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Transcription factor (TF) activity is an important read-out of cellular signalling pathways            
and thus to assess regulatory differences across conditions. However, current          
technologies lack the ability to simultaneously assess activity changes for multiple TFs            
and in particular to determine whether a specific TF acts globally as transcriptional             
repressor or activator. To this end, we introduce a widely applicable genome-wide            
method  diffTF  to assess differential TF activity and to classify TFs as activator or              
repressor (available at https://git.embl.de/grp-zaugg/diffTF). This is done  by integrating         
any type of genome-wide chromatin accessibility data with RNA-Seq data and in-silico            
predicted TF binding sites.  We corroborated the classification of TFs into repressors and             
activators by three independent analyses based on enrichments of active/repressive          
chromatin states, correlation of TF activity with gene expression, and activator- and            
repressor-specific chromatin footprints. To show the power of  diffTF,  we present two            
case studies :  First, we applied  diffTF  in to a large ATAC-Seq/RNA-Seq dataset comparing             
mutated and unmutated chronic lymphocytic leukemia samples, where we identified          
dozens of known (40%) and potentially novel (60%) TFs that are differentially active. We              
were also able to classify almost half of them as either repressor and activator. Second,               
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we applied  diffTF  to a small ATAC-Seq/RNA-Seq data set comparing two cell types along              
the hematopoietic differentiation trajectory (multipotent progenitors  –  MPP  – versus          
granulocyte-macrophage progenitors  –  GMP). Here we identified the known drivers of           
differentiation and found that the majority of the differentially active TFs are            
transcriptional activators. Overall,  diffTF  was able to recover the known TFs in both case              
studies, additionally identified TFs that have been less well characterized in the given             
condition, and provides a classification of the TFs into transcriptional activators and            
repressors.  
 

INTRODUCTION 
Transcription factors (TFs) are important for orchestrating coordinated and dynamic responses           

to intra- and extracellular stimuli and regulating a multitude of biological processes. Indeed,             

since many signaling cascades end in the activation of a particular set of TFs, observing a                

change in overall TF activity can serve as a good read-out of signaling pathways that regulate                

them  (Kim et al., 2007) . Transcriptional regulation is largely influenced by cell type specific              

features such as cofactors, cooperative binding partners and local chromatin environment           

(Whyte et al., 2013) . Adding to this complexity, many TFs can act as transcriptional activators               

and repressors depending on the cell type and growth condition  (Han et al., 2015, 2018) . Thus,                

to correctly interpret the downstream effects of a change in abundance of a given TF, it is                 

important to understand its global mode of action within the specific context of the study.  

 

TFs are typically lowly abundant proteins, which makes it difficult to detect them in proteomics               

experiments  (Kim et al., 2007; Teng et al., 2008) , and even if they can be detected, their                 

abundance and activity do not necessarily correspond since TFs are highly regulated at the              

post-translational level. On the other hand, chromatin immunoprecipitation followed by          

sequencing (ChIP-Seq), which is the gold-standard technique for measuring genomic TF           

binding events, provides information only for one TF at a time and does not detect global                

changes in TF activity unless specific experimental normalisation methods are used (e.g.            

spike-ins  (Bonhoure et al., 2014) ). Neither proteomics nor ChIP-Seq experiments can give any             

insights into their mode of action. Finally, luciferase assays can measure the activity and mode               

of action for a specific TF at a specific location and are therefore fairly low throughput  (Komatsu                 

et al., 2010; Liu et al., 2011) . Databases like  TRRUST  (Han et al., 2015, 2018) collect                
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annotations of regulation modes of TFs based on literature text mining and provide a              

comprehensive resource for well-studied TF-target interactions. However, for the vast majority of            

TFs, there is no consensus about their molecular functional mode of action. A general              

framework for determining differential activity of TFs between conditions and classifying TFs into             

transcriptional activators and repressors in a cell-type and condition-specific manner is currently            

lacking.  

 

Towards closing these gaps, we have developed an approach called  diffTF to estimate global              

changes in TF activities across conditions or cell types, and classify TFs into activators and               

repressors based on the integration of genome-wide chromatin accessibility or histone mark            

ChIP-Seq data with predicted TF binding sites and RNA-Seq data. We corroborated the             

classification of TFs into repressors and activators by three independent analyses. First, we             

showed that repressors and activators were enriched in repressive and active chromatin states,             

respectively. Second, we confirmed that expression levels of repressors were anti-correlated           

with their target genes while they were positively correlated with their activators. Third, we              

obtained activator- and repressor-specific chromatin footprints based on TFs with a known            

mode of action, and found that this agreed very well with the footprints obtained from the factors                 

as classified by  diffTF . 

 

We applied this approach to two case studies, one comparing two patient cohorts each with a                

large number of heterogeneous samples, the second comparing two cell types along a             

differentiation trajectory each with a small number of homogeneous samples. For the first study,              

we obtained a large ATAC-Seq dataset of chronic lymphocytic leukemia (CLL) samples from             

Rendeiro et al. ( (Rendeiro et al., 2016) ) from > 50 patients and a total of over 1 billion reads and                    

show that the quantification of differential TF activity by  diffTF is highly robust with respect to a                 

wide range of parameter settings. We recapitulate many known TFs associated with CLL and              

propose several novel TFs that are involved in processes related to CLL biology such as the                

circadian clock. Furthermore, were were able to classify ~40% of these TFs (186) into activators               

and repressors, thus reconciling some biological processes that seem driven by activators and             

repressors at the same time. For the second case study we performed ATAC- and RNA-Seq on                

murine multipotent progenitors (MPP) versus granulocyte-macrophage progenitors (GMP) in         

quadruplicate. Again, with  diffTF  we were able to identify the known driver TFs of the               
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differentiation process, and we found that the majority of the highly differentially active TFs are               

acting as transcriptional activators. 

