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Abstract 64 

Background: Locked plating of displaced proximal humerus fractures is common, but rates of 65 

subacromial impingement remain high.  Computational predictions of implant impingement have 66 

yet to be sufficiently explored in proximal humerus fixation.  The goal of this study was to utilize 67 

a multidisciplinary approach to elucidate the relationships between common surgical parameters, 68 

anatomical variability, and the likelihood of plate impingement.   69 

Methods: The experiment was completed in three phases.  First, a controlled in vitro experiment 70 

was conducted to simulate impingement.  Second, a dynamic in silico musculoskeletal model 71 

was developed to simulate changes to implant geometry, surgical techniques, and acromial 72 

anatomy, where a collision detection algorithm was used to simulate contact between the plate 73 

and acromion.  Finally, in vivo shoulder kinematics were recorded for nine activities of daily 74 

living and motions that created a high likelihood of impingement were identified. 75 

Results: Impingement was measured at 73.3±14.5° abduction in the cadaveric model and 76 

92.0°±34.0° with computational simulations.  Impingement events were limited to ranges of 77 

motion between 10-40° of cross-body adduction. Activities of daily living, such as combing 78 

one’s hair, lifting and object overhead, and reaching behind one’s head are likely to cause 79 

impingement.   80 

Discussion and Conclusion:  This multidisciplinary experiment quantified key preoperative 81 

factors to assist with implantation decisions. Results demonstrated that proximal implant 82 

placement, superior translation of the humeral center of rotation, increases in plate thickness, and 83 

increases in acromial tilt all increase the likelihood of impingement.  Careful preoperative 84 

planning that includes these factors could help guide operative decision making and improve 85 

clinical outcomes.   86 
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Level of Evidence: V 87 

Keywords: Proximal humerus; Locked plate; Impingement; Biomechanics; Cadaveric; 88 
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Introduction 90 

Proximal humeral fractures have become the third most common fracture type in patients 91 

over 65 years of age 4,20,27,30 and are expected to increase three-fold over the next 30 years.1 The 92 

development of locking plate technology for proximal humeral fracture fixation has become 93 

increasingly used and widely accepted, particularly for patients with osteoporotic bone.2  94 

Unfortunately, reported complication rates are high, ranging from 20% to 49% in some 95 

studies.8,11,26 96 

Impingement between the acromion and the proximal portion of a locking plate is 97 

believed to be a potential source of pain that may also limit the patient’s range of motion.  98 

Preventing post-operative subacromial impingement is especially difficult due to wide variability 99 

in shoulder joint morphology within humans.21  One study has reported that 42.4% of patients 100 

opted to remove hardware due to impingement related issues.19  Previous studies have suggested 101 

that proximal positioning of the plate may lead to impingement5,28, and there are many 102 

reasonable causes for such a scenario.  Proximal plate positioning may be due to slight errors in 103 

surgical technique, purposeful positioning in order to optimize fixation, or as a result of small 104 

humerus anatomy paired with a single-sized implant.  To date, no studies have attempted to 105 

biomechanically quantify “how high is too high?” or provided quantifiable guidelines with 106 

respect to implant design, shoulder anatomy, and desired range of motion when considering 107 

subacromial impingement. 108 

The objective of this study was to systematically quantify locking plate-subacromial 109 

impingement with an array of variables associated with proximal humerus fixation and 110 

anatomical variation.  The study used a combination of in vitro, in silico, and in vivo models to 111 

characterize post-operative function of the joint.  Accurate estimations of surgical impingement, 112 
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caused by changes in surgical and anatomical parameters, will help provide clarity on this 113 

complicated issue.   114 
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Materials and Methods  115 

This experiment was performed in three phases (Figure 1).  First, a controlled dynamic 116 

cadaveric model was created to record impingement events during simple abduction motions. 117 

Second, a validated musculoskeletal model of the upper extremity was used to identify the onset 118 

of subacromial impingement.  In this computational setting, a series of controlled abduction 119 

motions were simulated while variables of plate placement, acromial geometry, and humerus 120 

center of rotation (COR) were systematically changed.  Third, kinematics associated with nine 121 

activities of daily living (ADLs) in healthy patients were recorded with 3-D motion capture.  122 

Shoulder joint angles were compared to simulation outputs and high risk ADLs were identified.   123 

Phase 1 – In Vitro Experiment 124 

Four cadaveric upper extremities (2M, 2F, mean age 66.75 years) were used in this study.  125 

