
1 

 

Whole genome sequencing identifies high-impact variants in well-known 1 

pharmacogenomic genes 2 

Jihoon Choi1,2, Kelan G. Tantisira3,4,*, Qing Ling Duan1,2,* 3 

1Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, 4 

Canada; 2School of Computing, Queen’s University, Kingston, Ontario, Canada; 3Channing 5 

Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, 6 

Boston, MA, USA; 4Division of Pulmonary and Critical Care Medicine, Brigham and 7 

Women's Hospital and Harvard Medical School, Boston, MA, USA. 8 

*These authors contributed equally to this work. 9 

Correspondence: QL Duan (qingling.duan@queensu.ca) 10 

 11 

  12 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368225doi: bioRxiv preprint 

https://doi.org/10.1101/368225


2 

 

Abstract  13 

More than 1,100 genetic loci have been correlated with drug response outcomes but 14 

disproportionately few have been translated into clinical practice. One explanation for the 15 

low rate of clinical implementation is that the majority of associated variants may be in 16 

linkage disequilibrium (LD) with the causal variants, which are often elusive. This study aims 17 

to identify and characterize likely causal variants within well-established pharmacogenomic 18 

genes using next-generation sequencing data from the 1000 Genomes Project. We identified 19 

69,319 genetic variations within 160 pharmacogenomic genes, of which 8,207 variants are in 20 

strong LD (r2 > 0.8) with known pharmacogenomic variants. Of the latter, 8 are coding or 21 

structural variants predicted to have high-impact, with 19 additional missense variants that 22 

are predicted to have moderate-impact. In conclusion, we identified putatively functional 23 

variants within known pharmacogenomics loci that could account for the association signals 24 

and represent the missing causative variants underlying drug response phenotypes.  25 
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Introduction 27 

The current paradigm of drug therapy follows a “trial-and-error” approach where patients are 28 

prescribed a drug at a standardized dose with the expectation that alternative therapies or 29 

doses will be given during a return clinical visit(s).1 Not surprisingly, this is inefficient and 30 

potentially hazardous for patients who require urgent care or are susceptible to adverse events, 31 

which may result in prolonged suffering and fatalities.2 A better understanding of the 32 

modulators of drug response will improve and hopefully replace our current trial-and-error 33 

approach of drug therapy with more precise methods that are based on scientific knowledge.3 34 

To date, more than 1,100 genetic loci have been correlated with drug response 35 

phenotypes (The Pharmacogenomics Knowledgebase (PharmGKB): www.pharmgkb.org) but 36 

only a small fraction of these genomic findings have been implemented into clinical practice. 37 

In 2009, PharmGKB partnered with the Pharmacognomics Research Network (PGRN) to 38 

establish the Clinical Pharmacogenetics Implementation Consortium (CPIC)).4,5,6 The goal of 39 

CPIC is to provide specific guidelines that instruct clinicians on how to use or interpret a 40 

patient’s genetic test results to determine the optimal drug and dosage to each patient. As of 41 

June 2017, there are 36 drug-gene pairs with CPIC guidelines published, although there are 42 

127 well-established pharmacogenomic genes identified as CPIC genes and 64 additional 43 

genes labeled as Very Important Pharmacogenes (VIP) by the PharmGKB curators, which 44 

totals to 160 unique genes. 45 

An example of a CPIC guideline is one that instructs physicians on how to interpret 46 

genomic information from clinical assays to determine a therapeutic dosage for warfarin, a 47 

commonly used drug for the prevention of thrombosis.7 Warfarin is known to have a narrow 48 

therapeutic index and wide effect variances among patients. For example, a conventional 49 
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dose of warfarin may not be an effective anticoagulant in some patients or induce adverse 50 

events (e.g. excessive bleeding) in others.8 Thus, it is often difficult to achieve and maintain a 51 

targeted effect by administering conventional doses. Recent advancement in 52 

pharmacogenomics helped to facilitate genetic tests of two genes that can be used to predict a 53 

patients’ sensitivity to the drug prior to administration. Specifically, the therapeutic dosage of 54 

warfarin may be calculated based on one’s genotypes at these loci, which has resulted in a 55 

significant improvement in drug safety.8,9  56 

Despite the successful translation of a small fraction of pharmacogenomics findings 57 

into clinical practice, the rate of clinical implementation has been slow.6 One explanation is 58 

that the majority of pharmacogenomics loci are correlated with drug response but do not 59 

represent the actual, causal variants themselves.10,11,12 We hypothesize that the majority of 60 

known pharmacogenomics loci are genetic markers that tag causal variants, which have yet to 61 

be identified and are likely to be in linkage disequilibrium (LD) with the associated markers. 62 