Finally, the approach has been successfully applied to identify TFs that are specifically             

associated with TET2, an enzyme involved in DNA demethylation  (Rasmussen et al., 2018) , and              

to identify novel driving factors in pulmonary artery hypertension (Reyes-Palomares et al., in             

preparation). 

 

RESULTS 
Conceptual derivation of using open chromatin as read-out of differential TF activity 
We define TF activity as the effect of a TF on the state of chromatin as measured by chromatin                   

accessibility assays (e.g. ATAC-Seq, DNase-Seq) or ChIP-Seq for active chromatin marks (e.g.            

H3K27ac). This definition is based on our earlier work where we showed that genetic variants               

affecting H3K27ac signal across individuals (hQTLs) can be explained by disruptions of TF             

motifs whenever the hQTL-SNP overlaps with a TFBS  (Grubert et al., 2015) . Even though the               

exact mechanisms of how changes in TF affinity translate to the chromatin level are unknown,               

TF activity likely plays a causal role in mediating the effect of the DNA variant onto chromatin                 

marks  (Liu et al., 2015) . By reversing this argument, we propose to use the aggregate changes                

in chromatin accessibility in the vicinity of putative binding sites of a TF as a read-out for its                  

change in activity ( Suppl. Fig. 1 ). A similar concept has been proposed in other tools that                

estimate TF activity based on ATAC or DHS data  (Baek et al., 2017) ;  (Schep et al., 2017) . 

 

Based on this concept, we developed  diffTF,  which is a computational approach to globally              

assess differential TF activity between two conditions (basic mode;  Fig. 1a, Suppl. Fig. 2 ) and               

classify TFs into activators and repressors (classification mode, see below;  Fig. 1b ). It is based               

on any data that measures active/open chromatin, putative binding sites for TFs of interest , and                

optionally, for the classification mode only, matched RNA-Seq data. Briefly, for the basic mode, it               

requires  in silico TFBS that can be obtained using position weight matrices (PWMs) from a               

database such as  HOCOMOCO  (Kulakovskiy et al., 2013) and a PWM scanning algorithm such              

as  PWMScan  (Ambrosini et al., 2018) for all TFs, or from a database of ChIP-Seq data, such as                  

ReMap  (Griffon et al., 2015) . For each TFBS it then calculates the difference between two               

conditions and summarizes their change in accessibility across all binding sites of a given TF. In                

this step it also normalises for the GC content of the respective TFBS ( Suppl. Fig. 3 ). The                 
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significance is assessed using either an empirical or analytical procedure. The former assesses             

the significance of the differential TF activity by comparing the real data against the distribution               

of values obtained from permuting the sample labels. The analytical procedure, which is             

particularly useful if the number of samples is too low for performing a reasonable number of                

permutations, calculates the p-value explicitly based on a t-statistic and estimated variance (see             

Methods for details and guidelines and  Suppl. Fig. 4 ). In the basic mode,  diffTF outputs               

differential activity and p-value for each TF, which together allow the identification of a set of TFs                 

that show a significantly higher activity in one of the conditions ( Fig. 1a ).  
 
Conceptual derivation of using open chromatin and RNA to classify TFs as            
transcriptional activators and repressors 
Surprisingly, little is known about whether a certain TF acts mostly as transcriptional repressor              

or activator, and based on literature text mining, most TFs have been annotated multiple times               

as both activator and repressor  (Han et al., 2018) ( Suppl. Fig. 12b )  (Han et al., 2018) indicates                 

that the cell type or other external factors are important in determining a TF’s main mode of                 

action. Therefore, we devised a cell-type specific and data-driven, multiomics approach to            

classify TFs into activators and repressors within the framework of  diffTF  that can be run on top                 

of the basic mode  (classification mode). Our classification framework is based on the fact that               

increasing abundance of an activator TF results in increased transcription of its target genes              

(and vice versa for repressors). Yet transcription is difficult to measure since a typical RNA-Seq               

experiment measures the steady-state RNA level regulated by transcription and degradation.           

We reasoned that measures of chromatin activity (such as accessibility) is a more direct              

read-out for the mode of action of TFs. Based on this, we implemented an activator/repressor               

classification scheme in  diffTF using RNA-Seq data as an estimate for TF abundance. For each               

TF, we calculate the correlations across individuals between its expression level and the             

ATAC-Seq signal in its putative target peak ( Fig. 1b ). Each TF is then classified (i) as an                 

activator when it shows an overall positive correlation with the ATAC-Seq signal at its putative               

target sites, or (ii) as a repressor for an overall negative correlation, or (iii) as undetermined if                 

the distribution of correlations is not significantly different from the peaks that did not overlap its                

putative binding sites (see also Methods and  Suppl. Fig. 12a ). The assumptions underlying this              

classification are tested in the context of case-study I (see below). 
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Case-study I: Quantify differential TF activity in a large ATAC-Seq dataset in CLL 

We sought to apply  diffTF to a large ATAC-Seq data set in a biological setting that is                 

well-studied so that we could assess the technical robustness and its power to recover relevant               

biological signal. To do so, we identified a large ATAC-Seq data-set comparing different             

subtypes of the extensively studied cancer chronic lymphocytic leukemia (CLL)  (Rendeiro et al.,             

2016)   as an ideal dataset.  

Chronic lymphocytic leukemia (CLL) is one of the most frequent types of cancer in the Western                

world, particularly among the elderly. There are two major subtypes of CLL, which are defined               

based on the mutation status of the IgHV locus (mutated: M-CLL and unmutated: U-CLL). In               

M-CLL, B-cells go through normal affinity maturation with the aid of T-helper cells and undergo               

multiple rounds of IgHV somatic hypermutation to produce high affinity B-cell receptors (BCR).             

