (Wake Forest School of Medicine, Winston-

Salem, NC) for review and analysis using the GE Marquette 12-SL program (GE Marquette, Milwaukee, 
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WI). A computer algorithm identified the presence of AF in the ECG, with a cardiologist confirming the 

diagnosis. 

 Participants’ hospitalizations during follow-up were identified through phone calls and 

surveillance of local hospitals. Trained abstractors collected information from these hospitalizations, 

including all discharge codes. We considered AF present if ICD-9-CM codes 427.31 or 427.32 were listed 

as discharge diagnoses in any given hospitalization. We excluded AF cases associated with open cardiac 

surgery. We and others have demonstrated adequate validity of this approach for the ascertainment of 

AF.7,8 Finally, we also defined AF from death certificates if ICD-9 427.3 or ICD-10 I48 were listed as any 

cause of death. 

 

Covariates 

During the baseline visit, participants self-reported age, sex, race, and smoking history and underwent a 

physical exam that included measurements of blood pressure, weight, and height. Blood glucose and 

lipid concentrations were measured using standard methods in baseline samples. Estimated glomerular 

filtration rate (eGFR) was calculated from serum creatinine using the CKD-EPI equation.9 Diabetes was 

defined if the participant had fasting blood glucose ≥126 mg/dL, non-fasting blood glucose >200 mg/dL, 

used antidiabetic medications, or reported a physician-diagnosis of diabetes. Prevalent heart failure was 

defined according to Gothenburg criteria,10 while prevalent coronary heart disease was based on self-

reported information. Also at baseline, participants underwent a standard 12-lead 10-second 

electrocardiogram, which was processed at EPICARE (Wake Forest School of Medicine, Winston-Salem, 

NC). PR duration, P wave axis and P wave terminal force in V1 were all automatically measured. 

Abnormal P wave axis was defined as any P wave axis value outside 0 to 75 degrees, while elevated P 

wave terminal force in V1 was defined if P wave terminal force was >4,000 µV*ms. Genome-wide and 
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exome genotyping of ARIC participants has been done using the Affymetrix 6.0 and the Illumina 

HumanExome Beadchip v1.0, as described elsewhere.11  

 

Statistical analysis 

We conducted two separate sets of analyses. In the first one, we aimed to replicate the findings from 

our prior ARIC publication, estimating the association of glycolithocholate sulfate and glycocholenate 

sulfate with AF incidence in 2,003 participants without AF at baseline not included in our published 

analysis. A second analysis combined participants from the two metabolomic assessment batches (n = 

3,922). We used a modified Bonferroni correction to determine statistical significance.12 Using this 

approach, p-values less than 3.538 x 10-4 were considered statistically significant for 245 tested 

metabolites. Additionally, since the Bonferroni correction can be too conservative and miss true 

associations, we alternatively defined statistical significance using a false discovery rate (FDR) of 5% 

applying the Benjamini-Hochberg procedure.13  

 For all analyses, the association of individual metabolites with the incidence of AF was estimated 

with Cox proportional hazards regression. Time of follow-up was defined as the time in days from the 

baseline visit to incidence of AF, death, loss to follow-up or December 31, 2013, whichever occurred 

earlier. Metabolites were mean centered and modeled as continuous variables in standard deviation 

units. Missing values were imputed with the lowest detected value in each batch. We ran three separate 

models with increasing number of covariates. A first model adjusted for age, sex, race, center, and batch 

(when applicable). A second model additionally adjusted for smoking, body mass index, systolic blood 

pressure, hypertension medications, diabetes mellitus, history of heart failure, and history of coronary 

heart disease. A final model additionally adjusted for eGFR. We selected model covariates based on 

prior knowledge of risk factors for AF.14 We assessed effect measure modification by race and sex using 

stratified analysis. The dose-response shape of the association between metabolite concentration and 
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AF incidence was evaluated modeling metabolites using a restricted cubic spline with five knots. To test 

the robustness of the observed significant associations, we conducted a series of sensitivity analyses, 

adjusting for blood lipids and lipid-lowering medications and excluding participants with a prior history 

of prevalent coronary heart disease or heart failure, as well as adjusting for aspartate aminotransferase 

(AST) and alanine aminotransferase (ALT), measured in visit 2 samples, in the analyses of bile acids.  

