- 1 Fluoxetine effects on behavior and adult hippocampal neurogenesis in female C57BL/6J mice
- 2 across the estrous cycle
- 3
- 4 Christine N. Yohn, Sophie Shifman, Alexander Garino, Emma Diethorn, Leshya Bokka, Sandra
- 5 A. Ashamalla, Benjamin Adam Samuels
- 6
- 7
- 8 Department of Psychology
- 9 Rutgers University
- 10 152 Frelinghuysen Rd
- 11 Piscataway, NJ 08854
- 12 USA
- 13
- 14 Address correspondence to:
- 15 Benjamin Adam Samuels
- 16 <u>ben.samuels@rutgers.edu</u>
- 17 (848) 445-8933
- 18
- 19 Christine N. Yohn
- 20 cy253@scarletmail.rutgers.edu
- 21 (848)-445-8945
- 22
- 23

24 Abbreviations

- 25 DG = Dentate Gyrus
- 26 FLX = Fluoxetine
- 27 OVX = Ovariectomized
- 28 EPM = Elevated Plus Maze
- 29 NSF = Novelty Suppressed Feeding
- 30 FST = Forced Swim Test
- 31 Light Dark = LD
- 32 Open Field = OF
- 33 SSRI = Selective Serotonin Reuptake Inhibitor
- 34 DCX = Doublecortin
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46

47 Abstract

48	Some mood disorders, such as major depressive disorder, are more prevalent in women							
49	than in men. However, historically preclinical studies in rodents have a lower inclusion rate of							
50	females than males, possibly due to the fact that behavior can be affected by the estrous cycle.							
51	Several studies have demonstrated that chronic antidepressant treatment can decrease anxiety-							
52	like behaviors and increase adult hippocampal neurogenesis in male rodents. However, very few							
53	studies have conclusively looked at the effects of antidepressants on behavior and neurogenesis							
54	across the estrous cycle in naturally cycling female rodents. Here we analyze the effects of							
55	chronic treatment with the selective serotonin reuptake inhibitor (SSRI) fluoxetine (Prozac) on							
56	behavior and adult hippocampal neurogenesis in naturally cycling C57BL/6J females across all							
57	four phases of the estrous cycle. Interestingly, we find that the effects of fluoxetine on both							
58	behavior and adult hippocampal neurogenesis are driven by mice specifically in the estrus or							
59	diestrus phases of the estrous cycle. Taken together our data is the first to illustrate the impact of							
60) fluoxetine on brain and behavior across all four stages of the murine estrous cycle.							
61								
62	Highlights:							
63	• Chronic fluoxetine reduces anxiety-like behaviors in naturally cycling female mice							
64	• Chronic fluoxetine increases adult hippocampal neurogenesis in naturally cycling female							
65	mice							
66	• The effects of chronic fluoxetine on behavior and adult hippocampal neurogenesis are							
67	driven by the estrus and diestrus phases of the estrous cycle							
68								
69	Keywords: Estrous Cycle, Adult Neurogenesis, Anxiety, Depression, Antidepressants, Females							

70 **1. Introduction**

71 Although major depressive disorder is more prevalent in women than men (Kessler, 72 2003; Sloan & Kornstein, 2003), females are often excluded from rodent experimental studies 73 since fluctuations in ovarian steroid hormones (Arakawa et al., 2014; Lovick, 2012), such as 74 estrogen, estradiol, and progesterone, across the female's estrous cycle can confound 75 experimental results. In humans, women can experience depression and anxiety due to 76 premenstrual syndrome, where variations in mood states are correlated with different secretion 77 patterns of estrogen and progesterone across the menstrual cycle (Shors & Leuner, 2003). 78 Rodents display similar fluctuations in behavior, with diestrus female rodents having higher 79 responses to stress and increased anxiety-related behaviors as compared to proestrus females 80 (Lovick, 2012; D'Souza & Sadanada, 2017; Sayin et al., 2014; Marcondes et al., 2001). While 81 these studies illustrate the influence of the estrous cycle on animal behavior, they were 82 predominately conducted in rats not mice. In comparing two mouse strains, Meziane and 83 colleagues (2007) observed that C57BL/6J females have less variation in anxiety-like behaviors 84 across the estrous cycle than BALB/cByJ females. However, commonly used negative valence 85 tests associated with anxiety-like behavior, such as elevated plus maze (EPM) and novelty 86 suppressed feeding (NSF), were not included in this study. Therefore, detailed behavioral 87 analyses across the mouse estrous cycle is still needed.

Variations in gonadal steroid hormone secretion patterns, as seen in cycling females, can contribute to hippocampal structural and functional impairments, such as alterations in adult neurogenesis (Tanapat et al., 2005; Barha et al., 2009) within the subgranular zone of the dentate gyrus (DG) (Tanapat et al., 1999). For instance, proestrus rats have higher DG cell proliferation than estrus or diestrus rats with these differences most likely attributed to higher estradiol levels

93 during the proestrus phase (Sadrollahi et al., 2014; Tanapat et al., 1999; Pawluski et al., 2009). 94 While many studies document the effects of the estrous cycle and administration of estrogens to 95 mimic a cycle stage in ovariectomized (OVX) rats on DG cell proliferation, these effects may be 96 species specific since Lagace and colleagues (2007) observed no significant differences in adult 97 hippocampal cell proliferation within C57BL/6J mice. However, whether the estrous cycle 98 impacts other stages of adult hippocampal neurogenesis, such as doublecortin which labels 99 young and mature neurons (Plumpe et al., 2006), in C57BL/6J mice is unknown. Regardless of 100 species differences in estrous effects on adult hippocampal cell proliferation, understanding the 101 impact the estrous cycle has on adult hippocampal neurogenesis is important since 102 pharmacotherapies, such as antidepressants, exert beneficial effects on behavior in part by 103 increasing adult hippocampal neurogenesis (Malberg et al., 2000; David et al., 2009; Santarelli et 104 al., 2003). While Sayin and colleagues (2014) illustrate that citalopram, a selective serotonin 105 reuptake inhibitor (SSRI), alleviates differences in anxiety-like behavior between proestrus and 106 non-proestrus rats, few studies have examined the impact of SSRIs on behavior and neurogenesis 107 in intact, cycling female mice. Therefore, the current study aims to assess the behavioral and 108 neural effects of fluoxetine (FLX), a SSRI, across the estrous cycle.