Shoulder joints were isolated and the humerus was amputated at the midshaft.  All unnecessary 126 

soft tissue was removed from each specimen and the distal humerus was potted in polycarbonate 127 

tubing with polymethyl methacrylate (Lang Dental, Wheeling, IL).  Locking plates (Philos, 128 

DePuy Synthes, West Chester, PA) were securely fixed on the humeri per manufacturer 129 

guidelines with two bicortical screws (3.5 mm diameter, 35 mm length).10  A fracture was not 130 

simulated and no screws were inserted into the humeral head because this study focused solely 131 

on impingement and not fixation strength.  Specimens were imaged with fluoroscopy 132 

(SIREMOBIL Compact (L) C-Arm, Siemens, Washington, DC) in anterior/posterior and 133 

medial/lateral outlet views.  Post-hoc measurements were made (ImageJ, National Institutes of 134 

Health, Bethesda, MD and Matlab, Mathworks, Natick, MA) for humeral head radii, acromial tilt 135 

(the angle between the antero-inferior edge of the acromion, postero-inferior edge of the 136 

acromion, and the inferior tip of the coracoid process), and acromial slope (the supplement of the 137 
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angle between the postero-inferior edge, the inferior aspect, and antero-inferior edge the 138 

acromion) (Supplemental Figure 1).21 139 

Several preparatory steps were required to track joint kinematics and detect subacromial 140 

impingement in real time.  For the purpose of motion capture, retroreflective marker clusters 141 

were rigidly attached to the plate and scapula.  Thin-film pressure sensors (iScan 6900, Tekscan, 142 

Inc., South Boston, MA) were covered with a patch of cellophane tape that extended beyond the 143 

boundaries of the sensor.  Beaded Kirschner wires were inserted through the tape and into the 144 

proximal portion of the humerus, such that the sensor consistently covered the proximal aspect of 145 

the plate during motions (Supplemental Figure 2).   146 

Simulations of abduction were created with a custom-built jig (Figure 2).  Scapulae were 147 

held stable with a scapula clamp (Pacific Research Laboratories, Vashone, WA) and a vise.  The 148 

potted distal humeri were fixed to a sled that allowed free translation on a low-friction linear 149 

bearing.  This assembly was attached to a second sled via a universal joint. The second sled was 150 

allowed to translate on a linear bearing that was angled 60° relative to horizontal.  A rope and 151 

pulley connected the sled to the rotational actuator of a universal test frame (ElectroForce 5500, 152 

TA Instruments, New Castle, DE).  Initial shoulder angles were controlled by rotating the 153 

scapula in the vise and re-clamping, and dynamic simulations of 20° of abduction were 154 

performed in 5 seconds.  Adjustments were made to the initial scapular position within the vise 155 

until an impingement event was created.   156 

Scapular and humeral motions were tracked in real time using a 6-camera motion capture 157 

system (Optitrack, NaturalPoint, Inc., Corvallis, OR) calibrated to 0.2 mm accuracy.  Five 158 

anatomic points of the scapula were identified with an instrumented wand during static trials so 159 

that the post-hoc computational model could be properly scaled (Supplemental Figure 3).  160 
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Motions of the marker clusters were recorded as the shoulder was abducted until impingement 161 

occurred.   162 

To determine scapulohumeral joint angles, simplified representations of each cadaveric 163 

humerus and scapula were created in a simple 2 body, 6 degree-of-freedom, OpenSim model.9  164 

The on-board geometry files of the humerus and scapula were scaled to represent the cadaveric 165 

specimens (See Appendix A for details).  A 3-D rendering of the locking plate was created by 166 

performing an optical 3-D scan (Afinia Einscan, Afinia, Chanhassen, MN). The virtual plate was 167 

placed on the humerus in the model per manufacturer guidelines and held in place with a weld 168 

joint.  Anatomic coordinate frames were assigned to the humerus and scapula, and marker 169 

trajectories were tracked with the inverse kinematics algorithm.  The relative 3-D motions 170 

between the virtual humerus and scapula were characterized as a function of time.  The timed 171 

data from the pressure sensor measurements were synchronized with the marker trajectory data, 172 

and initiation of impingement was identified by distinct increases in compressive forces.  173 

