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ABSTRACT Adaptation in quantitative traits often occurs through subtle shifts in allele frequencies at many loci,
a process called polygenic adaptation. While a number of methods have been developed to detect polygenic
adaptation in human populations, we lack clear strategies for doing so in many other systems. In particular, there
is an opportunity to develop new methods that leverage datasets with genomic data and common garden trait
measurements to systematically detect the quantitative traits important for adaptation. Here, we develop methods
that do just this, using principal components of the relatedness matrix to detect excess divergence consistent with
polygenic adaptation and using a conditional test to control for confounding effects due to population structure. We
apply these methods to inbred maize lines from the USDA germplasm pool and maize landraces from Europe.
Ultimately, these methods can be applied to additional domesticated and wild species to give us a broader picture
of the specific traits that contribute to adaptation and the overall importance of polygenic adaptation in shaping
quantitative trait variation.
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Introduction1

Determining the traits involved in adaptation is crucial for understanding the maintenance of variation2

(Mitchell-Olds et al. 2007), the potential for organisms to adapt to climate change (Bay et al. 2017; Aitken et al.3

2008), and the best strategies for breeding crops or livestock (Howden et al. 2007; Takeda and Matsuoka 2008).4

While there are many examples of local adaptation from reciprocal transplant experiments (Hereford 2009;5

Leimu and Fischer 2008), the challenges of measuring fitness in controlled experiments limit their use. More6

importantly, experiments based on field measurements can tell us about fitness in a specific environmental7

context, but are less informative about how past evolutionary forces have shaped present day variation8

(Savolainen et al. 2013). Instead, quantifying the role of adaptation in shaping current phenotypic variation9

will require comparing observed variation with expectations based on neutral models (Leinonen et al. 2008).10

With the growing number of large genomic and phenotypic common garden datasets, there is an opportunity11

to use these types of comparisons to systematically identify the traits that have diverged due to adaptation.12

A common way of evaluating the role of spatially-variable selection in shaping genetic variation is to13

compare the proportion of the total quantitative trait variation among populations (QST) with that seen at14

neutral polymorphisms (FST) (Spitze 1993; Prout and Barker 1993; Whitlock 2008). QST − FST methods have15

been successful at identifying local adaptation but have a few key limitations that are especially important for16

applications to large genomic and phenotypic datasets (Leinonen et al. 2013; Whitlock 2008). First, standard17

QST − FST assumes a model in which all populations are equally related (but see Whitlock and Gilbert 2012;18

Ovaskainen et al. 2011; Karhunen et al. 2013 for methods that incorporate different models of population19

structure). Second, rigorously estimating QST requires knowledge of the additive genetic variance VA both20

within and between populations (Whitlock 2008). Many studies skirt this demand by simply measuring21
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the proportion of phenotypic variation partitioned between populations (“PST”), either in natural habitats22

or in common gardens. However, replacing QST with PST can lead to problems due to both environmental23

differences among natural populations and non-additive variation in common gardens (Pujol et al. 2008;24

Whitlock 2008; Brommer 2011). Third, QST − FST approaches are unable to evaluate selection in individuals25

or populations that have been genotyped but not phenotyped. In many cases it is more cost-effective to26

phenotype in a smaller panel and test for selection in a larger genotyped panel. Furthermore, there are a27

number of situations where it may be challenging to phenotype individuals of interest — for example, if28

individuals are heterozygous or outbred, cannot be easily maintained in controlled conditions, or are dead,29

they can be genotyped but not phenotyped. In these cases, the population genetic signature of adaptation in30

quantitative traits (“polygenic adaptation”) can be detected by looking for coordinated shifts in the allele31

frequencies at loci that affect the trait (Le Corre and Kremer 2012; Kremer and Le Corre 2012; Latta 1998).32

Current approaches to detect polygenic adaptation take advantage of patterns of variation at large33

numbers of loci identified in genome-wide association studies (GWAS) (Berg and Coop 2014; Turchin et al.34

2012; Field et al. 2016). One approach, QX, developed by Berg and Coop (2014), extends the intuition35

underlying classic QST − FST approaches by generating population-level polygenic scores — trait predictions36

generated from GWAS results and genomic data — and comparing these scores to a neutral expectation.37

However, methods for detecting polygenic adaptation using GWAS-identified loci are very sensitive to38

population structure in the GWAS panel (Berg and Coop 2014; Robinson et al. 2015; Novembre and Barton39

2018; Berg et al. 2018; Sohail et al. 2018). Because GWAS in many systems are conducted in structured, species-40

wide panels (Atwell et al. 2010; Flint-Garcia et al. 2005; Wang et al. 2018), current methods for detecting41

polygenic adaptation are difficult to apply widely.42

Here, we adapt methods for detecting polygenic adaptation to be used in structured GWAS panels and43

related populations. First, using a new strategy for estimating VA, we develop an extension of QST − FST ,44

that we call QPC, to test for evidence of adaptation in a heterogeneous, range-wide sample of individuals45

that have been genotyped and phenotyped in a common garden. We then develop an extension of QX for46

use in structured GWAS populations where the panel used to test for selection shares population structure47

with the GWAS panel. We apply both of these methods to data from domesticated maize (Zea mays ssp.48

mays). Overall, we show that the method controls for false positive issues due to population structure and49

can detect selection on a number of traits in domesticated maize.50

Results51

Extending QST − FST to deal with complicated patterns of relatedness with QPC52

Our approach to detecting local adaptation is meant to ameliorate two main concerns of QST − FST analysis53

that limit its application to many datasets. First, many species-wide genomic datasets are collected from54

individuals that do not group naturally into populations, making it difficult to look for signatures of55

divergence between populations. Second, calculating QST requires an estimate of VA, usually done by56

phenotyping individuals from a crossing design.57

We address these issues by using principal component analysis (PCA) to separate the kinship matrix, K,58

into one set of principal components (PCs) that can be used to estimate VA and an orthogonal set of PCs59

that can be used to test for selection. We base our use of PCA on the animal model, which is often used to60

partition phenotypic variance into the various genetic and environmental components among close relatives61

within populations (Henderson 1950, 1953; Thompson 2008). More generally, the animal model is a statement62

about the distribution of an additive phenotype if the loci contributing to the trait are drifting neutrally (see63