 We conducted several additional analyses to explore potential mechanisms of the association 

between metabolites and AF incidence. First, we evaluated the association of statistically significant 

metabolites with electrocardiographic endophenotypes of AF risk using linear regression (PR duration, in 

ms) or logistic regression (abnormal P wave axis and elevated P wave terminal force in V1). Second, we 

evaluated the association of statistically significant metabolites with 23 single nucleotide polymorphisms 

(SNPs) associated with AF in a prior genome-wide association study (GWAS) from the AFGen 

consortium, and a genetic score calculated by adding the number of risk alleles weighted by the beta 

coefficient from the published genome-wide study.11 Finally, we explored whether variation in 

rs2272996 in gene VNN1, a SNP previously related to circulating concentrations of acisoga (one of the 

metabolites associated with AF incidence in this analysis),15 was associated with AF incidence in the 

latest GWAS of AF. 

 

RESULTS 

Of 15,792 participants in the ARIC cohort, the present analysis included 3,922 with available 

metabolomic data and free of AF at baseline, 1,919 of them included in our previous publication and 

2,003 with newly available data. Participants were followed up for a mean (standard deviation) of 20.4 

(7.0) years, during which 608 AF events were identified (incidence rate, 7.6 cases per 1,000 person-

years). Table 1 reports participants’ characteristics overall and by AF incidence status during follow-up. 

As expected, participants who developed AF during follow-up were older, had higher systolic blood 
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pressure and worse kidney function at baseline. They were also more likely to be white, male and have a 

baseline diagnosis of diabetes, heart failure or coronary heart disease. 

 In an initial analysis, we aimed to replicate the findings from our previous publication showing 

that higher levels of glycolithocholate sulfate and glycocholenate sulfate were associated with increased 

risk of AF. In an age and sex-adjusted analysis including 2,003 participants and 386 incident AF events, 

higher levels of glycocholenate sulfate but not of glycolithocholate sulfate were associated with AF 

incidence in the replication analysis (Table 2, Model 1). The association of glycocholenate sulfate with 

incidence of AF became weaker after multivariable adjustment (HR 1.10, 95%CI 1.00, 1.21 per 1-SD 

difference; Table 2, Model 2). Given the strong attenuation after multivariable adjustment, we explored 

if any individual covariate was responsible for this change. Adding each covariate to Model 1 individually 

did not point to any particular variable as responsible for the attenuation (Supplementary Figure 1). The 

hazard ratio (HR) and 95% confidence interval (CI) of AF per 1-standard deviation (SD) difference in 

glycocholenate sulfate in the combined derivation and replication samples was 1.23 (95%CI 1.14-1.32, p 

= 9.5 x 10-8) in minimally adjusted models and 1.13 (95%CI 1.04, 1.22, p = 0.003) after additional 

adjustment for cardiovascular risk factors. Additional adjustment for concentrations of ALT and AST in 

3,401 participants with available information on liver enzymes did not modify the associations (HR 1.15, 

95%CI 1.07, 1.23, p = 2.5 x 10-5). Analysis stratified by race and sex showed a weaker association 

between glycolithocholate sulfate and AF in whites compared to blacks (HR 1.04, 95%CI 0.94, 1.16 

versus HR 1.19, 95%CI 1.10, 1.28, p for interaction = 0.05). No other interactions were identified 

(Supplementary Figures 2 and 3). 

 Subsequently, we performed a metabolome-wide, hypothesis-free analysis combining the two 

study samples. Of the 245 studied metabolites, 9 were associated with the incidence of AF with p-values 

<0.001 after multivariable adjustment and 11 had FDR-adjusted p-value<0.05 (Table 3, Model 2). These 

metabolites included molecules involved in the metabolism of pyrimidines (pseudouridine and uridine), 
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polyamines (acisoga), amino acids (N-acetylalanine and N-acetylthreonine), dipeptides (gamma-

glutamylisoleucine and gamma-glutamylleucine), and bile acids (glycoursodeoxycholate and 

glycochenodeoxycholate), as well as one lysolipid (1-docosahexaenoylglycerophosphocholine), and a 

xenobiotic (O-sulfo-L-tyrosine). Pearson correlation coefficients for these metabolites between repeated 

measures in 97 samples as well as percentage of observations with missing values are presented in 