The use of associated variants instead of the causal variants in clinical tests is limiting in that 63 

it may not reliably predict drug response.13  64 

The primary objective of this study is to identify potentially causal variants in well-65 

established pharmacogenomics-associated genes, which may account for the reported 66 

association signals. Specifically, we used whole genome sequencing data from the 1000 67 

Genomes Project14,15 to derive all genetic variations identified within the 160 unique CPIC 68 

and VIP pharmacogenomics genes. Next, we tested the LD with known pharmacogenomic 69 

variants, and determined the predicted function of these LD variants using annotation 70 

databases and clinical outcome databases. Our results include a catalog of potentially 71 

functional variants that are in LD with well-established pharmacogenomics variants and 72 
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could represent the causative mutations within these loci. 73 

Results 74 

Selection of pharmacogenomics loci and annotation of variants  75 

We selected 127 CPIC genes and 64 VIP genes (total of 160 unique loci) from PharmGKB, 76 

which we deemed as “well-established” pharmacogenomics loci (Supplemental data 1). 77 

Next, we identified 887,980 variants within these loci using next generation sequencing data 78 

from the 1000 Genomes Project Phase I, of which 69,319 were variants with minor allele 79 

frequencies > 1% (Supplemental data 2). Annotation analysis using SnpEff16 (genetic 80 

variant annotation and effect prediction toolbox) revealed that 65,333 (94%) of these variants 81 

were single nucleotide polymorphisms (SNPs), 1,404 (2%) were insertions, and 2,582 (4%) 82 

were deletions. As shown in Figure 1, the majority of these occur within intronic regions 83 

(~75%), with the remainder located 3’ or downstream (~11%), 5’ or upstream (~9%), and 84 

exonic (~2%). Of the coding variants, approximately half of these variants are missense 85 

(~49%), or synonymous mutations (~50%) with some occurrences of nonsense (~1%) 86 

mutations. We compared our findings with annotation results of whole genome sequencing 87 

data of 1000 Genome Project phase I dataset (http://snpeff.sourceforge.net/1kg.html) and 88 

confirmed that the results of variant annotation within 160 PGx genes are within an expected 89 

range (Supplemental figure 1). 90 

Linkage disequilibrium analysis 91 

We assessed the LD between associated variants within known pharmacogenomics loci and 92 

variants identified in our study. Analysis of LD was done in each of the four populations 93 

(American, European, East Asian, African) from Phase I of 1000 Genomes Project. This 94 
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resulted in 8,207 novel variants forming 21,256 instances of LD (r2 > 0.8) with 859 known 95 

pharmacogenomics variants (Supplemental data 3).  96 

High-impact variations 97 

We identified 8 variants predicted to have a high-impact using SNPEff from the 1000 GP 98 

database that were in LD (r2 > 0.8) with 22 known pharmacogenomics variants. These 99 

included potentially functional variants that code for an alternative splice donor site, 100 

structural interaction, frameshift mutation, stop gain, or stop lost variation. Table 1 lists these 101 

new LD variants along with the corresponding pharmacogenomics variants, the majority of 102 

which are predicted to be non-coding located within introns, up/downstream, and 103 

synonymous, with only few instances of missense and frameshift variants).  104 

Moderate-impact variations 105 

We identified 19 missense variants that are in LD with 32 pharmacogenomics variants, which 106 

are predicted to have a moderate, low, or modifying effects by SNPEff (Table 2). Among the 107 

newly identified variants, two are regulatory variants that could potentially affect protein 108 

binding, and one has been associated with neural tube defects and spina bifida cystica.  109 