- 109 **2. Methods**
- 110 **2.1** *Subjects*

111Adult 8 week old female C57BL/6J strain mice (n = 41) were purchased from112Jackson laboratories. All mice were maintained on a 12L:12D schedule with food113and water provided *ad libitum*. For 3 weeks FLX (18 mg/kg/day) or vehicle114(deionized water) was delivered via oral gavage. On behavioral testing days FLX115or vehicle was administrated after mice completed the behavioral test to avoid

116	acute effects. All testing was conducted in compliance with the NIH laboratory
117	animal care guidelines and approved by Rutgers University Institutional Animal
118	Care and Use Committee.

119 **2.2** Vaginal Lavage

120 To examine estrous cycle state vaginal lavages were performed throughout 121 FLX/vehicle treatment, after completing each behavioral test, and prior 122 euthanasia. In order to collect the samples, a pipet was filled with ddH₂O, placed 123 at the opening of the mouse's vaginal canal (without penetration) with ddH₂O 124 gently expelled and suctioned back (for detailed methods see McLean et al., 2012; 125 Byers et al., 2012). Samples were then placed on a slide warmer to dry for 126 approximately 5 minutes and imaged under a EVOS FL Auto 2.0 microscope 127 (Thermofisher Scientific) at 10x magnification. Estrous phase was identified by 128 the presence or absence of nucleated epithelial cells, cornified epithelial cells, and 129 leukocytes (Byers et al., 2012; Felicio et al., 1984). Mice in proestrus displayed 130 mostly nucleated and some cornified cells (Figure 1B). Estrus was recorded as the 131 presence of mostly cornified epithelial cells, with the presence of a few nucleated 132 cells in early estrus (Figure 1B). Metestrus was determined by the presence of 133 cornified epithelial cells and polymorphonuclear leukocytes (Byers et al., 2012), 134 while mice in diestrus contained mainly polymorphonuclear leukocytes with few 135 epithelial cells being present (Figure 1B). 136 **2.3** Behavioral Testing

- 137 **2.3.1** *Open Field (OF)*
- 138

Motor activity was quantified in five Plexiglass open field boxes 43 x 43 cm²

140two sets of 16 pulse-modulated infrared photobeams placed on opposite walls 2.5141cm apart to. As previously described (David et al., 2009), activity chambers were142computer interfaced for data sampling at 100ms resolution. The computer143software predefines grid lines that divide each open field chamber into center and144periphery regions, with the center being a square 11cm from the wall. The number145of entries, distance traveled, and total time spent in the center were recorded, as146well as percent of distance traveled in the center defined as center distance147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this t	139	(Kinder Scientific). The recording of x-y ambulatory movements was recorded by
142computer interfaced for data sampling at 100ms resolution. The computer143software predefines grid lines that divide each open field chamber into center and144periphery regions, with the center being a square 11cm from the wall. The number145of entries, distance traveled, and total time spent in the center were recorded, as146well as percent of distance traveled in the center defined as center distance147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	140	two sets of 16 pulse-modulated infrared photobeams placed on opposite walls 2.5
143software predefines grid lines that divide each open field chamber into center and144periphery regions, with the center being a square 11cm from the wall. The number145of entries, distance traveled, and total time spent in the center were recorded, as146well as percent of distance traveled in the center defined as center distance147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	141	cm apart to. As previously described (David et al., 2009), activity chambers were
144periphery regions, with the center being a square 11cm from the wall. The number145of entries, distance traveled, and total time spent in the center were recorded, as146well as percent of distance traveled in the center defined as center distance147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	142	computer interfaced for data sampling at 100ms resolution. The computer
145of entries, distance traveled, and total time spent in the center were recorded, as146well as percent of distance traveled in the center defined as center distance147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	143	software predefines grid lines that divide each open field chamber into center and
146well as percent of distance traveled in the center defined as center distance147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	144	periphery regions, with the center being a square 11cm from the wall. The number
147divided by total distance traveled (Supplemental Figure 1A). To measure overall148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	145	of entries, distance traveled, and total time spent in the center were recorded, as
148motor activity total distance (cm) was quantified.149 2.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	146	well as percent of distance traveled in the center defined as center distance
1492.3.2 Novelty Suppressed Feeding (NSF)150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	147	divided by total distance traveled (Supplemental Figure 1A). To measure overall
150After undergoing 18 hours of food deprivation within their home cage, mice were151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	148	motor activity total distance (cm) was quantified.
151placed in the corner of a testing apparatus (50x50x20 cm) filled with152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	149	2.3.2 Novelty Suppressed Feeding (NSF)
152approximately 2 cm of corncob bedding and a single pellet of food attached to a153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	150	After undergoing 18 hours of food deprivation within their home cage, mice were
153white platform in the center of the box. The center of the box was illuminated at1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	151	placed in the corner of a testing apparatus (50x50x20 cm) filled with
1541500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	152	approximately 2 cm of corncob bedding and a single pellet of food attached to a
155mouse sitting on its haunches and biting the pellet with the use of forepaws) was156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	153	white platform in the center of the box. The center of the box was illuminated at
156timed/recorded. If a mouse did not consume food during the NSF a latency of157360secs was recorded. Immediately afterwards, the mice were transferred to their158home cage to assess home cage feeding behavior for 5 minutes (Supplemental159Figure 1D-F). During this task latency to eat and amount of food consumed was160measured as a control for feeding behavior observed in the NSF task. Each mouse	154	1500 lux. The NSF test lasted 6 minutes, where the latency to eat (defined as the
 157 360secs was recorded. Immediately afterwards, the mice were transferred to their 158 home cage to assess home cage feeding behavior for 5 minutes (Supplemental 159 Figure 1D-F). During this task latency to eat and amount of food consumed was 160 measured as a control for feeding behavior observed in the NSF task. Each mouse 	155	mouse sitting on its haunches and biting the pellet with the use of forepaws) was
 home cage to assess home cage feeding behavior for 5 minutes (Supplemental Figure 1D-F). During this task latency to eat and amount of food consumed was measured as a control for feeding behavior observed in the NSF task. Each mouse 	156	timed/recorded. If a mouse did not consume food during the NSF a latency of
Figure 1D-F). During this task latency to eat and amount of food consumed was measured as a control for feeding behavior observed in the NSF task. Each mouse	157	360secs was recorded. Immediately afterwards, the mice were transferred to their
160 measured as a control for feeding behavior observed in the NSF task. Each mouse	158	home cage to assess home cage feeding behavior for 5 minutes (Supplemental
	159	Figure 1D-F). During this task latency to eat and amount of food consumed was
161 was weighed before food deprivation and after home cage feeding to assess the	160	measured as a control for feeding behavior observed in the NSF task. Each mouse
	161	was weighed before food deprivation and after home cage feeding to assess the