This process is essential for their development, survival and growth  (Neu and Wilson, 2016) . In               

contrast, U-CLL B-cells reach their affinity maturation point in an unregulated manner, and             

without involvement of T-helpers  (Chiorazzi and Ferrarini, 2011) . Overall, this leads to worse             

clinical outcomes such as shorter survival time and higher frequency of relapse after treatment              

(Furman et al., 2014) .  

The CLL dataset is comprised of ATAC-Seq data for a cohort of 88 CLL patients stratified by the                  

mutation status of the IgHV locus (34 U-CLL, 50 M-CLL, 4 unclassified). After data processing               

and quality control, 25 and 27 U-CLL and M-CLL samples remained, and we applied  diffTF in                

the basic mode to identify the differences in TF activities between U-CLL and M-CLL ( Suppl.               
Fig. 5-7 , see Supplementary Methods for more details).  

In total we identified 67 TFs that are differentially active (FDR < 10%) between the two subtypes                 

( Fig. 2a ;  Suppl. Table 1 ). About ~41% of the differentially active TFs have previously been               

associated with CLL and mostly (90%) agree with the reported condition (i.e., mutated or              

unmutated;  Suppl. Table 2 ), thus providing a strong biological validation of the approach. The              

remaining 59%  may represent novel candidate TFs that can advance our understanding of the              

disease etiology in general and the biological differences of mutated and unmutated patients in              

particular.  

 

Before focusing on the biological interpretation of the specific TFs, we used this dataset to               

assess the technical robustness of  diffTF  with respect to TF binding site predictions. First, we               
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compared the results of  diffTF  when using putative vs. ChIP-Seq validated TF binding sites              

since predicting TF binding sites is inherently noisy and may result in many false positive sites                

when compared to ChIP-seq experiments  (Landt et al., 2012) . We observed a very strong              

correlation of the resulting TF activity differences (r=0.81;  Fig.  2b ,  Suppl. Fig. 8 ), which              

indicates that  diffTF is robust with respect to false positive binding sites. Second, we assessed               

the parameters for TF binding site predictions and found that neither the nucleotide composition              

of the predicted binding sites for  PWMScan ( Suppl. Fig. 9 ) nor the motif database ( JASPAR vs.                

HOCOMOCO ) had a strong impact on the differential TF activity (r=0.87, 0.62 and 0.69,              

respectively,  Fig. 2c-e ). Third, we assessed whether the size of the region surrounding the TF               

binding site from where signal was extracted (ranging from just the 7-25 bp long binding site to                 

additional 600 bp upstream and downstream) had an impact on the results. The resulting              

differential TF activities were strongly correlated (r>0.9 for 50-600 bp and r=0.76 for the binding               

sites only; see Supplement and  Suppl. Fig. 10 ). Additional robustness tests are described in the               

supplement. 

We also assessed the potential of  diffTF  to detect differential TF activities in experiments with               

little biological signal. For this, we removed high-signal regions (i.e. differentially accessible            

peaks at 5% FDR; see Methods) and compared the resulting differential TF activities to those of                

the full set. We found that they were very similar for both sets (r=0.89), thus demonstrating the                 

power of  diffTF to capture the differential TF activities by summarising the subtle changes in               

chromatin accessibility across many TFBS genome-wide ( Fig. 2f ).  
 

Finally, we assessed the dependency of  diffTF results on sample size and sequencing depth.              

Intriguingly, we found the results highly congruent across a wide range of sample sizes and               

sequencing depths, with the majority of the significant TFs from the full dataset changing in the                

same direction in the subsampled data ( Fig. 2g ,  Suppl. Fig. 11 ). Generally, the number of               

samples appears more important than read depth, and results using the full set were consistent               

for a coverage as low as 1-5 million processed reads per sample (see Methods). Although the                

subsampling results are dataset-specific and difficult to generalize they provide guidelines for            

the applicability of  diffTF and are in line with single-cell ATAC-Seq data analysis that also show                

robustness for low coverage at the level of genome-wide summary statistics  (Mezger et al.,              

2018) . 

In summary, these results establish the robustness of  diffTF in quantifying differences of TF              

activities, and demonstrate that aggregating signal across all binding sites is a powerful and              
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sensible approach to overcome limitations such as low coverage and little underlying biological             

signal. 

diffTF  proposes many novel TF candidates 

We next focused on the biological interpretation of the differentially active TFs (FDR 10%)              

between M-CLL and U-CLL patients ( Fig. 2a ;  Suppl. Table 1 ). Since TF binding motifs, which               

are the basis of  diffTF  (and any other tool that is based on predicted TF binding sites), can be                   

very similar between TFs of the same family, we decided to group TFs into TF-motif families                

using the PWM clustering tool  Rsat  (Medina-Rivera et al., 2015) ; clusters available at             

https://bit.ly/2J9TaaK ). The resulting clusters showed overall consistent activity changes within          

a TF family ( Fig. 3a ), with the exception of cluster 17 that can be explained by a prominent split                   

into two branches early in the clustering into NFAT and NFκB factors, which show more activity                

in U-CLL and M-CLL, respectively ( Fig. 3c ). 
 

The most active TF cluster in U-CLL is the IRF family and STAT2 (cluster 40;  Fig. 3d ), both of                   

which have been associated with disease onset and progression, and harbour several CLL             

susceptibility loci  (Arvaniti et al., 2011; Havelange et al., 2011; Slager et al., 2013) . It is followed                 

by the PAX TFs (cluster 54), which affect B-cell to plasma cell differentiation (PAX5), that is                

linked with cell survival and poor prognosis in CLL  (Ghamlouch et al., 2015) . Another prominent               

set of regulators are the members of the AP-1 complex (cluster 4), which increase proliferation               

and play an important role in driving the invasive nature of U-CLL  (Mittal et al., 2013) . Finally, we                  

found c-MYC, which is involved in cell proliferation and differentiation and is highly abundant in               

U-CLL  (Landau et al., 2015; Yeomans et al., 2016) .  