Low-impact variations 110 

From the total of 8,207 variants in LD, 7,751 variants are classified by SNPEff as variants 111 

with unpredictable impact or “modifier” variants. These are in LD with 920 known 112 

pharmacogenomics variants with similar impact features. Of these, 324 modifier variants 113 

were potential regulatory variants affecting gene expression, protein binding, or transcription 114 

factor binding.  115 

In this study, we will focus on modifier variants that are classified under category 1 116 
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of RegulomeDB database, which are known eQTLs or variants correlated with variable gene 117 

expression. Among 324 modifier variants with RegulomeDB scores, 84 variants were 118 

classified as category 1, forming 213 instances of LD with 73 pharmacogenomics variants 119 

which are predicted to have low or modifying effects (Supplemental data 4). 120 

Variants associated with clinical outcomes 121 

Using SNPedia database, we discovered 46 variants in LD that are correlated with clinical 122 

phenotypes as documented in Supplemental data 5. 123 

Discussion 124 

This manuscript reports the identification of potentially functional genetic variants within 125 

genes previously correlated with drug response outcomes. We show that some of the novel 126 

variants identified from next-generation sequencing (NGS) of whole genomes (Phase I of the 127 

1000 Genomes Project) are in LD with well-known pharmacogenomics variants and could 128 

account for the functional basis underlying the association signals. Many of these LD variants 129 

code for non-synonymous amino acid substitutions, frame-shift mutations, introduce a splice 130 

variant that results in alternative splicing of the transcript, or located in non-coding regions 131 

but are correlated with gene expression levels (expression quantitative trait loci or eQTL) or 132 

other clinical phenotypes.  133 

In this study, we used LD analysis to determine the correlation between novel genetic 134 

variants identified from the 1000 Genomes Project database and known pharmacogenomics 135 

variants. We reasoned that any variant(s) in strong LD (r2 > 0.8) with the known 136 

pharmacogenomics loci could account for the association signal and have potential to be the 137 

actual causal variants at these genomic loci. In order to prioritize the identified variants, we 138 
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used a popular annotation toolbox (SNPEff) to predict the function of each variant. In 139 

addition, we used additional information such as RegulomeDB and SNPedia to prioritize the 140 

variant(s) of higher impact from those with low impact. 141 

Many of the variants we identified are “novel” in that these have not been reported in 142 

earlier pharmacogenomics studies. For example, we identified a splice donor variant 143 

(rs28364311) located on a VIP gene ADH1A. This variant is in LD with a pharmacogenomics 144 

associated variant, rs6811453, which is associated with increased resistance to cytarabine, 145 

fludarabine, gemtuzumab ozogamicin and idarubicin in patients with acute myeloid 146 

leukemia.17 The associated pharmacogenomics variant is non-coding and have no known 147 

biological function as it is located downstream (3’) of the gene. Considering the potential 148 

impact of rs28364311 on splicing and its strong LD with the associated pharmacogenomics 149 

variant, it is plausible that the splice variant identified is the functional variant that accounts 150 

for the original association signals at this locus. 151 

 Moreover, we identified that a stop gain variant rs4330 from the VIP gene ACE, 152 

encoding the angiotensin-converting enzyme, is in LD with 6 known pharmacogenomics 153 

variants (rs4341, rs4344, rs4331, rs4359, rs4363, and rs4343). Whereas the latter are intronic 154 

or code for synonymous changes, which are less likely to have detrimental effects on the gene 155 

product, the identified rs4330 codes for a truncated protein that is likely to have detrimental 156 

effects.  157 

Another example is a modifier variant (rs2854509), which we report to be in LD with 158 

a pharmacogenomics variant (rs3213239) that is associated with decreased overall survival 159 

and progression-free survival when treated with Platinum compounds in patients with non-160 

small-cell lung carcinoma. Our identified variant rs2854509 is located at downstream, 161 
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whereas pharmacogenomics variant rs3213239 is located upstream of gene encoding X-Ray 162 