percentage of body weight loss. Following home cage feeding, mice were placedin a new home cage with cage mates and returned to the colony room.

164 **2.3.3** *Light Dark (LD)*

165 The light/dark test was conducted in an open field chamber measuring 43.2×43.2 166 cm (Kinder Scientific, USA), with a clear floor and walls. To divide the open 167 field into separate light and dark compartments, a dark plastic box that covered 168 one third of the chamber was inserted. The dark box was opaque to visible light, 169 but transparent to infrared light, and contained an opening that allowed passage 170 between the light and dark compartments (David et al., 2009). The light 171 compartment was brightly illuminated at 1000 lux. At the beginning of each 5-172 minute test, mice were placed in the dark compartment. An observer blind to 173 treatment groups recorded the latency to emerge into the light (Supplemental 174 Figure 1C). Using Activity Monitor (Kinder Scientific, USA) software, total time 175 in the light and ambulatory distance in both compartments was analyzed. To 176 calculate percent distance traveled in the light, distance traveled in the light was 177 divided by total distance traveled (Supplemental Figure 1B).

178 **2.3.4** Elevated Plus Maze (EPM)

The EPM test consisted of a plus-shaped apparatus with two open and two closed arms (side walls), elevated 2 feet from the floor. During the five-minute test, the mouse's behavior was recorded from a video camera mounted above each EPM arena. EthoVision (Noldus) software was then used to score time spent in the open arms, entries, and distance traveled in both open and closed arms. By dividing total open arm distance traveled by total distance traveled, we were able

185	to analyze percent distance traveled in open arms.
186	2.3.5 Forced Swim Test (FST)
187	A modified FST procedure suitable for mice was used (David et al., 2009).
188	Individual cylinders (46 cm tall x 32 cm in diameter x 30 cm deep) were filled
189	with room-temperature water (25-26°C) before placing each mouse into the
190	cylinder. Two sets of photobeams were mounted on opposite sides of the cylinder
191	(Kinder Scientific, USA) to allow for the recording of swimming behavior during
192	the 6-minute test. Immobility times (measured by beam breaks over 5-second
193	intervals) were assessed during the last 4-minutes of the test since mice are
194	habituating to the task during the initial 2-minutes of the test.
195	2.4 Brain Collection, Sectioning and Immunohistochemistry
196	2.4.1 Brain Collection and Sectioning
196 197	2.4.1 <i>Brain Collection and Sectioning</i> Subsequent to the completion of all behavioral testing, brains were collected from
197	Subsequent to the completion of all behavioral testing, brains were collected from
197 198	Subsequent to the completion of all behavioral testing, brains were collected from all experimental mice. Mice were anesthetized with ketamine (80mg/kg) and
197 198 199	Subsequent to the completion of all behavioral testing, brains were collected from all experimental mice. Mice were anesthetized with ketamine (80mg/kg) and perfused transcardially with PBS followed by 4% paraformaldehyde. Brains were
197 198 199 200	Subsequent to the completion of all behavioral testing, brains were collected from all experimental mice. Mice were anesthetized with ketamine (80mg/kg) and perfused transcardially with PBS followed by 4% paraformaldehyde. Brains were collected and stored in 4% paraformaldehyde overnight at 4°C. Next, brains were
197 198 199 200 201	Subsequent to the completion of all behavioral testing, brains were collected from all experimental mice. Mice were anesthetized with ketamine (80mg/kg) and perfused transcardially with PBS followed by 4% paraformaldehyde. Brains were collected and stored in 4% paraformaldehyde overnight at 4°C. Next, brains were switched to a 30% sucrose 0.1% sodium azide (NaN ₃) in PBS solution and stored
197 198 199 200 201 202	Subsequent to the completion of all behavioral testing, brains were collected from all experimental mice. Mice were anesthetized with ketamine (80mg/kg) and perfused transcardially with PBS followed by 4% paraformaldehyde. Brains were collected and stored in 4% paraformaldehyde overnight at 4°C. Next, brains were switched to a 30% sucrose 0.1% sodium azide (NaN ₃) in PBS solution and stored at 4°C until they were sectioned. Using a cryostat, serial sections of the
 197 198 199 200 201 202 203 	Subsequent to the completion of all behavioral testing, brains were collected from all experimental mice. Mice were anesthetized with ketamine (80mg/kg) and perfused transcardially with PBS followed by 4% paraformaldehyde. Brains were collected and stored in 4% paraformaldehyde overnight at 4°C. Next, brains were switched to a 30% sucrose 0.1% sodium azide (NaN ₃) in PBS solution and stored at 4°C until they were sectioned. Using a cryostat, serial sections of the hippocampus (Franklin & Paxinos mouse brain atlas 3 rd edition; Bregma -1.22 to -