Supplementary Table 1. Three of these molecules, pseudouridine, acisoga, and uridine, were 

significantly associated with AF with p-values < 3.538 x 10-4. Specifically, higher levels of pseudouridine 

and acisoga were associated with higher rates of AF (HR 1.18, 95%CI 1.10, 1.28 and 1.17, 95%CI 1.09, 

1.26, respectively) while higher uridine levels were associated with reduced AF rates (HR 0.86, 95%CI 

0.79, 0.93). Complete results for the 245 metabolites are available as a supplementary file. The 

correlation matrix of the 11 metabolites is shown in Supplementary Table 2. Uridine was not correlated 

with pseudouridine (r = -0.02) or acisoga (r = -0.03), though there was a modest association between 

pseudouridine and acisoga (r = 0.42). Associations for pseudouridine and acisoga weakened, but were 

still present, in a model including the 3 metabolites simultaneously (HR 1.16, 95%CI 1.06, 1.26 for 

pseudouridine, HR 1.11, 95%CI 1.02, 1.20 for acisoga). The inverse association between uridine and AF 

risk did not change after adjustment for pseudouridine and acisoga (HR 0.85, 95%CI 0.79, 0.92). The 

association remained essentially unchanged after adjustment for blood lipids and in those without CVD 

(Supplementary Table 3). Figure 1 presents the dose-response associations of pseudouridine, acisoga, 

and uridine with AF risk, which were approximately linear for the three molecules. Multivariable 

adjustment led to meaningful attenuation in the association of pseudouridine with AF. None of the 

individual covariates in the multivariable model seemed particularly responsible for this attenuation, as 

evaluated by adding each covariate individually to the minimally adjusted model (Supplementary Figure 

1). Associations were similar across race and sex groups (Supplementary Figures 2 and 3). 
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 To characterize in more detail the association of the three metabolites with AF, we explored 

their cross-sectional association with selected intermediate phenotypes of AF (PR interval, elevated P 

wave terminal force in V1, abnormal P wave axis) (Table 4). None of the three metabolites were 

associated with the odds of abnormal P wave axis or elevated P wave terminal force in V1. The results 

were suggestive of a possible association of higher pseudouridine and acisoga with shorter PR interval 

[beta (95% CI), -0.9 ms (-1.9, 0.1), and -0.9 ms (-1.8, -0.1), respectively) and higher uridine with longer PR 

interval [0.6 ms (-0.2, 1.4)]. 

 We assessed whether any of the AF-related genetic variants identified in a previously published 

GWAS of AF among individuals of European ancestry were associated with levels of pseudouridine, 

acisoga or uridine among white participants with genomic data (N = 1421). In this analysis, neither the 

individual genetic variants nor the AFGen genetic risk score predicted serum levels of these three 

metabolites (Supplementary Table 4). 

 Finally, variation in rs2272996 in gene VNN1, previously associated with circulating levels of 

acisoga, was not predictive of AF risk (p = 0.88 in the most recent GWAS from the AFGen consortium).  

 

DISCUSSION 

In this metabolomic study of 3,922 men and women from a diverse prospective cohort we replicated a 

previously described association of glycocholenate sulfate, a secondary bile acid, with the incidence of 

AF. Also, we identified three additional metabolites (two related to pyrimidine metabolism, 

pseudouridine and uridine, and one related to polyamine metabolism, acisoga) associated with 

incidence of AF using a stringent Bonferroni correction. Several additional analyses showing lack of 

association of these metabolites with AF electrical endophenotypes and gene variants associated with 

AF in a previously published GWAS suggest that these metabolites may affect AF pathogenesis through 

alternative mechanisms. An additional analysis using FDR-adjusted significance thresholds identified 
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eight additional metabolites associated with AF incidence, including two bile acids, two amino-acids, two 

dipeptides, one lisolipid, and one xenobiotic. 

 

Bile acids and AF 

Consistent with our prior analysis of the ARIC cohort,3 we found an association of circulating 

glychocholenate sulfate with increased incidence of AF. The previously described association of another 

secondary bile acid, glycholithocholate sulfate, with AF was not replicated in this new analysis. In 

addition, we identified two additional secondary bile acids, glycoursodeoxycholate and 

glycochenodeoxycholate, associated with AF incidence. These associations did not achieve the multiple 

comparison-corrected threshold for statistical significance, but were significant using an FDR-adjusted p-

value. Glychocholenate sulfate is possibly derived from 3-beta-hydroxy-5-cholenoic acid (cholenate). 