Repair Cross Complementing 1 protein (XRCC1). Our analysis revealed that variant 163 

rs2854509 is a cis-eQTL variant acting on CPIC gene XRCC1, which is associated with 164 

variable efficacy in in platinum-based chemotherapy agents. Additional findings from 165 

RegulomeDB showed a direct evidence of binding-site alteration through ChIP-seq and 166 

DNase with a matched position weight matrix to the ChIP-seq factor and a DNase footprint. 167 

These findings suggest the possibility that rs2854509 has regulatory effects on the gene 168 

XRCC1, which could modulate response to platinum based chemotherapy treatments. 169 

Our proof of principle study demonstrates that many of the well-known 170 

pharmacogenomics loci from PharmGKB are genetic markers that may tag causal variants. 171 

Often the latter remain elusive and are likely to be in linkage disequilibrium (LD) with the 172 

associated markers. Using NGS data, we identified a number of sequence variants in LD with 173 

these pharmacogenomics loci with supporting functional evidence from current annotation 174 

softwares. These findings, pending experimental evidence, will ultimately facilitate the 175 

translation of improved clinical assays to predict response for a particular drug or dosage 176 

prior to administration. The implementation of these clinical tests promises to improve 177 

efficacy of drug therapy while reducing the incidence of adverse events.18 178 

 One limitation of the approach taken is the exclusion of rare variants (minor allele 179 

frequency < 0.01). While rare variants are more likely to be functional and clinically relevant, 180 

our decision to exclude them from this study was based on the limited sample size (approx. 181 

200-400 in each of the four main populations: American, European, East Asian, African) of 182 

1KGP Phase 1. Specifically, we would not be able to determine LD among rare variants 183 

(MAF < 0.01) in such small populations. Another limitation is that this study was based on 184 
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bioinformatics methods and we did not experimentally validate the potentially functional 185 

variants identified, nor confirm their correlation with drug response outcomes. Instead our 186 

study was proof of concept that associated variants in well-established pharmacogenomics 187 

genes could represent markers of drug response rather than the casual variants. Further 188 

studies are needed to identify and ultimately validate the often elusive functional variants in 189 

these loci. These additional studies include genotyping of these potentially functional variants 190 

(identified in LD with the associated variants) and testing them directly for correlation with 191 

drug response outcomes in clinical trials. Other experiments are needed to confirm the 192 

biological impact of these variants on the resultant RNA transcripts or proteins, which 193 

depends on the predicted impact of the variants identified. For example, variants of high 194 

impact (Table 1) include splicing effects, premature stop codons, and structural interactions, 195 

which could be validated through direct sequencing of transcripts and mass spectrometry to 196 

detect truncated and mis-folded proteins.  197 

Our study identified novel genetic variations located in well-established 198 

pharmacogenomics genes, which could account for the association signals at these loci and 199 

have strong impact on the resulting gene products. We applied an innovative approach that 200 

combined bioinformatics resources such as PharmGKB, sequencing data from the 1000 GP, 201 

population annotation software such as SNPEff as well as databases such as RegulomeDB to 202 

identify novel variants and predict their functional effects within pharmacogenomics loci. 203 

Moreover, we determined that a number of these potentially functional variants are in LD 204 

with known pharmacogenomics variants and could account at least in part for the original 205 

association signals. Identification of these elusive causal variants could facilitate more 206 

accurate genetic tests to predict treatment response prior to drug administration. The 207 
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improved accuracy results from direct testing instead of relying on LD, which varies among 208 

populations (as noted by our study of LD across 4 populations in the 1000 GP). Thus, 209 

identification of causal variants will improve the translation of pharmacogenomics findings 210 

into clinical practice and ultimately replace the current trial and error approach for drug 211 

therapy, moving us closer towards precision medicine. 212 

  213 
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Methods 214 

Pharmacogenomic genes 215 

We selected 160 unique pharmacogenomics associated loci, containing 127 CPIC genes (June 216 

5th, 2017 release) and 64 VIP genes (May 1st, 2017 release) from the PharmGKB database. 217 

Then, we identified the genomic coordinates of each gene from the GRCh37/hg19 assembly 218 

of the human reference genome using the University of Santa Cruz (UCSC) Genome 219 