207	The effects of FLX treatment on cell proliferation were assessed across 12 serial
208	sections of the hippocampus. Using mailers, slides were washed in 1% Triton X-
209	100 PBS for 5 minutes before undergoing three PBS washes. Next, slides were
210	incubated in warm citrate buffer for 30 minutes and then washed times in PBS.
211	Slides were then transferred to an opaque moisture chamber (details) for the
212	blocking and overnight incubation step. Slides were blocked for 1 hour in 10%
213	normal goat serum (NGS) diluted in PBS before being incubated overnight at $4^{\circ}C$
214	in anti-rabbit ki67 (1:500; abCam, ab16667) diluted in 2% NGS PBS. Following
215	18 hours of incubation slides were washed 3 times in PBS before being incubated
216	at room temperature for 2 hours in CY-5 goat anti-rabbit (1:1000, Invitrogen,
217	Thermo Fisher Scientific, A10523) diluted in 2% NGS PBS. Next slides were
218	washed with PBS then counterstained with DAPI (1:15000) for 15 minutes.
219	Finally, slides were washed with PBS and cover slipped using the mounting
220	medium prolong diamond. Fluorescent images were taken using a EVOS FL Auto
221	2.0 microscope (Thermofisher Scientific) at 10x magnification, where $ki67^+$ cells
222	overlayed with DAPI across the 12 sections of hippocampus were collected and
223	counted.
224	2.4.3 <i>Doublecortin (DCX) labeling for maturation</i>
225	12 and this second as time for double set in (DCV) more stained as in the

12 serial hippocampal sections for doublecortin (DCX) were stained using the
primary antibody doublecortin anti-goat (1:500; Life technologies; 481200) and
secondary antibody CY-5 goat anti-rabbit (1:1000, Invitrogen, Thermo Fisher
Scientific, A10523). Fluorescent images were taken using using a EVOS FL Auto
2.0 microscope (Thermofisher Scientific) at 10x magnification, where DCX⁺ cells

230	across the 12 sections of hippocampus were collected and counted. Following
231	imaging, DCX^+ cells were counted and subcategorized according to their
232	dendritic morphology: DCX^+ cells with no tertiary dendritic processes and DCX^+
233	cells with complex, tertiary dendrites. The maturation index was defined as the
234	ratio of DCX^+ cells possessing tertiary dendrites over the total DCX^+ cells.
235	2.5 Statistical Analyses
236	To analyze both behavioral and molecular differences between treatment groups and
237	estrous cycle stages separate 2x4 analyses of variance (ANOVA) were conducted. Each
238	ANOVA was followed by subsequent Bonferroni post-hoc analyses to further assess
239	between and within group differences across the estrous cycle. Since we imposed a cutoff
240	time during the NSF, we ran a Kaplan Meier survival analysis (nonparametric test) that
241	permits censoring of these data points to analyze differences in feeding latencies.
242	3. Results
243	3.1 FLX and vehicle behavioral differences across estrous cycle
244	We treated a large cohort of adult C57BL/6J female mice $(n = 41)$ with 18mg/kg FLX for
245	three weeks (Figure 1A) and then exposed these mice to the Open Field (OF), Light Dark
246	Test (LD), EPM, NSF test, and Forced Swim Test (FST). To assess estrous cycle phase
247	(Figure 1B), vaginal lavages were performed two weeks prior to behavior, following each
248	behavioral test, and on the days between behavioral tests. We found significant treatment
249	effects in the EPM and FST, such that FLX mice spent more time in the open arms
250	(F(1,32)=19.05, p<0.001; Figure 1C) and less time immobile (F(1,35) = 15.15, p < 0.001;
251	Figure 1D) than vehicle mice. In the EPM, planned Bonferroni post-hoc comparisons
252	revealed treatment differences in open arm time within the estrus phase, such that estrus

253	FLX-treated mice spent more time in the open arm than estrus vehicle-treated mice, $t(32) =$
254	1.56, $p = 0.001$ (Figure 1C). Additionally, post-hoc comparisons revealed immobility time in
255	the FST was significantly different between treatment groups within the estrus and diestrus
256	phases, such that vehicle mice spent significantly more time immobile than FLX mice within
257	both the estrus (t(10) = 2.41, p = 0.02) and diestrus (t(11) = 2.23, p = 0.03) phases (Figure
258	1D), with a nonsignificant trend emerging in the metestrus phase ($t(9) = 2.62$, $p = 0.052$). We
259	found no significant effects of treatment or estrous phase nor interaction effect on behaviors
260	within the OF and LD tests (Supplemental Figure 1A-C).
261	In the NSF, a Kaplan Meier survival analysis log rank test revealed that FLX
262	significantly reduces latency to feed, $x^2(1) = 8.37$, $p = 0.0038$ (Figure 1E, 1F), as compared
263	to vehicle mice. Additionally, we observed that the estrus phase of the estrous cycle impacted
264	group differences in latency to feed, with FLX females in estrus having lower latencies to
265	feed than estrus vehicle females $x^2(1) = 6.9$, $p = 0.008$. There was no treatment effect nor
266	estrous effect on home cage latency, amount of food consumed in home cage, or percent
267	weight change (Supplemental Figure 1D-F).
268	Taken together, these data suggest that the effects of FLX on behavior are most
269	consistent across tests during the estrus stage.
270	3.2 Fluoxetine treatment and estrous cycle state impact adult neurogenesis
271	Several days following the FST, we perfused the mice and collected serial sections
272	through the DG. Next, we performed immunostaining to determine the effects of FLX on the
273	distinct stages of adult hippocampal neurogenesis across the different phases of the estrous
274	cycle. We first stained for the cell proliferation marker Ki67 and found that FLX-treated