 

For M-CLL, we identified TFs that regulate and possibly reduce apoptosis, regulate cell cycle              

and suggest normal functionality of B-cells through the classical BCR, NF-kB and Wnt signaling              

pathways. The most active TF family in M-CLL patients is that of the POU TFs, also known as                  

Oct factors (cluster 12;  Fig 3b ), which regulate B-cell development and immunoglobulin            

production, therefore promoting survival of the lymphoma cells  (Heckman et al., 2006) . This is              

followed by the ROR factors (cluster 36), which together with Wnt5a activate NF-kB-dependent             

survival signaling in CLL  (Minami et al., 2010) , and the GATA family (cluster 16), which is known                 

to prime HSCs towards the lymphoid lineage and increase self-renewal of the stem cells in CLL                
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(Kikushige et al., 2011) . Other examples include the EGR family, whose motifs are enriched in               

aberrantly hypomethylated CpG sites in CLL  (Oakes et al., 2016) , PPARD, which has recently              

been linked to M-CLL through its effect on metabolic pathways in cancer cells  (Li et al., 2017) ,                 

and members of the GLI family, which are part of the Hedgehog signaling pathway and regulate                

apoptosis, thereby supporting survival of M-CLL cells  (Kern et al., 2015) . 

 

Among the novel factors associated with U-CLL, we found several TFs (i.e. BMAL1, CLOCK,              

and NR1D1) that are involved in the regulation of the circadian clock, which has recently been                

proposed as hallmark of cancer  (El-Athman and Relógio, 2018) . Moreover, we found members             

of the basic helix-loop-helix family, such as BHE40, a regulator of mitotic division  (D’Annibale et               

al., 2014) , which is essential for the development of B1-a cells  (Kreslavsky et al., 2017) and                

TFAP4, TFE3 and TFEB, for which there are known cases of gene-fusions in renal cell               

carcinoma  (Kauffman et al., 2014) . Another set of novel TFs more active in M-CLL are               

associated with pathways relevant for cancer- and B-cells such as escape from apoptosis             

(ZN784)  (Kasim et al., 2017) , regulation of cell cycle progression (ZBTB6)  (Chevrier et al.,              

2014) , and selection of B-cells and promotion of fetal B lymphopoesis (ARID3A)  (Zhou et al.,               

2015) . The GFI1 family (cluster 35) is less active in U-CLL and their expression and activation                

might influence and decrease rates of apoptosis in B-cells  (Coscia et al., 2011) . 

In summary, these results show that  diffTF is able to recapitulate much of the known biology of                 

the two subtypes of CLL and, in addition, identifies several more factors that are likely to be                 

implicated in the disease.  

Determination of the molecular function of TFs: transcriptional repressors and          

activators 

The paragraphs above have shown that  diffTF  can identify TFs that alter their activity across               

different types of CLL patients. However, to gain mechanistic insights into some of the              

regulatory differences between U-CLL and M-CLL, it is crucial to know whether a TF acts as                

activator, in which case a higher abundance would generally result in increased transcription of              

its target genes, or repressor, in which case an increase in abundance would be accompanied               

by decreased target gene transcription ( Fig. 1b ). To do so, we employed the classification mode               

of  diffTF,  which  integrates the ATAC-Seq data with RNA-Seq to classify TFs as activators or               
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repressors. For this, we first needed to test the global assumption that repressors and activators               

have an opposing effect on chromatin accessibility that underlies our classification framework. 

For activators, the expectation is that an increased TF abundance will increase the accessibility              

at its targets sites. For a repressor, however, the relationship between abundance and             

accessibility at its binding site is less straightforward: On the one hand the binding of the factor                 

itself will increase the accessibility locally, while on the other hand, repression is globally              

associated with closed chromatin. To understand the effect of repressors and activators on             

chromatin accessibility and derive general principles, we compared the accessibility footprint           

(Tn5 insertion sites) of a well-known repressor (REST) and a well-known activator (STAT2) that              

are active in our cell type. We observed that for the repressor REST, there is indeed an increase                  

in accessibility at its motif, which likely reflects the binding of the TF itself. Importantly, however,                

the accessibility drops to below the genome-wide average within 10 bp from the center of the                

motif ( Fig. 4a, bottom ). In contrast, for the activator STAT2, we observed increased chromatin              

accessibility outside its core binding site, which only slowly drops to the genome-wide average              

over a distance of >100 bp from the center of the motif, likely representing the effect of the TF                   

on opening the surrounding chromatin ( Fig. 4a, top ). This shows that, while there is an increase                

in accessibility for repressors at the immediate binding site, the surrounding chromatin is highly              

compact while it is open for the activator. This is in line with a previous observation on EGR and                   

SP4  (Baek et al., 2017)  and justifies our classification approach implemented in  diffTF. 

 

Applying this reasoning to the CLL dataset, where RNA-Seq data was available for eight              

individuals (after QC; see supplement), we were able to classify 44% of the expressed TFs as                

either activators or repressors ( Fig 4b-f ; n=186). Among the top activators are the IRFs, which               

are well known transcriptional activators  (Yanai et al., 2012) and which showed the same              

footprint pattern as STAT2 ( Fig. 4e ). Among the top repressors, we found PAX5, which has               

been shown to repress the activity of BLIMP-1  (Yasuda et al., 2012) and also shows a footprint                 

similar to the repressor REST ( Fig. 4b,e ). To assess the binding properties of activators and               

repressors globally we performed an unbiased footprinting analysis for all TFs deemed            

significant in CLL. Importantly, we found that the aggregate signal across all repressors             

produced a footprint similar to that of REST, while the footprint for activators looks similar to                

STAT2, again indicating that repressors and activators have very distinct open chromatin            

footprints ( Fig. 4f ). Clustering of the footprints of the individual TFs revealed four major classes.               