Browser.19 Next, genomic coordinates were padded with 5000 bp both 5’ and 3’ of each gene 220 

to include potential regulatory regions. All variants that appear in at least 1% of the 1000 221 

Genomes Project Phase I population (Feb. 2009 release) were extracted.  222 

Functional annotations 223 

After reviewing many annotation tools (including annoVar, VEP, Polyphen/SIFT, CADD), we 224 

decided that SnpEff best meets our needs as it allows a great degree of compatibility with 225 

various input formats, offers high flexibility in search settings, can annotate a full exome set 226 

in seconds, based on up-to-date transcript and protein databases, and has the ability to be 227 

integrated with other tools. SnPEff (version 4.2, build 2015-12-05) was used with the 228 

GRCh37.75 assembly to predict the effects of identified variants. For variants with multiple 229 

annotations (e.g. variant affects multiple genes or have varying effects depending on the 230 

transcript), only the most severe consequence was selected and used to represent each variant 231 

in tables to ease the comparison of impacts among variants. To standardize terminology used 232 

for assessing sequence changes, SNPEff uses sequence ontology 233 

(http://www.sequenceontology.org/) definitions to describe functional annotations. 234 

Linkage disequilibrium analysis 235 
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Linkage disequilibrium (LD) between the well-established pharmacogenomics variants 236 

(1,151 variants annotated by PharmGKB retrieved on June 16th, 2017, that are found within 237 

160 PGx loci and 1000 Genomes project phase 1 dataset) and identified variants from the 238 

1000 Genomes Project phase 1 dataset using Plink (version 1.09).20 Distance window for the 239 

LD analysis were set to 1Mb and an r2 threshold of > 0.8. 240 

SNPs associated with regulation and phenotypes 241 

For each variant identified to be in LD with an established pharmacogenomic variant, we 242 

used RegulomeDB21 to evaluate and score those that have the potential to cause regulatory 243 

changes, such as eQTL, regions of DNAase hypersensitivity, binding sites of transcription 244 

factors and proteins. RegulomeDB uses GEO22, the ENCODE23 project, and various 245 

published literatures to assess these information. In addition to that, we used SNPedia24, a 246 

database of over 90,000 SNPs and associated peer-reviewed scientific publications, to 247 

identify variants that are previously associated with phenotypes. (Figure 2) 248 

 249 
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Figure Legends 

Figure 1. Genomic regions of all variants identified from the 1000 Genomes Project 
database within 160 known pharmacogenomics genes. Locations of all the single 
nucleotide variants identified within the 160 Pharmacogenomics loci using sequence data 
from the 1000 Genomes Project.  

Figure 2. Overview of the experimental design. Flow of work outlined in methods section 
of the manuscript, which highlights the selection of 160 genes from the Pharmacogenomics 
Knowledge Database (PharmGKB), identification of variants from the 1000 Genome Project 
Data, and subsequent steps for annotation and test LD among variants. 

Supplemental Figure 1. Comparison of annotation findings between variants from 160 
PGx genes and whole genome. a) 94% of variants identified in 160 PGx genes were SNPs, 4% 
deletions, 2% insertions. These numbers are similar to the whole exome data from the 1000 
GP. b) Annotation of coding regions within 160 PGx genes identified 49% missense, 50% 
silent, and 1% nonsense variations. Annotation results from the entire exome had a slightly 
higher rate of missense mutations and lower rate of silent mutations. However, the ratio of 
missense to silent mutations in the human exome is expected to be approx. 1.0. Thus, we 
concluded that our findings fall within the expected range. c) In both whole genome and the 
160 PGx genes, the majority of variants fall within intronic regions. Whole genome 
annotations resulted in higher number of intergenic variants (~12%) compared 160 PGx 
genes (~1.5%). This is due to the fact that we had included limited (5000 bp) flanking regions 
in our targeted PGx genes in contrast to whole genome sequences. Other than intergenic 
regions, variants located 5’, 3’, exons, and splice sites occurred with similar frequencies in 
our candidate genes compared to the whole genome. 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368225doi: bioRxiv preprint 

https://doi.org/10.1101/368225


DOWNSTREAM 
11.08% 

EXON 
1.83% 

INTERGENIC 
1.60% 

INTRON 
74.55% 

MOTIF 
0.03% 

SPLICESITE 
0.11% 

TRANSCRIPT 
0.46% 

UPSTREAM 
9.33% 

UTR3PRIME 
0.80% 

UTR5PRIME 
0.21% 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368225doi: bioRxiv preprint 

https://doi.org/10.1101/368225


8 high-impact variants 
(ex. stop gain/lost) 