275	mice had more Ki67 ⁺ cells than vehicle-treated mice $F(1, 37) = 5.34$, $p = 0.026$ (Figure 2A).
276	We observed no estrous cycle effects nor interaction on number of Ki67 ⁺ cells (p's > 0.05).
277	We next performed immunostaining with the young neuron marker DCX, and observed
278	that FLX-treated mice showed more DCX^+ cells within the DG than vehicle-treated mice
279	F(1, 37) = 13.44, p < 0.001. We found a significant interaction effect between treatment and
280	estrous phase $F(3, 37) = 4.57$, p = 0.008. Planned post-hoc comparisons revealed that FLX-
281	treated mice had more DCX ⁺ cells than vehicle mice within the estrus (t(9) = 3.95 , p < 0.001)
282	and diestrus (t(11) = 3.29, $p = 0.009$; Figure 2B) phases. Within the vehicle group, planned
283	comparisons revealed that proestrus females had significantly more DCX^+ cells than both
284	estrus (t(10) = 4.76, p = 0.001) and diestrus (t(11) = 3.71 , p = 0.01) female mice (Figure 3A).
285	Additionally, metestrus vehicle-treated mice had significantly more DCX^+ cells than both
286	estrus (t(9) = 4.8, $p < 0.001$) and diestrus (t(9) = 3.82, $p = 0.008$) vehicle-treated mice (Figure
287	3A). Within the FLX group no differences in DCX^+ cell expression was observed across the
288	estrous cycle.
289	To assess maturation of the young neurons, we counted the DCX+ neurons that displayed
290	tertiary dendrites. As expected, FLX-treated mice had more mature neurons than vehicle
291	mice as indicated by the number of DCX ⁺ cells with tertiary dendrites (F(1, 37) = 20.56, p <
292	0.001; Figure 2C). A significant interaction between treatment group and estrous cycle phase
293	emerged (F(3, 37) = 5.33, p = 0.004), with FLX mice having more DCX ⁺ cells with tertiary
294	dendrites than vehicle mice in the estrus (t(9) = 4.19, $p < 0.001$) and diestrus (t(11) = 4.23, p
295	< 0.001) phases. Within the vehicle group, planned post-hoc comparisons revealed that
296	proestrus females have more DCX ⁺ cells with tertiary dendrites than estrus (t(10) = 6.01, p = (10)
297	0.003) and diestrus (t(10) = 5.09, $p = 0.011$) females (Figure 3B). Planned comparisons also

298	revealed that metestrous vehicle-treated females had more mature neurons than estrus $(t(9) =$								
299	4.94, $p = 0.013$) and diestrus (t(9) = 4.06, $p = 0.04$) vehicle-treated females (Figure 3B).								
300	Within the FLX group, we observed no differences in expression of DCX^+ cell with tertiary								
301	dendrites across the estrous cycle.								
302	Lastly, we observed that FLX mice have a higher maturation index (F(1, 37) = 10.98, $p =$								
303	0.002; Figure 2D) than vehicle mice. We observed a significant interaction effect between								
304	treatment group and estrous cycle phase (F(3, 37) = 3.23, $p = 0.033$), with FLX females								
305	having a significantly higher maturation index than vehicle females in both the estrus, $(t(9) =$								
306	3.07, $p = 0.004$) and diestrus (t(11) = 3.13, $p = 0.003$) phases (Figure 2D). Within both the								
307	vehicle (Figure 3C) and FLX group we observed no differences in the maturation index								
308	across the estrous cycle. Taken together, these data suggest that the effects of fluoxetine on								
309	adult hippocampal neurogenesis are most pronounced during both the estrus and diestrus								
310	stage.								
311	4. Discussion								
312	4.1 FLX and vehicle behavioral differences across estrous cycle								
313	We used an array of negative valence behavioral tests to evaluate the impact of								
314	antidepressant treatment on anxiety-like behaviors across the estrous cycle. Prior to								
315	behavioral testing we tracked the females estrous cycle for two weeks to assess whether								
316	females were cycling together within the same housing room. Although Meziane and								
317	colleagues (2007) observed that females within the same room cycle together, we observed								
318	that females within this study had out of sync cycles allowing for us to investigate the								
319	different estrous cycle phases during each behavioral test. Similar to previous studies in								

320 males (David et al., 2009), our data illustrates that FLX treatment in females reduces anxiety-

321 like behaviors within the EPM and NSF, and decreases immobility in the FST. However, our 322 data demonstrates that estrous cycle significantly impacts the effects of FLX on behavior. 323 FLX-treated females in the estrus phase display a reduction in anxiety-like behavior in the 324 EPM and NSF, and reduced immobility in the FST relative to vehicle-treated estrus females. 325 Diestrus FLX-treated females had lower immobility times in the FST than diestrus vehicle 326 females, but FLX was ineffective in the anxiety-related EPM and NSF tasks. Furthermore, 327 the behavioral effects of FLX were not significant in any of these tasks during metestrus and 328 proestrus. Recently, Sayin and colleagues (2014) observed that proestrus rats display less 329 anxiety-like behaviors than non-proestrus rats in the EPM, with estrous cycle differences 330 attenuated following citalopram administration. Compared to our data, these data suggest that 331 species differences may exist in anxiety-like behaviors across the estrous cycle. Although we 332 did not observe an effect of the estrous cycle on behavior within treatment, a previous study 333 observed that C57BL/6J females have less variation in anxiety-like behaviors across the 334 estrous cycle than BALB/cByJ females (Meziane et al., 2007). Despite this, our data 335 illustrate that FLX treatment has significant effects on behavior relative to vehicle treatment. 336 However, our detailed analyses suggest that these effects of FLX are mainly driven by 337 females in the estrus and diestrus phase.

Differences in behavior between treatment groups within estrus and diestrus may be related to fluctuations in estradiol and progesterone levels (Pawluski et al., 2009; Lovick, 2012). Specifically, estradiol levels are the lowest during estrus and diestrus (Pawluski et al., 2009; Wood et al., 2007). Exogenous estradiol treatment to mimic diestrus in OVX rats results in decreases in anxiety-like behavior in the EPM compared to non-estrogen treated freely cycling diestrus rats (Marcondes et al., 2001). In mice, females in the estrus and diestrus phases are more susceptible to individual housing stress and spend less time in the
 center of the open field arena than proestrus mice (Palanza et al., 2001). The impact of FLX
 administration on ovarian steroid hormones across the estrous cycle is understudied in
 rodents, and future studies will need to assess the relationship between antidepressant and
 endogenous ovarian hormone levels.