Class I is characterized by low levels of Tn5 insertions in the motif and high levels in the                  
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adjacent regions and its members are mainly classified as activators. Class II comprises of TFs               

with very low accessibility overall (mainly repressors). Class III contains TFs with high             

accessibility at the binding site and low accessibility in the adjacent regions, mainly classified as               

repressors but including a few activators. Finally, Class IV comprises TFs with a footprint that               

neither resembles an activator nor a repressor ( Suppl. Fig. 13 ). This clustering indicates that              

TFs with a Class I footprint are likely classified as activators. In contrast, Class III footprints (like                 

REST) are more likely classified as repressor, even though there might be some activator TFs               

that with a similar footprint. Overall, it seems that TF footprints correlate well with the molecular                

mode of action of a TF as identified by  diffTF .  

 

When investigating TF families as defined above with the RSAT clusters ( Fig. 3 ), we found that                

TFs from the same PWM cluster are often classified both as activators and repressors ( Suppl.               
Fig. 14 ), supporting the hypothesis that the molecular function of a TF is highly variable. The                

exceptions are cluster 40, containing mainly members of the IRF family, and cluster 17 that               

contains both NFAT and NFKB TFs, which are mostly classified as activators. The circadian              

regulators provide an example of why it is important to know the mode of action of a particular                  

TF: When analysing the differential TF activities, it appears as if BMAL1 is more active in M-CLL                 

while the other two TFs (CLOCK and NR1D1) are more active in U-CLL ( Fig 4d ). However,                

since BMAL1 is an activator, while CLOCK and NR1D1 are repressors, all three circadian              

factors are consistently more active in M-CLL, albeit with a contrary effect on their target genes. 

 

To assess the validity of our repressor/activator classification, we chose three independent            

approaches. First, we used  chromHMM chromatin states for primary B-cells from the            

Epigenomic Roadmap  (Roadmap Epigenomics Consortium et al., 2015) to assess whether           

activators and repressors are preferentially located in active and repressive states, respectively.            

Indeed, we observed that the fraction of TFBS in active chromatin states was significantly larger               

for activators than for repressors, and vice versa for heterochromatin and repressive states ( Fig.              
5a , see also  Suppl. Fig. 15 ), thus corroborating our classification of their molecular mode of               

action. Second, we assessed whether the direction in gene expression changes of TFs between              

U-CLL and M-CLL was in agreement with their differential activity and molecular mode of action.               

Again, our observations were in line with our expectations: activators showed a positive             

correlation of activity and expression change (r=0.19, P=0.05) while repressors showed a            

negative relationship (r=-0.32, P=0.0033;  Fig. 5b ). Third, we checked whether the expression of             
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target genes of a given TF changes in the same direction as its  activity calculated by  diffTF,                 

regardless of the TF’s classification as activator or repressor, and again found that this was the                

case for both activators and repressors ( Fig. 5c,  see Methods). In summary, these observations              

provide three independent lines of evidence that our approach implemented in  diffTF is able to               

classify TFs globally by their mode of action. The fact that the correlations are in the expected                 

direction but not perfect are likely reflecting that TFs are also regulated on the              

post-transcriptional level and thus show the limitation of using gene expression as a proxy for               

the abundance of the active form of TFs. 

Case study II: Applying diffTF to small scale multiomics dataset 

To assess the applicability of diffTF to small datasets, we decided to apply it to the well-studied                 

mouse hematopoietic system. We generated ATAC-Seq and RNA-Seq profiles of multipotent           

progenitor cells (MPP; Lin - cKit + Sca1 + ; CD150 - CD48 + ), an early hematopoietic progenitor         

population capable of supporting multilineage blood production  (Sun et al., 2014) , as well as the               

more differentiated and myeloid-restricted granulocyte-monocyte progenitors (GMP;       

Lin - cKit + Sca1 - ; CD16/32 + ). The profiles obtained were processed using an in-house ATAC-Seq           

pipeline and  diffTF  (using the analytical procedure due to the small number of samples) to               

identify TFs that are differentially active between MPP and GMP cells (see Online Methods).              

Due to the large number of significant TFs, reflecting the high diversity between the two cell                

types, we used RNA-Seq data to filter out non-expressed TFs. The differential signal is              

dominated by an increase activity of the members of the well-known class of master regulators               

of myelopoiesis, the CEBP family (C/ebpα,-β,-δ,-ε,-γ) in GMPs ( Fig. 6a ,  Suppl. Fig. 16 ). In              

addition, we observed higher activity of the MYC/MYB factors, which are known to be              

exclusively active in the GMPs  (Baker et al., 2014) and in NFIL3, which is involved in the                 

generation of natural killer cells  (Gascoyne et al., 2009) . Conversely, MPPs show a higher              

activity for IRF/STAT, ZEB1 and ITF2 (part of the Wnt signaling) as well as TFs from the                 

Homeodomain (HXB7,HXA10) and Forkhead (FOXO3) families, all of which are associated with            

self-renewal of hematopoietic stem cells  (Sands et al., 2013) .  

 

The small number of samples made the correlation-based classification of the TFs into             

activators and repressors unreliable. Therefore, we devised a second - less quantitative -             

approach for activator/repressor classification that is based on the TF footprint and differential             
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RNA-Seq expression. In short, we determined whether TF activity and expression level co-vary             

in the same direction and combined this with visual inspection of the pattern of its footprint                

( Suppl. Fig. 17 ). This allowed us to identify the set of activators that showed a clear activating                 

footprint as observed for the Class I TFs in the CLL data ( Fig. 6b ). Similar to the Class II and III                     

for CLL, the pattern was less clear for the repressor footprint clusters, which contain both               

potential repressors and activators. Interestingly, the most differentially active TFs between MPP            

and GMP are mainly classified as activators (CEBPs, NFIL3, IRFs) or have mixed evidence (i.e.               

activator footprint, but inconsistent directionality of expression and activity such as DBP and             

HLF). The most differentially active repressor we identified is JUN, whose difference in activity is               

far below the activators, indicating that the differentiation process from MPP to GMP is mainly               

driven by transcriptional activators. 