19 moderate-impact 
variants 

(ex. Missense variant) 

Pharmcogenomics 
Knowledge Databses 

Selected 160 CPIC 
& VIP Genes 

Variant annotations: predicted 
functional/regulatory effects & 
associations with phenotypes 

84 potential regulatory 
variants 

(ex. eQTL ) 

Identified 69,319 
sequence variations 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368225doi: bioRxiv preprint 

https://doi.org/10.1101/368225


0%

10%

20%

30%

40%

50%

60%

70%

MISSENSE NONSENSE SILENT

0%

10%

20%

30%

40%

50%

60%

70%

80%

Supplemental figure 1 – Comparison of annotation findings between variants from 160 pharmacogenomic genes and 
whole genome 

a)  b)  

c)  

0%

20%

40%

60%

80%

100%

120%

SNP INS DEL

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 13, 2018. ; https://doi.org/10.1101/368225doi: bioRxiv preprint 

https://doi.org/10.1101/368225


Table 1 - Variants with high impact predictions, which are in LD with known pharmacogenomics variants. 

Chr New 
Variant 

Gene Functional annotation PharmGKB 
Variant 

Gene Functional annotation EUR 
r2 

EAS 
r2 

AMR 
r2 

AFR 
r2 

3 rs1314
6 

UMPS structural interaction 
variant 

rs1801019 UMPS missense variant 0.98 1.00 1.00 0.98 

4 rs2836
4311 

ADH1A splice donor variant & 
intron variant 

rs6811453 ADH1A downstream gene variant 0.99 1.00 1.00 1.00 

6 rs6778
30 

OPRM1 stop gained rs558025 OPRM1 downstream gene variant 1.00 1.00 0.98 <0.8 

7 rs6977
165 

CYP3A5 stop lost rs41303343 CYP3A5 frameshift variant <0.8 <0.8 <0.8 0.80 

17 rs4330 ACE stop gained rs4341 ACE 3 prime UTR variant 0.99 0.95 1.00 0.95 

rs4343 ACE synonymous variant 0.95 0.95 0.87 <0.8 

rs4344 ACE upstream gene variant 0.99 0.96 1.00 0.90 

rs4331 ACE synonymous variant 0.86 <0.8 0.88 0.84 

rs4359 ACE intron variant 0.96 <0.8 0.91 <0.8 

rs4363 ACE splice region variant & 
intron variant 

0.93 <0.8 0.86 <0.8 

19 rs1132
2783 

IFNL4 frameshift variant rs12980275 IFNL3P1 upstream gene variant <0.8 0.87 0.87 <0.8 

rs8105790 IFNL3P1 upstream gene variant <0.8 0.94 <0.8 <0.8 

rs4803217 IFNL3 downstream gene variant 0.83 0.97 0.87 <0.8 

rs11881222 IFNL4 downstream gene variant 0.87 0.94 0.84 <0.8 

rs28416813 IFNL3 5 prime UTR variant 0.88 0.86 0.94 <0.8 

rs12979860 IFNL3 upstream gene variant 0.94 0.87 0.93 <0.8 

rs8109886 IFNL4 upstream gene variant <0.8 0.89 <0.8 <0.8 

rs8113007 IFNL4 upstream gene variant 0.88 0.97 0.84 <0.8 

rs8099917 IFNL4 upstream gene variant <0.8 0.94 <0.8 <0.8 

rs7248668 IFNL4 upstream gene variant <0.8 0.94 <0.8 <0.8 

21 rs8817
12 

CBR3 structural interaction 
variant 

rs8133052 CBR3 missense variant 0.94 1.00 0.83 <0.8 

22 rs3761 ADORA2A- splice donor variant & rs5996696 ADORA2A upstream gene variant <0.8 0.90 <0.8 <0.8 
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423 AS1 intron variant 