Prior literature has described elevations of cholenate in patients with liver disease,16 while both 

glycoursodeoxycholate and glycochenodeoxycholate are elevated in patients with liver cirrhosis.17 Thus, 

liver injury, which has been associated with AF previously, could explain the association of bile acids 

with incident AF. However, adjustment for biomarkers of liver damage (ALT and AST) did not materially 

change the associations. Alternative mechanisms, including the cardiometabolic implications of systemic 

activation of farnesoid X receptor by circulating bile acids18 or changes in the gut microbiota,19 

instrumental in bile acid metabolism, could underlie the described associations. Our results, together 

with a prior study describing potential arrhythmogenic effects of bile acids,20 provide the rationale for 

future work exploring the impact of bile acids on the development of AF. 

 

Pseudouridine and uridine 

Pseudouridine and uridine are nucleosides involved in RNA synthesis and metabolism. Pseudouridine 

results from enzymatic posttranscriptional modification of uridine in RNA, with stress conditions 
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influencing the occurrence of this process.21 In turn, RNA pseudouridylation can affect gene expression 

regulation through mRNA stability and proteome diversity.22 Because of its physiological roles, 

circulating or urinary pseudouridine is considered a marker of RNA degradation and cell turnover.23 Prior 

studies have reported higher concentrations of circulating pseudouridine in patients with pulmonary 

arterial hypertension,24 heart failure,25 impaired kidney function,26,27 end-stage renal disease,28,29 and 

cancer.30 The relationships between circulating pseudouridine and posttranscriptional pseudouridylation 

of RNA and what role, if any, pseudouridine has in processes contributing to AF risk, requires further 

investigation. 

 Uridine is a ribonucleoside potentially involved in modulation of the metabolism of multiple 

systems and critical for cellular function and survival, though its specific targets have not been 

identified.31 Recent studies indicate that plasma uridine plays a key role in energy homeostasis and 

thermoregulation, modulating leptin signaling and potentially affecting glucose and insulin 

metabolism.32 Given the involvement of obesity and diabetes in the development of AF, deeper 

understanding of the physiological role of uridine in cardiometabolic disorders is needed. In fact, prior 

epidemiologic and clinical evidence has shown beneficial associations with higher plasma uridine, with 

higher levels of uridine associated with reduced mortality in the ARIC cohort,33 and reduced pulse wave 

velocity in the Twins UK Registry.34 In the Framingham Heart Study, higher concentrations of uridine 

were associated with a nonsignificant lower risk of AF (HR 0.84, 95%CI 0.70, 1.00, p = 0.05, per 1-

standard deviation higher concentrations).4 

 

Acisoga 

Acisoga (N-(3-acetamidopropyl)pyrrolidin-2-one) is a catabolic product of spermidine formed from N1-

acetylspermidine, and involved in the metabolism of polyamines.35 Its precise role is unknown, but two 

prior studies have found associations of elevated acisoga concentrations with higher body mass 
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index,36,37 and a potential association with the incidence of diabetes mellitus in the ARIC study.38 

Concentrations of acisoga were part of a metabolomic-score predicting mortality in the Alpha-

Tocopherol, Beta-Carotene Cancer Prevention study cohort.39 Polyamines are key players in a range of 

processes, including cell-cell interactions, cellular signaling, and ion channel regulation.40 Acisoga, as an 

end product of polyamine metabolism, may be a marker of dysregulation in this pathway. 