 

Overall, these results show that  diffTF is able to identify the known TFs that drive the                

differentiation from MPP to GMP, thus demonstrating its power to detect signals also for a small                

number of samples. Furthermore, we show how a qualitative classification scheme of TFs into              

activators and repressors that is primarily based on TF footprints can be useful in comparisons               

where the small number of samples does not allow a correlation-based classification.  

Comparison with similar tools 

We compared the few tools with a similar focus  (Baek et al., 2017; Heinz et al., 2010; Schep et                   

al., 2017) with  diffTF ( Suppl. Table 5 ) both qualitatively ( chromVAR ,  BagFooT ,  HOMER ) and             

quantitatively ( HOMER and  chromVAR ). Overall,  diffTF provides a more flexible and tailored            

analysis framework due to the extensive choice of parameters, diagnostic plots, TFBS-specific            

results, visualizations, and pipeline adjustability. As mentioned above, it is unique in its ability to               

directly integrate RNA-Seq with ATAC-Seq data to classify TFs into activators and repressors.             

Due to its flexibility,  diffTF is computationally expensive, and we provide detailed instructions on              

memory and time requirements in the documentation.  

 

We first compared  diffTF with a more traditional TF motif analysis such as  HOMER  (Heinz et al.,                 

2010) , which looks at motif enrichment in a set of differentially accessible peaks. Strikingly, no               

enriched motifs were found in M-CLL with  HOMER , while the few discovered in U-CLL              

correlated significantly with differential TF activity as computed by  diffTF ( Suppl. Fig. 18,  see              

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2018. ; https://doi.org/10.1101/368498doi: bioRxiv preprint 

http://f1000.com/work/citation?ids=3810403,4187246,78959&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=3810403,4187246,78959&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0
http://f1000.com/work/citation?ids=78959&pre=&suf=&sa=0
http://f1000.com/work/citation?ids=78959&pre=&suf=&sa=0
https://doi.org/10.1101/368498
http://creativecommons.org/licenses/by-nc-nd/4.0/


390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

Methods). This analysis highlights the power of  diffTF to capture more signal than standard              

motif enrichment approaches. 

 

To compare  diffTF with an approach that is also based on TF activities we chose  chromVAR  and                 

BaGFoot  (Baek et al., 2017) . We were unfortunately unable to run and adopt the BagFoot               

workflow for our CLL data due to missing example files, an incomplete documentation and              

unresponsiveness from the authors. For  chromVAR , the results correlate very well overall, with             

correlation coefficients between 0.75 and 0.93 (Pearson) and 0.69-0.88 (Spearman), depending           

on the set of TFs (i.e., all TFs or only those deemed significant by  diffTF , therefore                

predominantly removing TFs with low signal) and whether  chromVAR deviations or deviation            

scores are compared against ( Suppl. Fig. 19a-b , see Methods). Differences likely arise due to              

distinct methodological divergences such as comparing fold-changes for peaks ( chromVAR ) vs.           

binding sites ( diffTF ) or whether to compare the TF-specific effect against the mean effect              

across all TFs ( diffTF ) or not ( chromVAR ; see also Methods and  Suppl. Fig. 19c-f ). However,               

diffTF goes one step beyond the currently available methods by classifying TFs based on their               

mode of regulation - activator or repressor, thus providing important additional insights into their              

molecular function.  

 

 

DISCUSSION 
We presented a genome-wide method for quantifying differences in differential TF activity for a              

large set of TFs simultaneously, and for classifying them into their molecular mode of action as                

transcriptional activators or repressors. The method is available for download at           

https://git.embl.de/grp-zaugg/diffTF along with a comprehensive documentation and example        

data.  

 

We have shown in two case studies that  diffTF  is able to recover a change in activity for the TFs                    

expected to drive the biological processes, thus demonstrating the biological validity of the             

method. In addition, we have extensively tested and demonstrated the technical robustness of             

diffTF . In particular, we have shown that diffTF is able to overcome the inherent noisiness of TF                 

binding site predictions by aggregating data across all putative binding sites.  
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Calculating differential TF activity based on aggregating signal across the genome has been             

proposed before based on the expression of putative target genes of a certain TF  (Boorsma et                

al., 2008; Bussemaker et al., 2001) . Using the effect on chromatin instead of expression has               

several advantages: first chromatin is a much simpler trait since gene expression is the sum of                

transcription and degradation, thus increasing the power to detect differences. Second, there            

are much more peaks than genes, thus allowing for better statistics and signal to noise ratio.                

Finally, the effect on chromatin is much more local than on gene expression  – in particular in                 

mammalian genomes, where genes can be regulated by distal enhancers. We have compared             

differential TF activity calculated based on the average expression change of the target genes to               

the output of  diffTF and found that while the direction of activity between both methods is highly                 

correlated, the signal is much lower when using the expression of target genes instead of               

chromatin accessibility at putative binding sites. 

 

To demonstrate the power of  diffTF for large but heterogeneous datasets, we have applied it to                

identify and characterise differences between M-CLL and U-CLL from a publicly available            

dataset of ATAC-Seq (1bn reads, 52 patients) and RNA-Seq. It is noteworthy that a TF motif                

enrichment analysis on the significantly differentially accessible peaks did not reveal any factor             

to be significantly enriched in M-CLL, indicating that in this case (as probably in many               

patient-control studies) the key TFs are not necessarily switching their target enhancers and             

promoters on and off, but rather mis-regulating many regions to a lesser extent. The advantage               

of  diffTF is that it can detect a slight shift in activity of the TF even if the signal differences at                     

each binding site a very low and rarely significant. It does so by averaging across all of a TFs                   

putative binding sites and is therefore more powerful than conventional enrichment analyses.  