Phase 2 – In Silico Experiment 174 

A validated computational model of the upper extremity of a 50th percentile male was 175 

adapted for this phase of the experiment.25  Use of this model permitted the simulation of 176 

motions that are not easily recreated in a cadaveric setting and provided the ability to make 177 

systematic and controlled changes to other variables of interest.  Shoulder kinematics were 178 

defined using a validated spherical coordinate system.16  This mechanical convention ensures the 179 

smooth execution of complex shoulder motions, but it utilizes nomenclature that is substantially 180 

different than clinical standards.  For the purpose of clarity, results will be described in the 181 

clinically relevant terms of cross-body adduction (humeral motion in the transverse plane) 182 

coupled with abduction (humeral elevation in the coronal plane).   183 
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Surgical and anatomical variables were introduced into the model to identify possible 184 

impingement events (Figure 3).  Position of the plate on the humerus was varied from a neutral 185 

location using two parameters: 1) proximal-distal displacements (-10 to +10mm in 5mm 186 

increments) and 2) plate thickness (0 mm, 2.5mm, and 5.0mm).  Acromial tilt and slope were 187 

changed between 20-35° in 5° increments.  Finally, the humeral head COR ranged from neutral 188 

to +5.0mm proximal in 2.5mm increments.  This step was performed because the model utilizes 189 

a joint that does not translate during motions.  Moving the COR proximally, relative to the 190 

scapula, represents translations that may occur during a motion.7  191 

Twenty-three unique simulations were executed to cover the entire range of motion of the 192 

shoulder joint (Figure 3).  For each simulation, the initial cross-body adduction angle was 193 

systematically adjusted from -90° to 130° in 10° increments.  With this pose established, the arm 194 

was lowered to 0° abduction and raised to180°.  The on-board OpenSim elastic foundation 195 

contact algorithm was used to detect impingement between the plate and the acromion.  Shoulder 196 

joint angles were recorded at the moment these collisions occurred.  Results were pooled, and the 197 

parameters that were present during impingement were identified.   198 

Phase 3 – In Vivo Experiment 199 

Eight healthy young subjects with no history of shoulder injuries or pain (4 M, 4 F, mean age 200 

21.5 years) performed nine commonly performed ADLs23 after providing written informed 201 

consent in this IRB approved study. Upper extremity kinematics were measured using a 12-202 

camera motion capture system (Raptor Series, Motion Analysis Corp, Santa Rosa, CA). 203 

Reflective markers (9.5mm, B&L Engineering, Santa Ana, CA) were adhered bilaterally using 204 

skin-safe tape covering the 7th cervical vertebra, sternum, acromion, elbow epicondyles, and 205 

ulnar and radial styloid processes.  Subjects stood upright with their arms straight and shoulders 206 
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at 90° abduction and external rotation to scale the subject-specific musculoskeletal models.  207 

Marker labeling was visually confirmed, gaps were filled using cubic-spline interpolation, and 208 

marker trajectories were filtered.  Shoulder kinematics were calculated using the same 209 

musculoskeletal model used in Phase 2.  Analysis of the root mean squared, total squared, and 210 

maximum error indicated that this model created was a good representation of the experimental 211 

kinematics.  Using a boot-strapping technique, 95% confidence intervals for elevation angle, 212 

abduction, and internal rotation were calculated for each ADL. Results were compared to 213 

computational predictions of impingement based on joint angle.   214 

  215 
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Results  216 

Phase 1 – Cadaveric Experiment 217 

The cadaveric experiment measures were made in terms of scapulohumeral angulation. 218 

Simulated impingement occurred at a mean cross-body adduction angle of 22.1 ± 10.1°, 219 

abduction angle of 73.3 ± 14.5°, and external rotation of 26.7 ± 13.4°.  Mean humeral head radii 220 

were 23.1±2.4 mm.  Acromial geometry identified using fluoroscopic imaging showed mean 221 

acromial tilt of 26.2°±3.3° and acromial slope of 27.6°±5.7°. 222 

Phase 2 – Computational Model 223 

Computational output measures were made in terms of thoracohumeral angles.  224 

Impingement only occurred when cross-body adduction angles were set between 10° to 50°, with 225 

a mean of 31.4°±9.6°. (Figure 4A).  More than one-in-ten simulations of this range of motion, 226 

(368 out of 3,600 simulations) exhibited impingement, which occurred between 56° and 178° of 227 

abduction, with an average of 92.0°±34.0° (Figure 4B).  Although it is possible to have 228 

impingement when the plate is placed distally (18.4%), 73% of impingement events occurred 229 

when the plate was moved proximally beyond the neutral location (Table 1).  Similarly, increases 230 

in plate thickness led to increases in impingement events.  Decreases in acromial tilt led to higher 231 

rates of impingement, with 84% of impingement events occurring when tilt was set to either 20° 232 

or 25°.  Changes in acromial slope had no impact on the likelihood of impingement.  Finally, 233 

proximal shifts of the humeral head COR also led to increases in impingement.  For the sake of 234 

simplicity, these results have been presented on a variable-by-variable basis, but, complex 235 

relationships exist within this data set.  For more information regarding these relationships, the 236 

reader is referred to the Appendix B in the supplementary material. 237 
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Phase 3 – In Vivo Motion Comparison 238 