 

Other metabolites 

Using a less stringent approach to define statistical significance, we identified additional metabolites 

associated with increased risk of AF. These included two amino acids (N-acetylalanine and N-

acetylthreonine), two dipeptides (gamma-glutamylisoleucine and gamma-glutamylleucine), one lysolipid 

(1-docosahexaenoylglycerophosphocholine), and one xenobiotic (O-sulfo-L-tyrosine). To our knowledge, 

these metabolites have not been previously associated with the incidence of AF, other arrhythmias, or 

cardiovascular disease in general. Higher levels of N-acetylalanine and lower levels of gamma-

glutamylleucine in blood have been associated with increased mortality in the ARIC cohort.33 In patients 

with type 1 diabetes, higher circulating levels of N-acetylalanine, N-acetylthreonine, and O-sulfo-L-

tyrosine were associated with faster progression to end-stage renal disease,29 while N-acetylthreonine 

was associated with faster decline in kidney function in type 2 diabetes27 and N-acetylalanine and O-

sulfo-L-tyrosine associated with incident chronic kidney disease in the general population.26 In our 

analysis, adjustment for kidney function attenuated the associations of N-acetylalanine, N-

acetylthreonine, and O-sulfo-L-tyrosine with AF incidence, indicating they may be markers of impaired 

kidney function, an established risk factor for AF.41 Animal studies suggest that gamma-glutamylleucine 

is an indicator of anti-obesogenic metabolism,42 with obesity being a strong risk factor for AF.43 

Decreased concentrations of lysolipids, including 1-docosahexaenoylglycerophosphocholine, have been 

associated with obesity in children.36 
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Implications for understanding of AF pathophysiology 

The circulating metabolites prospectively associated with the incidence of AF in the ARIC cohort 

highlight two major pathways in AF pathophysiology. First, several metabolites, including the amino 

acids N-acetylalanine and N-acetylthreonine, the xenobiotic O-sulfo-L-tyrosine and, to a lesser extent, 

pseudouridine, underline the role that kidney dysfunction plays in the development of AF.41 In addition 

to causing hypertension, chronic kidney disease can lead to chronic inflammation, abnormalities in 

calcium and phosphate metabolism, vascular dysfunction, and left ventricular hypertrophy, all 

potentially involved in AF development.44 A second pathway involves metabolic alterations associated 

with obesity, glycemic metabolism, and changes in the microbiome. The association of AF incidence with 

concentrations of secondary bile acids, acisoga, uridine, the lysolipid 1-

docosahexaenoylglycerophosphocholine, and the dipeptides gamma-glutamylisoleucine and gamma-

glutamylleucine fit within this pathway. Diabetes and obesity are established risk factors for AF,45,46 but 

the exact mechanisms responsible for this association are unclear. Our findings point to potential fruitful 

areas of further inquiry. 

 

Strengths and limitations 

Our study has important strengths, including the inclusion of a large and diverse cohort with excellent 

follow-up, an adequate number of AF cases to identify associations, and the availability of extensive 

covariates to reduce confounding. Moreover, we have considered only metabolites that passed rigorous 

quality control criteria. However, the method of AF ascertainment—relying predominantly on hospital 

discharge diagnoses—has probably led to missed events, including asymptomatic AF and AF managed 

exclusively in outpatient settings. Other limitations include the risk of false negatives, due to the limited 

number of events, and the absence of an independent sample for replication. 
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Future directions 

Our findings identify potential fruitful avenues of research. Additional studies that aim to evaluate the 

role played by the metabolism of bile acids, uridine and polyamines in processes leading to AF are 

warranted. Replicating findings from the ARIC cohort in independent samples is also needed. Combining 

metabolomic data with those coming from other omic levels (genomics, transcriptomics, and 

proteomics) and exploring associations with intermediate phenotypes of AF (e.g. left atrial 

abnormalities) could be particularly rewarding.  

 

Conclusions 

This study replicated the association of one bile acid with AF reported in a previous study and identified 

three additional metabolites from two metabolic pathways associated with AF. Our findings suggest that 

metabolomic approaches in large epidemiologic studies can be valuable in biomarker discovery and 

advancing our understanding of the pathogenesis of complex diseases.  
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FIGURE LEGENDS 

Figure 1. Association of concentrations of pseudouridine (top left panel), acisoga (top right panel) and 

uridine (bottom right panel) with incidence of atrial fibrillation presented as hazard ratio (HR; solid line) 

and 95% confidence intervals (CI; shaded area). Results from Cox proportional hazards model with 

metabolites modeled using restricted cubic splines (knots at 5th, 27.5th,50th, 72.5th, and 95th 

percentiles), adjusted for age, sex, race, batch, study site, body mass index, smoking, diabetes, systolic 

blood pressure, use of antihypertensive medication, prevalent coronary heart disease, and prevalent 

heart failure. Median value of the metabolite was considered the reference (HR = 1). The histograms 

represent the frequency distribution of metabolites levels. ARIC study, 1987–2013  
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Table 1. Selected baseline characteristics by atrial fibrillation (AF) status during follow-up in 3,922 

participants with available metabolomic data and free of AF at baseline, ARIC study, 1987-89 