 

We have devised an approach within the  diffTF framework to classify TFs into activators and               

repressors based on the correlation of their expression level (RNA-Seq) and the activity of their               

putative binding sites (ATAC-Seq). This information is highly relevant when interpreting the            

action of TFs since it is important to know whether an upregulation of a TF would have a                  

positive or negative effect on chromatin (and therefore transcriptional) activity. Notably, this            

classification could work even for datasets for which insufficient RNA-Seq data are available  –              

as we have shown for the MPP-GMP case  –  by jointly investigating TF footprints, differential               

expression of the TF and differential TF activity. 
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It is important to note that TFs can often act as activators and repressors at different genomic                 

loci e.g. depending on their cofactors, whereas here we predict their main mode of action based                

on the mean effect across all their predicted binding sites, and thereby lose any information               

about bifunctionality. Furthermore, since the classification is based on correlations, it is heavily             

dependent on variation in the RNA-Seq signal across individuals, thus biasing the TFs that can               

be classified towards those that are variable across individuals. As a consequence, TFs whose              

post-transcriptional regulation is not reflected in their transcript abundance will not get classified             

correctly. Another potential misclassification may happen because of the similarity of PWMs            

within a cluster, which makes it difficult to distinguish the exact effect of one TF while its                 

expression level is uniquely defined. As an example we cite PRDM1, which is part of IRF family                 

(cluster 40) and classified as very strong repressor, its footprint however looks more similar to a                

typical activator (data not shown), suggesting that it is not PRDM1 driving the ATAC-Seq signal               

in this case, but the IRFs. Thus, for distinguishing the functional roles of TFs from the same                 

cluster/family further biochemical experiments will be needed. Despite these potential pitfalls,           

diffTF  provides unique insights into the molecular mechanism of TFs on a global level. 

 

Since many ATAC-seq experiments have a rather low number of samples, we also assessed the               

power of  diffTF to uncover biology in small (but more controlled) experiments. In particular, we               

have performed a  diffTF  analysis to compare murine MPP and GMP (4 replicates each). Again               

we identified the major TFs driving the differentiation, and were able to qualitatively classify TFs               

into activators and repressors - in a correlation-independent approach. This classification           

revealed that the bulk of the change in chromatin accessibility during the differentiation from              

MPP to GMP is driven by activators. This case-study demonstrates the applicability of  diffTF to               

small-scale data. 

 

While similar methods have been proposed for analysing ATAC-Seq data  (Baek et al., 2017;              

Schep et al., 2017) , our method has several advantages when dealing with bulk ATAC-Seq data               

and can also be used for histone mark ChIP-Seq data: (i) Unlike other methods that calculate                

the background theoretically based on the genome-wide read depth,  diffTF is insensitive to             

sequence and locus dependent biases since we calculate a fold-change between conditions for             

each region, thus normalizing for local read depth biases. This is particularly advantageous for              

detecting small changes such as between two heterogeneous cohorts in patient-control studies.            

(ii)  diffTF allows integration with matching RNA-Seq data to classify TFs into activators and              
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repressors in a fully data-driven approach within the same analysis framework. Such            

classifications are a significant help when interpreting the effects of up/down regulation of a              

particular factors. (iii)  diffTF provides the fold-change value for each TFBS which allows for easy               

retrospective follow-up analysis, e.g. identifying the most differential regions regulated by a            

specific set of TFs. (iv) Finally, our method might allow to analyse time-course data in an                

additive manner by calculating the overall change of slope for each TF (see Methods). 

 

Overall, with  diffTF  we present a multiomics data integration strategy of ATAC-Seq and             

RNA-Seq data that calculates differential TF activity across conditions and classifies TFs based             

on their molecular mode of action into activators and repressors. With this,  diffTF  can aid in                

formulating testable hypotheses and ultimately improve the understanding of regulatory          

mechanisms that are driving the differences in cell state on a systems-wide scale. 

 

METHODS 
Methods, including statements of data availability and any associated accession codes and            

references, are available in the online version of the paper. 
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Figures and figure captions 
Figure 1.  Schematic representation of the diffTF workflow .  (a) A simplified workflow illustrates             

the principle upon which  diffTF is based: it calculates a fold-change between two conditions for               

each binding site of a given TF and compares this distribution to a background set of                

fold-changes obtained from GC-content matched loci that do not contain the putative TFBS. The              

difference in distribution is assessed in significance and effect size and visualized in a volcano               

plot where the y-axis indicates statistical significance and the x-axis shows the effect size. (For a                

detailed workflow see  Suppl. Fig. 1 and  2 ).  (b) Schematic representation of the classification              

approach : correlation of TF expression level with the accessibility of its target sites. If the               

distribution of correlations between a TF’s RNA-level and the chromatin accessibility at its target              

sites is more positive than the background distribution (accessibility at non-target sites), the TF              

is classified as an activator in the particular biological environment; if negative, it is classified as                

a repressor. Correlations close to 0 are classified as undetermined.  
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Figure 2.  diffTF  results for the CLL dataset, experimental validation and technical robustness             

of the method.  (a) Volcano plot of differential TF activity between U-CLL (n=27) and M-CLL               

(n=25) patients. The y-axis denotes statistical significance (-log10 transformed). TFs that pass            

the significance threshold (5% FDR; dotted line) are labeled and colored according to their              

novelty status (see text and  Suppl. Table. 2 ). “#TFBS” denotes the number of predicted TF               

binding sites in the peak regions for this analysis. (b)-(f): Technical robustness of  diffTF .              