 

Abbreviations: Chr = Chromosome, EUR r2 = linkage disequilibrium in the European Population of 1000 Genomes project measured in r-squared; EAS r2 = 
linkage disequilibrium in the Eastern Asian Population of 1000 Genomes project measured in r-squared; AMR r2= linkage disequilibrium in the American 
Population of 1000 Genomes project measured in r-squared; AFR r2 = linkage disequilibrium in the African Population of 1000 Genomes project measured in r-
squared. Annotation definitions: structural interaction variant = These are "within protein" interaction loci, which are likely to be supporting the protein 
structure. They are calculated from single protein PDB entries, by selecting amino acids that are: a) atom within 3 Angstrom of each other; and b) are far away in 
the AA sequence (over 20 AA distance). The assumption is that, since they are very close in distance, they must be "interacting" and thus important for protein 
structure. For more information, see http://snpeff.sourceforge.net/SnpEff_manual.html. 
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Table 2 - Variants predicted with moderate impact identified in this study, which are in LD with known pharmacogenomics variants 

Ch
r 

New 
Variant Gene Functional annotation PharmGKBVaria

nt Gene Annotation 
EUR EAS AMR AFR 

r2 r2 r2 r2 

18 
rs2853533
★ 

C18orf5
6 

missense variant & TFBS 
variant rs2853741 RP11-

806L2.5 
upstream gene 
variant <0.8 0.85 <0.8 <0.8 

1 rs55867221 C1orf16
7 

missense variant & TFBS 
variant 

rs17367504 CLCN6 upstream gene 
variant <0.8 0.9 <0.8 <0.8 

rs3737967 C1orf167 missense variant <0.8 0.98 0.87 <0.8 

rs2274976 MTHFR missense variant <0.8 0.96 0.87 <0.8 

1 rs1537514 C1orf16
7 missense variant 

rs3737967 C1orf167 missense variant <0.8 0.98 0.87 <0.8 

rs2274976 MTHFR missense variant <0.8 0.96 0.87 <0.8 

rs17367504 CLCN6 upstream gene 
variant <0.8 0.9 <0.8 <0.8 

1 rs1800595 F5 missense variant rs6018 F5 missense variant 1 1 1 1

1 rs6027 F5 missense variant rs6018 F5 missense variant 0.94 0.89 0.97 <0.8 

1 rs6033 F5 missense variant rs6018 F5 missense variant <0.8 0.83 <0.8 <0.8 

3 rs3732765 MED12L missense variant 

rs9859538 MED12L intron variant <0.8 0.97 <0.8 <0.8 

rs10935842 P2RY12 upstream gene 
variant 1 0.99 0.97 <0.8 

rs6798637 P2RY12 upstream gene 
variant 0.89 <0.8 <0.8 <0.8 

4 rs1693482 ADH1C missense variant 
rs1662060 ADH1C downstream 

gene variant 1 1 0.96 1

rs698 ADH1C missense variant 1 1 0.96 1

4 rs4963 ADD1 missense variant rs4961 ADD1 missense variant 0.88 0.99 0.96 <0.8 

7 rs2307040 CALU missense variant 
rs1043550 CALU 3 prime UTR 

variant 0.82 <0.8 0.96 0.89

rs11653 CALU 3 prime UTR 
variant 0.82 <0.8 0.96 0.89
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9 rs56350726 SLC28A
3 missense variant rs10868138 SLC28A3 missense variant 0.81 <0.8 0.83 <0.8 

11 rs11604671 ANKK1 missense variant 

rs2734849 ANKK1 missense variant 0.97 1 0.98 <0.8 

rs6277 DRD2 synonymous 
variant <0.8 1 0.88 <0.8 

rs2587548 DRD2 upstream gene 
variant <0.8 1 <0.8 <0.8 

rs2734833 DRD2 upstream gene 
variant <0.8 1 <0.8 <0.8 

rs1076563 DRD2 upstream gene 
variant <0.8 0.97 <0.8 <0.8 

16 rs11562905
0 CES1 missense variant rs2307240 CES1 missense variant <0.8 <0.8 0.9 <0.8 