Baseline Overall No incident AF Incident AF 

N 3,922 3,314 608 

Age, years 54 (6) 53 (6) 56 (6) 

Women, % 60 62 50 

Race    

  Black, % 61 64 47 

  White, % 39 36 53 

Body mass index, kg/m2 29 (6) 29 (6) 30 (6) 

Current smoker, % 28 27 29 

Systolic blood pressure, mmHg 125 (21) 124 (21) 129 (22) 

Anti-hypertensive medication, % 32 31 39 

Diabetes, % 14 13 19 

eGFR, mL/min/1.73 m2 99 (18) 100 (18) 94 (19) 

Prevalent heart failure, % 5.1 4.5 8.4 

Prevalent coronary heart disease, % 4.8 4.0 9.2 

Values correspond to mean (standard deviation) or percentages. eGFR: estimated glomerular filtration 

rate 
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Table 2. Association of two secondary bile acids (glycocholenate sulfate and glycolithocholate sulfate) 

with incidence of AF, by analytical batch. Hazard ratios per 1-standard deviation difference. ARIC study, 

1987-2013 

 

 First batch 

(N = 1919; AF = 222) 

Second batch 

(N = 2003; AF = 386) 

Combined sample 

(N = 3,922; AF = 608) 

 HR (95%CI) p-value HR (95%CI) p-value HR (95%CI) p-value 

Glycocholenate sulfate 

Model 1 1.27 (1.16, 1.39) 1.9 x 10-7 1.21 (1.10, 1.33) 0.0001 1.23 (1.14, 1.32) 9.5 x 10-8 

Model 2 1.20 (1.08, 1.33) 0.0006 1.10 (1.00, 1.21) 0.05 1.13 (1.04, 1.22) 0.003 

Glycolithocholate sulfate 

Model 1 1.22 (1.13, 1.31) 1.4 x 10-7 1.02 (0.93, 1.13) 0.69 1.09 (1.01, 1.17) 0.03 

Model 2 1.21 (1.11, 1.31) 5.5 x 10-6 1.02 (0.92, 1.13) 0.67 1.07 (0.99, 1.15) 0.11 

Model 1 adjusted for age, sex and race, center and batch where applicable. Model 2 additionally adjusted for 

smoking, body mass index, systolic blood pressure, use of antihypertensive medication, diabetes, prevalent 

heart failure, and prevalent coronary heart disease. 
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Table 3. Association of individual metabolites with incidence of atrial fibrillation, ARIC study, 1987–2013. Hazard ratios per 1-standard deviation  

difference. Only metabolites with an FDR-adjusted p-value <0.05 in the multivariable model 2 are shown. 

Metabolite Model 1 Model 2 Model 3 

 HR (95%CI) p-value FDR p HR (95%CI) p-value FDR p HR (95%CI) p-value FDR p 

Pseudouridine 1.31 (1.22, 1.41) 4.5x10-13 5.5x10-11 1.18 (1.10, 1.28) 1.7x10-5 4.0x10-3 1.16 (1.06, 1.27) 9.6x10-4 0.031 

Acisoga 1.20 (1.12, 1.30) 1.3x10-6 2.3x10-5 1.17 (1.09, 1.26) 4.0x10-5 4.8x10-3 1.15 (1.06, 1.24) 3.7x10-4 0.026 

Uridine 0.82 (0.75, 0.88) 5.4x10-7 1.5x10-5 0.86 (0.79, 0.93) 1.3x10-4 0.010 0.86 (0.79, 0.93) 1.7x10-4 0.026 

1-docosahexaenoylglycerophosphocholine 0.82 (0.75, 0.90) 2.2x10-5 2.5x10-4 0.85 (0.77, 0.93) 3.6x10-4 0.018 0.85 (0.77, 0.93) 4.0x10-4 0.026 