Scatterplots of the differential TF activity from all TFs for two different  diffTF analyses are               

shown. Each point represents one TF. For (c-f), colors represent significance at 5% FDR (white               

– not significant in either analysis; light green and light blue  – significant for the analysis on the                  

x-axis or y-axis, respectively; purple  – significant for both analyses).  (b) Comparison of all              

predicted TFBS and TFBS experimentally validated by ChIP-Seq data from ReMap. See also             

Suppl. Fig. 8 .  (c-d) Comparison for different p-value thresholds in  PWMScan to predict TFBS:              

(c) standard vs. stringent (i.e., 1e-5 vs. 1e-6) and (d) standard vs. lenient (i.e., 1e-5 vs. 5e-5) for                  

a total of 628 TFs for which binding sites were retrieved for both scanning modes.  (e)                

Comparison of  diffTF  results based on  HOCOMOCO v10 vs.  JASPAR 2018 as input for the 412                

TFs for which a motif was available in both databases.  (f) Comparison of the full consensus                

peak set ( allPeaks ) and only the non-differentially accessible peaks ( noDApeaks ; n=640 TFs            

from  HOCOMOCO ).  (g) Robustness analysis based on sequencing depth and sample size.            

Each cell in the heatmap shows the fraction of TFs that showed the same direction of change as                  

in the full dataset for varying degrees of down-sampling sequencing depth and number of              

samples, (5% FDR), averaged over 50 independent repetitions to minimize sampling noise.            

Only TFs that were deemed significant in the full dataset are considered (see also  Suppl. Fig.                
11 ). Sequencing depth is shown as a fraction of the original data and median number of reads                 

across samples, while the number of samples is given as unmutated + mutated.  
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Figure 3 .  Clustering of TFs based on the similarity of their PWMs.  (a) Boxplot of PWM clusters                 

with at least 3 members as defined by RSAT for the differential TF activity between U-CLL and                 

M-CLL. In each cluster, the most negative and most positive TF is labeled. (b)-(d): RSAT               

clustering output and tree for specific clusters.  (b) Cluster 12 (POU family), the most distinct               

cluster for M-CLL patients.  (c) Cluster 17, which has two distinct subclusters, representing the              

NFAT and NFKB family, respectively.  (d) Cluster 40 (IRF family), the most distinct cluster for               

U-CLL patients. 
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Figure 4 .  Classification of TFs into activator or repressor based on RNA-Seq and ATAC-Seq              

data.  (a) Exemplary footprints for a well-known activator (STAT2, top) and repressor (REST,             

bottom). The x-axis depicts the distance in bp from the TFBS center, the y-axis denotes the                

number of average Tn5 insertions, normalised to the library size and numbers of samples              

across U-CLL and M-CLL. TFBS were predicted by  PWMscan and only those overlapping with              

open chromatin have been considered. The solid black line indicates the average insertion sites              

within accessible chromatin.  (b) Distributions of the Pearson correlations between TF           

expression and ATAC-Seq signal at all putative TFBS (red line), and background distribution of              

TFBS not containing the motif of interest (grey line) for two specific TFs, IRF2 (top) and PAX5                 

(bottom).  (c) Summary of (b) across all TFs in the form of a heatmap showing the differences in                  

Pearson correlation of putative target peaks and background for each TF (i.e., subtracting the              

black from the red line in (b)). Each TF is one row and is annotated as activator (green),                  

undetermined (grey) or repressor (red) as classified by  diffTF .  (d) Same as Fig. 2a, but with the                 

TFs labeled with their predicted role as activator (green), undetermined (black) or repressor             

(red). See Fig. 2a for details.  (e) Footprint analysis for an activator (IRF2, right) and repressor                

(PAX5.A, left) as classified by  diffTF . The top row shows the footprints separately for M-CLL and                

U-CLL (blue and orange, respectively) based on the normalized number of Tn5 insertions, while              

the bottom row highlights their differences (U-CLL - M-CLL) are shown. See (a) for axis               

descriptions.  (f) Summary footprint for all activators (top, green) and repressors (bottom, red).             

See (a) for axis descriptions. 
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Figure 5 .  Validations for the activator and repressor classification and downstream analyses.  (a)             

Boxplots showing the fraction TFBS overlapping with specific chromatin states as defined by             

chromHMM  (Roadmap Epigenomics Consortium et al., 2015)  for all activators (green) and            

repressors (red) are shown. Only  chromHMM states with significant differences (Wilcoxon test;            

p-value < 0.05) between activators and repressors are displayed.  (b) Pearson correlation of the              

log2 fold changes from RNA-Seq and differential TF activity for activators (green, left),             

undetermined TFs (black, middle), and repressors (red, right). Only expressed TFs are shown.             

(c) Correlation of differential TF activity and median of the differential target gene expression of               

U-CLL against M-CLL. The x-axis shows the median target gene (TG) log2 fold-change, the              

y-axis denotes the differential TF activity. Each TF label is colored based on its              

activator/repressor status (green/red) on a continuous scale (dark to light) based on the             

correlation strength (see Fig. 4d). (OR=odds ratio, r=Pearson correlation coefficient). 
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Figure 6 .  diffTF  recapitulates known TFs that drive the differentiation from MPP to GMP and               

shows a similar activator/repressor cluster as in the CLL data .  (a) Volcano plot of differential TF                

activity between MPP (n=4) and GMP (n=4) cells. Due to the high number of significant TFs                

only the most significant are labeled. The full list is available in Suppl. Table 4.  (b) The footprints                  

are for TFs in two selected clusters that represent the activators and repressors, respectively              

are shown as heatmap (right) and aggregate plots (left; see  Suppl. Fig. 17  for the full heatmap).                 

Only TFs that were significantly differentially active and all significantly differentially expressed            

(adj. p-value < 0.05 for both) are displayed. Colors represent footprint strength, while white              

denotes the value of the genomic background in the consensus peakset. Clusters were defined              

using hierarchical clustering with the  ward.D2 method (clustering tree omitted for clarity)(see            

Suppl. Fig. 17 ). For the cluster summary footprints at the left, we divided each footprint value by                 

the mean value of each cluster to highlight the differences in the surrounding chromatin              

structure. The direction of TF expression and TF activity is in analogy to what is described in the                  

text. “Direction” denotes whether expression and TF activity have the same or opposite sign.  
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