Of the 9 activities of daily living that were recorded, only 3 motions produced shoulder 239 

kinematics in which impingement occurred within the model.  Comparisons between the in silico 240 

and in vivo data revealed that reaching behind the head, lifting a light object overhead, and 241 

combing hair are activities with a high likelihood of impingement (Figure 5).  Other motions 242 

created joint angle combinations that did not create impingement in the simulations 243 

(Supplemental Figure 4). 244 

  245 
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Discussion  246 

This study improves the biomechanical understanding of locking plate-subacromial 247 

impingement and the findings compare favorably to previous in vivo and in vitro studies.  A 248 

previous cadaveric experiment measured an average glenohumeral impingement angle of 249 

74°±15°18, which is very similar to the 73.3 ± 14.5° found in Phase 1 of this experiment.  Results 250 

from the computational model matched well with static MRI studies that investigated changes in 251 

subacromial space.12–14  Dynamic evaluations of subacromial impingement using open MRI 252 

techniques found impingement at 93.5° of thoracohumeral abduction in asymptomatic patients.29  253 

This in vivo outcome matches well with the 92.0°±34.0° simulated in the current study.  The 254 

computational analysis in Phase 2 utilized a generalized 50th percentile male model.  The use of 255 

this size provided a reasonable approximation of human anatomy, based on the small number of 256 

cadaveric specimens used in Phase 1.  Specifically, the radius of the humeral head (23.5 mm) 257 

and the ranges of acromial slopes and tilts (20°-35°) fell within the range of the measurements 258 

taken in the cadaveric specimens (23.1±2.4 mm, 27.6±5.7°, 26.2±3.3° respectively).   259 

Differences between the cadaveric model and the computational model can be attributed to 260 

the use of scapulohumeral angles in the cadaveric model (due to a lack of a thorax), while 261 

thoracohumeral angles are used in the in silico and in vivo models.  It is tempting to believe that 262 

the higher abduction angles observed in the computational model indicate a later onset of 263 

impingement.  Interestingly, the opposite is true.  When the scapular rhythm is accounted for, the 264 

mean scapulohumeral joint angles (73.3° abduction, 22.1° cross-body adduction) occur when the 265 

arm is positioned at approximately 118° of thoracohumeral abduction and 40° cross-body 266 

adduction (Figure 6).  This over approximation of thoracohumeral impingement joint kinematics 267 
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in the cadaveric model is likely due to a lax capsule, which may have caused the humeral head to 268 

move posteriorly relative to the glenoid. 269 

The cadaveric jig developed in this experiment is unique.  Existing abduction simulators 270 

often consist of a large, custom-made, semi-circular ring to guide abduction motions.3,17  This 271 

existing design provides the ability to simulate muscle-driven motions over large ranges of 272 

motion; however, it also makes the rig both expensive and cumbersome.  The rig developed in 273 

the current study provides a smooth and continuous shoulder motion.  The range of motion can 274 

be changed by reorienting the scapula at the beginning of a test.  The created motions are passive 275 

in nature, and the weight of the sled must be considered.  This rig was developed with linear, off-276 

the-shelf, components for less than $1000 and can fold down to size for easy storage.  277 

The musculoskeletal model developed in this study is also noteworthy.  A variety of 278 

previous shoulder simulators have been developed to estimate muscle loads during motions and 279 

to investigate implant stresses and strains.6,15,24,31  To our knowledge, this model represents the 280 

first attempt to create a model that is tailored specifically to change surgical and anatomic 281 

variables related to locking plate impingement.  Changes to 4 of the 5 anatomic and surgical 282 

variables resulted in differences in subacromial impingement timing.  Interestingly, changes to 283 

acromial slope did not have an effect on the model.  As mentioned previously, the acromial slope 284 

is determined by calculating the supplement of the angle between the postero-inferior edge, the 285 

inferior aspect, and antero-inferior edge the acromion.  In order to make an adjustable acromial 286 

slope within the model, a “hinge joint” was placed at the inferior aspect of the acromion.  Post-287 

hoc analysis of simulation outputs show that collisions between the plate and the acromion 288 

always occurred in the area posterior to the location of this “joint.”   289 
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This experiment has several limitations.  The cadaveric simulations represent only passive 290 

motions, and were not driven by coordinated muscle activations.  Changes to the model’s basic 291 

boney geometry may alter simulation results.  Since the subacromial space is relatively small, 292 

even a subtle change in any one of these variables could potentially result in changes to the onset 293 

of impingement.  This is important to keep in mind, given that subacromial space dimensions are 294 

highly variable due to factors including sex, muscle activity, acromion morphology, posture, and 295 

age.12,22  Aside from translating the humeral head COR, translations in the glenohumeral joint 296 

were constrained, which may not fully characterize the human condition.  Simulation output 297 

suggests that impingement does not appear to be sensitive to variation in acromial slope.  298 