349 **4.2** Fluoxetine treatment and estrous cycle state impact adult neurogenesis

350 Similar to several other studies (Pawluski et al., 2014; Lagace et al., 2007), we observed 351 that chronic FLX administration increased adult hippocampal neurogenesis levels relative to 352 vehicle-treated females. Females treated with FLX had higher levels of cell proliferation 353 (Figure 2A), higher numbers of both immature (Figure 2B) and mature neurons (Figure 2C), 354 as well as a higher maturation index (Figure 2D) than vehicle treated females. However, 355 similar to the effects on behavior, our study is the first to illustrate that the effects of FLX on 356 adult hippocampal neurogenesis are most pronounced during the estrus and diestrus phases. 357 Differences in adult hippocampal neurogenesis within estrus and diestrus could be attributed 358 to natural low-levels of estradiol in these phases. Estrogens, such as estradiol, impact both 359 cell proliferation and cell survival in the DG (Ormerod et al., 2003; Barha et al., 2009) and 360 more proliferating cells are found in the proestrus phase than the non-proestrus phases 361 (Sadrollahi et al., 2014; Tanapat et al., 1999; Pawluski et al., 2009). Discrepancies in 362 proliferating cell numbers across the estrous cycle can be attributed to endogenous estrogen 363 levels naturally peaking during the proestrus phase and decreasing during the estrus and 364 diestrus phase (Pawluski et al., 2009). However, Lagace and colleagues (2007) show that 365 endogenous levels of estradiol do not appear to impact adult hippocampal cell proliferation in 366 mice, since OVX female mice have similar number of proliferating cells (BrdU⁺) and

367 immature neurons (DCX^+) in the hippocampus as intact female mice. Furthermore, in 368 assessing cell proliferation across 3 phases of the estrous cycle (proestrus, estrus, diestrus), 369 Lagace and colleagues (2007) observed no differences in cell proliferation in the different 370 phases. Similar to Lagace and colleagues (2007), we show that estrous cycle phase does not 371 impact DG cell proliferation levels within treatment group. However, Lagace and colleagues 372 (2007) did not assess differences in immature and mature neurons across the estrous cycle. 373 We found that proestrus and metestrus vehicle-treated female mice have higher numbers of 374 immature neurons (DCX^{+}) within the DG than estrus and diestrus vehicle-treated female 375 mice (Figure 3A). Additionally, we show that estrus and diestrus vehicle treated female mice 376 have fewer mature neurons in the DG than proestrus and metestrus vehicle-treated female 377 mice (Figure 3B). Interestingly, FLX specifically increased the numbers of immature (Figure 378 2B) and mature (Figure 2C) neurons in the DG during estrus and diestrus relative to vehicle-379 treated mice. Therefore, no differences across the phases of the estrous cycle were observed 380 within the FLX group. These data suggest that the effects of FLX on adult hippocampal 381 neurogenesis are mainly driven by females in the estrus and diestrus phases of the estrous 382 cycle.

Overall our study illustrates that the tracking the estrous cycle in experimental studies is crucial since different estrous phases show significant differences in behavior and adult hippocampal neurogenesis. Furthermore, the effects of FLX treatment are mainly driven by females in the estrus and diestrus phases. Future studies should assess whether antidepressants influence endogenous levels of ovarian hormones, such as estrogen and progesterone, since fluctuations in these hormones across the estrous cycle may attribute to differences in behavior and adult hippocampal neurogenesis. Given that sex differences in

390	the etiologies	of mood	disorders	and symi	ntomologies	exist	nreclinical	studies t	that	determine
570	the chologies	or moou	uisoiucis	and symp	Juniologics	UNISI,	preemical	studies	mai	

- 391 differences across the estrous cycle are critical for developing a better understanding of how
- these disorders develop and should be treated in females.
- 393
- 394 Acknowledgments
- 395 This work was supported by the National Institute of Mental Health [Grant Number R01
- 396 MH112861 to BAS]. The authors would also like to thank Mark M. Gergues, Kylee Shivok, and
- 397 Debbie Ma for their assistance with this project.
- 398
- 399
- 400
- 401
- 402
- 403
- 404
- 405
- 406
- 407
- 408
- 409 References
- 410 Arakawa, K., Arakawa, H., Hueston, C. M., & Deak, T. (2014). Effects of the estrous cycle and
- 411 ovarian hormones on central expression of interleukin-1 evoked by stress in female rats.
- 412 *Neuroendocrinology*, *100*(2-3), 162-177. doi:10.1159/000368606

- 413 Barha, C. K., Lieblich, S. E., & Galea, L. A. (2009). Different forms of oestrogen rapidly
- 414 upregulate cell proliferation in the dentate gyrus of adult female rats. *J Neuroendocrinol*,
- 415 *21*(3), 155-166. doi:10.1111/j.1365-2826.2008.01809.x
- 416 Byers, S. L., Wiles, M. V., Dunn, S. L., & Taft, R. A. (2012). Mouse estrous cycle identification
- 417 tool and images. *PLoS One*, 7(4), e35538. doi:10.1371/journal.pone.0035538
- 418 D'Souza, D., & Sadananda, M. (2017). Estrous Cycle Phase-Dependent Changes in Anxiety- and
- 419 Depression-Like Profiles in the Late Adolescent Wistar-Kyoto Rat. *Ann Neurosci*, 24(3),
 420 136-145. doi:10.1159/000477151
- 421 Felicio, L. S., Nelson, J. F., & Finch, C. E. (1984). Longitudinal studies of estrous cyclicity in
- 422 aging C57BL/6J mice: II. Cessation of cyclicity and the duration of persistent vaginal
 423 cornification. *Biol Reprod*, *31*(3), 446-453.
- 424 Kessler, R. C. (2003). Epidemiology of women and depression. J Affect Disord, 74(1), 5-13.
- 425 Lagace, D. C., Fischer, S. J., & Eisch, A. J. (2007). Gender and endogenous levels of estradiol do
- 426 not influence adult hippocampal neurogenesis in mice. *Hippocampus*, *17*(3), 175-180.
- 427 doi:10.1002/hipo.20265
- 428 Lovick, T. A. (2012). Estrous cycle and stress: influence of progesterone on the female brain.
 429 *Braz J Med Biol Res*, 45(4), 314-320.
- 430 Malberg, J. E., Eisch, A. J., Nestler, E. J., & Duman, R. S. (2000). Chronic antidepressant
- 431 treatment increases neurogenesis in adult rat hippocampus. *J Neurosci*, 20(24), 9104432 9110.
- 433 Marcondes, F. K., Miguel, K. J., Melo, L. L., & Spadari-Bratfisch, R. C. (2001). Estrous cycle
- 434 influences the response of female rats in the elevated plus-maze test. *Physiol Behav*,
- 435 74(4-5), 435-440.