O-sulfo-L-tyrosine 1.18 (1.09, 1.28) 5.4x10-5 5.5x10-4 1.16 (1.07, 1.25) 4.0x10-4 0.018 1.12 (1.03, 1.23) 0.01 0.170 

Glycoursodeoxycholate 1.15 (1.08, 1.23) 3.0x10-5 3.4x10-4 1.13 (1.05, 1.20) 5.2x10-4 0.018 1.13 (1.05, 1.20) 5.4x10-4 0.026 

Glycochenodeoxycholate 1.16 (1.08, 1.24) 1.8x10-5 2.3x10-4 1.13 (1.05, 1.21) 5.8x10-4 0.018 1.13 (1.06, 1.21) 4.8x10-4 0.026 

N-acetylalanine 1.22 (1.14, 1.32) 5.6x10-8 2.7x10-6 1.14 (1.06, 1.23) 6.0x10-4 0.018 1.11 (1.02, 1.21) 0.02 0.205 

N-acetylthreonine 1.21 (1.12, 1.31) 7.3x10-7 1.6x10-5 1.14 (1.05, 1.23) 9.2x10-4 0.025 1.11 (1.02, 1.21) 0.02 0.205 

Gamma-glutamylisoleucine 0.86 (0.79, 0.94) 4.6x10-4 3.0x10-3 0.87 (0.80, 0.95) 1.5x10-3 0.036 0.87 (0.80, 0.94) 8.1x10-4 0.031 

Gamma-glutamylleucine 0.84 (0.78, 0.92) 5.8x10-5 5.7x10-4 0.88 (0.81, 0.95) 1.9x10-3 0.042 0.87 (0.80, 0.94) 1.0x10-3 0.031 

FDR p: False Discovery Rate-adjusted p-values. Model 1: Proportional hazards model adjusted for age, sex, race, study site, and batch. Model 2: As Model 1, 

additionally adjusted for smoking, body mass index, systolic blood pressure, use of antihypertensive medication, diabetes mellitus, prevalent heart failure and 

prevalent coronary heart disease. Model 3: As Model 2, additionally adjusted for eGFR. 
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Table 4. Association of pseudouridine, acisoga and uridine with selected ECG measures, ARIC study, 1987-1989  

  PR duration, msa Abnormal P wave axis Elevated P wave terminal force in V1 

  Diff (95%CI) P-value OR (95%CI) P-value OR (95%CI) P-value 

Pseudouridine Model 1 0.15 (-0.66, 0.97) 0.71 0.86 (0.74, 1.00) 0.04 1.11 (1.03, 1.20) 0.01 

 Model 2 -0.56 (-1.39, 0.27) 0.18 0.92 (0.79, 1.06) 0.25 1.03 (0.94, 1.12) 0.55 

 Model 3 -0.90 (-1.87, 0.06) 0.07 0.91 (0.77, 1.08) 0.27 1.00 (0.91, 1.11) 0.92 

Acisoga Model 1 -0.52 (-1.31, 0.27) 0.19 1.04 (0.92, 1.18) 0.54 1.07 (0.99, 1.16) 0.09 

 Model 2 -0.81 (-1.60, -0.02) 0.05 1.01 (0.89, 1.15) 0.86 1.03 (0.95, 1.11) 0.51 

 Model 3 -0.90 (-1.71, -0.09) 0.03 1.02 (0.89, 1.16) 0.79 1.02 (0.94, 1.11) 0.68 

Uridine Model 1 0.79 (0.01, 1.57) 0.05 0.92 (0.81, 1.04) 0.17 0.96 (0.88, 1.04) 0.30 

 Model 2 0.58 (-0.21, 1.37) 0.15 1.00 (0.88, 1.15) 0.95 1.00 (0.92, 1.08) 0.93 

 Model 3 0.59 (-0.20, 1.38) 0.15 1.00 (0.88, 1.15) 0.96 1.00 (0.92, 1.09) 0.98 

Model 1: Adjusted for age, sex, race, study site, and batch. Model 2: As Model 1, additionally adjusted for smoking, body mass index, systolic 

blood pressure, use of antihypertensive medication, diabetes mellitus, prevalent heart failure and prevalent coronary heart disease. Model 3: As 

Model 2, additionally adjusted for eGFR 

a Models additionally adjusted for resting heart rate 
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