However, a previous study compared patients with impingement syndrome to controls and found 299 

no significant difference in acromial slope between the two groups.21  Therefore, this finding 300 

may have clinical relevance, and this topic requires further investigation. Movement 301 

biomechanics may differ between patients following a surgical repair of a proximal humerus 302 

fracture and the healthy-young adults with no history of upper extremity injury that participated 303 

in this study. However, the framework of this study supports the concepts that patient anatomy, 304 

surgical placement, and hardware parameters all can affect subacromial impingement risks. 305 

  306 
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Conclusion 307 

Open reduction internal fixation of proximal humerus fractures have relatively high 308 

complication rates, some of which can be attributed to subacromial impingement.  Results from 309 

this experiment suggest that patient anatomy in conjunction with implant characteristics could 310 

help guide operative decision making.  This study successfully implemented a multidisciplinary 311 

workflow that utilized in vitro biomechanical experimentation, in silico musculoskeletal 312 

modeling, and in vivo 3-D motion capture to quantify subacromial impingement. Results from 313 

this experiment quantified key preoperative factors to assist with implantation decisions. It also 314 

confirms the importance of accounting for scapular rhythm and glenohumeral stability when 315 

simulating impingement. The data from the current experiment provides valuable information to 316 

clinicians and rehabilitative specialists to better predict patient outcomes and guide 317 

rehabilitation. Future studies within patient populations may help predict the likelihood of 318 

subacromial impingement and identify post-surgical activity guidelines that may further reduce 319 

complication rates and improve overall outcomes.   320 

  321 
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Figure Legends: 428 

Figure 1: A workflow diagram outlining the methods used to perform the study. Impingement 429 

events were recorded during simple abduction motions in Phase 1. Computational simulations of 430 

prescribed motions with systematically changing variables were made in Phase 2. Phase 3 431 

utilized motion capture techniques to compare shoulder joint angles during activities of daily 432 

living to those output in Phase 2. 433 

 434 

Figure 2: Computer-aided drawings of the custom jig built for the experiment in isometric (A) 435 

and side (B) views.  The scapulae were held in place with a scapula clamp attached to a vise 436 

(green).  Two sleds (red) were attached to one another with a universal joint (magenta), and the 437 

sleds were allowed to freely translate on linear tracks (teal).  Displacement of the rope (blue) 438 

created an abduction motion, controlled by a rotational actuator of a universal test frame (not 439 

shown). 440 

 441 

Figure 3: A diagram outlining the combinations of simulations that were performed with the in 442 

silico model. 443 

 444 

Figure 4: Histograms showing the distribution of the impingement simulations with respect to 445 

cross-body adduction angle (A) and abduction angle (B).   446 

 447 

Figure 5: Plots of cross-body adduction (left column) and abduction (right column) during 448 

activities of daily motion.  Mean values (blue dashed) and +/- one standard deviation (blue 449 
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cloud) are shown.  Plots are overlaid on backgrounds that are colored to represent the number of 450 

impingements reported in the histograms in Figure 4. 451 

 452 

Figure 6: Images from a musculoskeletal model that superimposes results from cadaveric (red) 453 

and computational (blue) models (A).  When scapular rhythm is accounted for, the arm must be 454 

in approximately 118 degrees of thoracohumeral abduction to achieve 73 degrees of 455 

glenohumeral abduction. 456 
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Table 1. Breakdown of computational model results showing number of impingement 
events per modified parameter. 

Implant Position Implant Thickness Acromial Tilt Acromial Slope Humerus COR 

-10 mm 48 0 mm 32 20° 192 -20° 92 0 mm 16 

-5 mm 20 + 2.5 mm 92 25° 116 -25° 92 + 2.5 mm 84 

0 mm 28 +5 mm 244 30° 48 -30° 92 +5 mm 268 

+ 5 mm 68     35° 12 -35° 92     

+ 10 mm 204                 
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