- 436 McLean, A. C., Valenzuela, N., Fai, S., & Bennett, S. A. (2012). Performing vaginal lavage,
- 437 crystal violet staining, and vaginal cytological evaluation for mouse estrous cycle staging
- 438 identification. J Vis Exp(67), e4389. doi:10.3791/4389
- 439 Meziane, H., Ouagazzal, A. M., Aubert, L., Wietrzych, M., & Krezel, W. (2007). Estrous cycle
- 440 effects on behavior of C57BL/6J and BALB/cByJ female mice: implications for
- 441 phenotyping strategies. Genes Brain Behav, 6(2), 192-200. doi:10.1111/j.1601-
- 442 183X.2006.00249.x
- Ormerod, B. K., Lee, T. T., & Galea, L. A. (2003). Estradiol initially enhances but subsequently
 suppresses (via adrenal steroids) granule cell proliferation in the dentate gyrus of adult
- female rats. *J Neurobiol*, *55*(2), 247-260. doi:10.1002/neu.10181
- Palanza, P., Gioiosa, L., & Parmigiani, S. (2001). Social stress in mice: gender differences and
 effects of estrous cycle and social dominance. *Physiol Behav*, *73*(3), 411-420.
- 448 Pawluski, J. L., Brummelte, S., Barha, C. K., Crozier, T. M., & Galea, L. A. (2009). Effects of
- steroid hormones on neurogenesis in the hippocampus of the adult female rodent during
- 450 the estrous cycle, pregnancy, lactation and aging. *Front Neuroendocrinol*, 30(3), 343-
- 451 357. doi:10.1016/j.yfrne.2009.03.007
- 452 Pawluski, J. L., van Donkelaar, E., Abrams, Z., Houbart, V., Fillet, M., Steinbusch, H. W., &
- 453 Charlier, T. D. (2014). Fluoxetine dose and administration method differentially affect
- 454 hippocampal plasticity in adult female rats. *Neural Plast, 2014*, 123026.
- 455 doi:10.1155/2014/123026
- 456 Plumpe, T., Ehninger, D., Steiner, B., Klempin, F., Jessberger, S., Brandt, M., ... Kempermann,
- 457 G. (2006). Variability of doublecortin-associated dendrite maturation in adult

- 458 hippocampal neurogenesis is independent of the regulation of precursor cell proliferation.
- 459 *BMC Neurosci*, 7, 77. doi:10.1186/1471-2202-7-77
- 460 Popa, D., Cerdan, J., Reperant, C., Guiard, B. P., Guilloux, J. P., David, D. J., & Gardier, A. M.
- 461 (2010). A longitudinal study of 5-HT outflow during chronic fluoxetine treatment using a
- 462 new technique of chronic microdialysis in a highly emotional mouse strain. *Eur J*
- 463 *Pharmacol*, 628(1-3), 83-90. doi:10.1016/j.ejphar.2009.11.037
- 464 Santarelli, L., Saxe, M., Gross, C., Surget, A., Battaglia, F., Dulawa, S., . . . Hen, R. (2003).
- 465 Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants.
- 466 *Science*, *301*(5634), 805-809. doi:10.1126/science.1083328
- 467 Sayin, A., Derinoz, O., Yuksel, N., Sahin, S., & Bolay, H. (2014). The effects of the estrus cycle
- 468 and citalopram on anxiety-like behaviors and c-fos expression in rats. *Pharmacol*469 *Biochem Behav, 124*, 180-187. doi:10.1016/j.pbb.2014.06.002
- 470 Shors, T. J., & Leuner, B. (2003). Estrogen-mediated effects on depression and memory
 471 formation in females. *J Affect Disord*, 74(1), 85-96.
- Sloan, D. M., & Kornstein, S. G. (2003). Gender differences in depression and response to
 antidepressant treatment. *Psychiatr Clin North Am*, 26(3), 581-594.
- 474 Tanapat, P., Hastings, N. B., & Gould, E. (2005). Ovarian steroids influence cell proliferation in
- 475 the dentate gyrus of the adult female rat in a dose- and time-dependent manner. *J Comp*476 *Neurol*, 481(3), 252-265. doi:10.1002/cne.20385
- 477 Tanapat, P., Hastings, N. B., Reeves, A. J., & Gould, E. (1999). Estrogen stimulates a transient
- 478 increase in the number of new neurons in the dentate gyrus of the adult female rat. J
- 479 *Neurosci*, 19(14), 5792-5801.

480 Wood, G. A., Fata, J. E., Watson, K. L., & Khokha, R. (2007). Circulating hormones and estrous

481 stage predict cellular and stromal remodeling in murine uterus. *Reproduction*, 133(5),

482 1035-1044. doi:10.1530/REP-06-0302

483

484

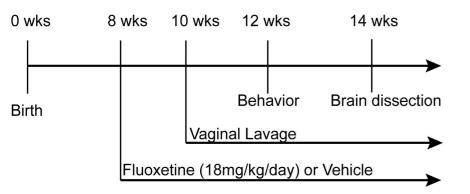
485 Figure 1. Behavioral differences between FLX- and vehicle-treated female mice are also 486 **mediated by estrous phase.** A timeline depicting the experimental study is depicted above (A) 487 with representative images of the four stages of the estrous cycle (10x magnification; scale = 500488 µm; B). Separate 2x4 ANOVAs were run and revealed that overall females treated with FLX 489 spend less time in the open arms than vehicle mice (p < 0.001), with this group difference being 490 evident within the estrus phase of the estrous cycle (p = 0.005; C). In the FST, FLX appeared to 491 reduce overall immobility time (p < 0.001), with FLX-treated females in the estrus and diestrus 492 phases having significantly lower immobility scores than vehicle-treated females (D). Also, 493 FLX-treated females have quicker latencies to eat in the NSF task than vehicle-treated females, 494 with group differences being evident within the estrus phase (B). * denotes p < 0.05; ** denotes 495 p <0.01; *** denotes p <0.001 496 497 Figure 2. FLX increases all stages of neurogenesis with differences most pronounced within 498 both the estrus and diestrus phases. Visual representation of Ki67 and DCX immunostaining is 499 depicted above for each treatment group across the estrous cycle phases. Images were taken at 500 10x magnification (scale = $500 \mu m$). FLX-treated females had higher adult cell proliferation 501 (Ki67⁺) compared to vehicle animals, with no differences between groups emerging across the 502 estrous cycle (A). FLX-treated females had more immature (B) and mature (C) neurons as well 503 as a higher maturation index (D) compared to vehicle-treated females, with differences between 504 groups most pronounced during the estrus and diestrus phases. * denotes p < 0.05; ** denotes p 505 <0.01; *** denotes p <0.001 506 507 Figure 3. Estrous cycle impacts adult hippocampal neurogenesis in intact, cycling vehicle-508 treated female mice. Planned post-hoc analyses within the vehicle group was conducted to