16 rs2307227 CES1 missense variant rs2307240 CES1 missense variant <0.8 <0.8 0.9 <0.8 

16 rs79711700 CES1 missense variant rs2307240 CES1 missense variant 0.88 <0.8 1 <0.8 

19 rs2336219 CD3EAP missense variant 
rs967591 CD3EAP 5 prime UTR 

variant 0.83 1 0.96 <0.8 

rs735482 CD3EAP missense variant 1 1 0.96 0.93

19 rs12971396 IFNL4 missense variant 

rs12980275 IFNL3P1 upstream gene 
variant <0.8 0.84 <0.8 <0.8 

rs8105790 IFNL3P1 upstream gene 
variant 0.92 0.97 0.97 <0.8 

rs4803217 IFNL3 downstream 
gene variant <0.8 0.94 <0.8 <0.8 

rs11881222 IFNL4 downstream 
gene variant <0.8 0.91 <0.8 <0.8 

rs28416813 IFNL3 5 prime UTR 
variant <0.8 0.83 <0.8 <0.8 

rs12979860 IFNL3 upstream gene 
variant <0.8 0.84 <0.8 <0.8 

rs8109886 IFNL4 upstream gene 
variant <0.8 0.86 <0.8 <0.8 
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rs8113007 IFNL4 upstream gene 
variant <0.8 0.94 <0.8 <0.8 

rs8099917 IFNL4 upstream gene 
variant 0.93 0.97 0.86 <0.8 

rs7248668 IFNL4 upstream gene 
variant 0.93 0.97 0.86 <0.8 

19 rs4803221 IFNL4 missense variant 

rs12980275 IFNL3P1 upstream gene 
variant <0.8 0.84 <0.8 <0.8 

rs8105790 IFNL3P1 upstream gene 
variant 0.93 0.97 0.95 0.81

rs4803217 IFNL3 downstream 
gene variant <0.8 0.94 <0.8 <0.8 

rs11881222 IFNL4 downstream 
gene variant <0.8 0.91 <0.8 <0.8 

rs28416813 IFNL3 5 prime UTR 
variant <0.8 0.83 <0.8 <0.8 

rs12979860 IFNL3 upstream gene 
variant <0.8 0.84 <0.8 <0.8 

rs8109886 IFNL4 upstream gene 
variant <0.8 0.86 <0.8 <0.8 

rs8113007 IFNL4 upstream gene 
variant <0.8 0.94 <0.8 <0.8 

rs8099917 IFNL4 upstream gene 
variant 0.95 0.97 0.89 <0.8 

rs7248668 IFNL4 upstream gene 
variant 0.95 0.97 0.89 <0.8 

19 rs762562 CD3EAP missense variant 
rs967591 CD3EAP 5 prime UTR 

variant 0.83 1 0.92 <0.8 

rs735482 CD3EAP missense variant 1 1 1 1
 

rs2853533★ - phenotype association (SNPedia): Neural Tube Defects & Spina Bifida Cystica (The G variant of rs2853533 was associated with Spina Bifida in a 
transmission disequilibrium test. Study size: 610 families (329 trios, 281 duos) Study population/ethnicity: Patients affected with Spina Bifida and their parents; 
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Houston, TX; Los Angeles, CA; Toronto, ON, Canada Significance metric(s): p=0.0213). Abbreviations: Chr = Chromosome, EUR r2 = linkage disequilibrium 
in the European Population of 1000 Genomes project measured in r-squared; EAS r2 = linkage disequilibrium in the Eastern Asian Population of 1000 Genomes 
project measured in r-squared; AMR r2= linkage disequilibrium in the American Population of 1000 Genomes project measured in r-squared; AFR r2 = linkage 
disequilibrium in the African Population of 1000 Genomes project measured in r-squared.  certified by peer review
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