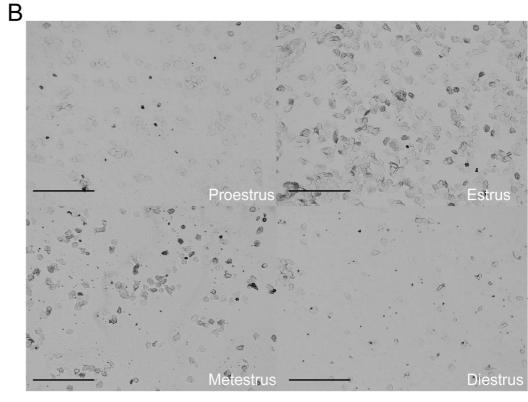
509 assess impact of estrous cycle on adult hippocampal neurogenesis. No differences in adult

510 hippocampal cell proliferation was noted across the estrous cycle in vehicle females

511 (A). Proestrus and metestrus females had higher expression of immature (B) and mature (C)

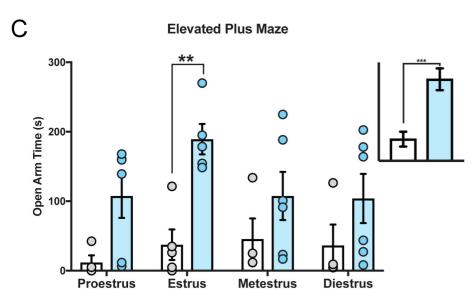
512 neurons than estrus and diestrus females. There was no impact of estrous cycle on maturation

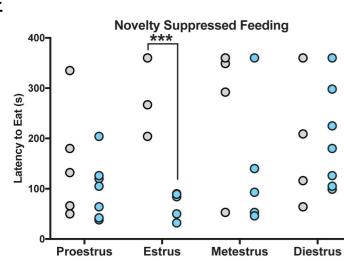

513 index (D). * denotes p < 0.05; ** denotes p <0.01; *** denotes p <0.001

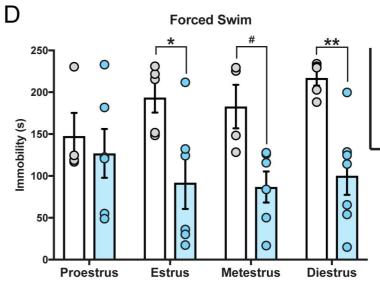

514

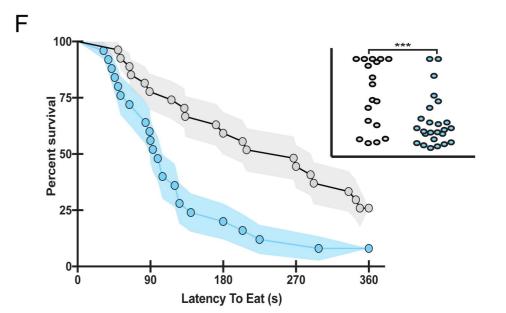
515 Supplemental Figure 1. Treatment and estrous cycle do not impact anxiety-like behavior in

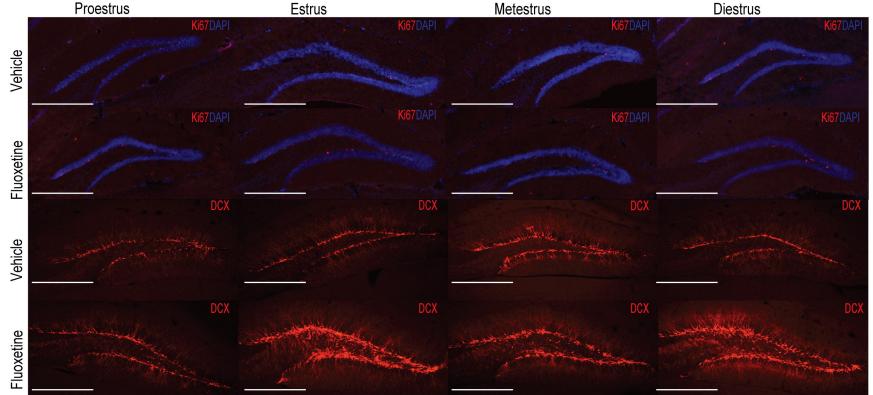
- 516 the open field (A) and light dark test (B-C) as well as home cage feeding following the NSF
- 517 task (D-F).

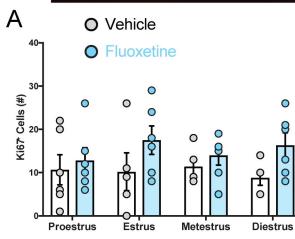


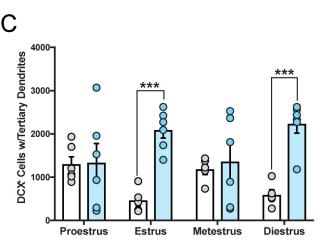


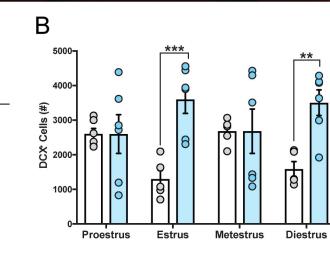


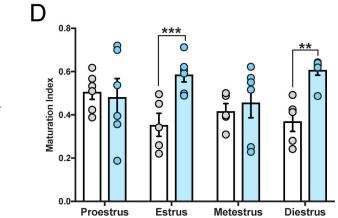

O Fluoxetine










+

Ŧ