Ovaskainen et al. (2011); Berg and Coop (2014) for a recent discussion, and Hadfield and Nakagawa (2010)64

for a more general discussion of the relationship between the animal model and phylogenetic comparative65

methods).66

We first use the animal model to describe how traits are expected to vary across individuals under drift
alone. Let ~Z be a vector of trait measurements across M individuals, taken in a common garden with
shared environment. Assume for the moment that all traits are made up only of additive genetic effects,
that environmental variation does not contribute to trait variation (VP = VA), and that traits are measured
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without error (i.e. that ~Z are breeding values). The animal model then states that ~Z has a multivariate normal
distribution:

~Z ∼ MVN(µ, 2VAK), (1)

where µ is the mean phenotype, VA is the additive genetic variance, and K is a centered and standardized67

M×M kinship matrix, where diagonal entries contain the inbreeding coefficients of individuals and off-68

diagonal cells contain the genotypic correlations between individuals (see Eq 17 in the methods). The kinship69

matrix describes how variation in a neutral additive genetic trait is structured among individuals, while VA70

describes the scale of that variation.71

Before discussing how we can use Eq. 1 to develop a test for adaptive divergence, it is worth spending
time thinking about how this statement relates to QST − FST . If the individuals in our sample are grouped
into a set of P distinct populations, then the kinship matrix also naturally implies an expectation of how
variation in the trait is structured among populations under neutrality. To see this, consider that the vector of
population mean breeding values can be calculated from individual breeding values as ~Zpop = HT~Z, where
the pth column of the M× P matrix H has entries of 1

np
for individuals sampled from population p, and 0

otherwise (np is the number of individuals sampled from population p). Because ~Z is multivariate normal, it
follows that ~Zpop is as well, with

~Zpop ∼ MVN
(
µpop, 2VAKpop

)
, (2)

where Kpop = HTKH and µpop is the mean trait across populations.72

Based on Eq. 2, if VA is known, we can calculate a simple summary statistic describing the deviation of73

~Zpop from the neutral expectation based on drift:74

QX =
(~Zpop − µ)TK−1

pop(~Zpop − µ)

2VA
. (3)

Under neutrality, QX is expected to follow a χ2 distribution with P− 1 degrees of freedom (µ is not known a
priori and must be estimated from the data, which expends a degree of freedom) (Berg and Coop 2014). If
all P populations are equally diverged from one another, with no additional structure or inbreeding within
groups, then Kpop = FST I, where FST is a measure of genetic differentiation between the populations and I is
the identity matrix. Then, Eq. 3 simplifies to

QX =
(P− 1)Var(~Z)

2VAFST

= (P− 1)
QST
FST

(4)

showing that Eq 3 is the natural generalization of QST − FST to arbitrary population structure.75

Here, we use the PCs of K instead of the subpopulation structure that is commonly used in QST − FST76

analyses. Thus, instead of testing for excess phenotypic divergence between populations, we test for excess77

phenotypic divergence along the major axes of relatedness described by PCs. We can link QX to a PC based78

approach by noting that for any arbitrary H matrix (not just the type described above), QX will follow79

a χ2 distribution and the degrees of freedom of this distribution will be equal to the number of linearly80

independent columns in H. We find the PCs of the kinship matrix, K, with the eigen-decomposition of K81

such that, K = UΛUT , where U = [~U1, ~U2, ~U3, ...~UM] is the matrix of eigenvectors and Λ is a diagonal matrix82

with the eigenvalues of K. We denote the mth eigenvalue as λm.83

To quantify the amount of divergence that occurs along PCs, we project the traits described by ~Z onto the
eigenvectors of K by letting zm = (~Z− µ) · ~Um. Intuitively, zm describes how much the traits (~Z) vary along
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the mth PC of the relatedness matrix K; it can also be thought of as the slope of the relationship between ~Z
and the mth PC of K. Under a neutral model of drift (from Eq. 1) for each m we can thus write:

zm ∼ N(0, 2VAλm). (5)

To compare zm across different PCs, we can standardize zm by the eigenvalue λm:

cm =
zm√
λm

, cm ∼ N(0, 2VA). (6)

Crucially, cm values are independent from each other under neutrality, as they represent deviations along84

linearly independent axes of neutral variation. Therefore, we can estimate VA using the variance of any85

set of cm. To develop a test analagous to QST − FST , we choose to declare projections onto the top 1 : R86

of our eigenvectors (~C1:R) that explain broader patterns of relatedness to be “among population” axes of87

variation, and projections onto the lower R + 1 : M of our eigenvectors (~CR+1:M) to be “within population”88

axes of variation. Under neutrality, we expect that Var(~C1:R) = Var(~CR+1:M). If there has been adaptive89

differentiation among populations then Var(~C1:R) > Var(~CR+1:M). Note that Var(~C1:R) is the same as90

E
[
~C2

1:R

]
since the mean of ~C1:R is 0 based on Eq. 6. We can test the deviation of the ratio of these two91

variances using an F test:92

Qamong:within =
E
[
~C2

1:R

]
E
[
~C2

R+1:M

] ∼ F(R, M− (R + 1)). (7)

We focus on the upper tail of the distribution, as we are interested in testing for evidence of selection93

contributing to trait divergence. A rejection of the null thus indicates excess trait variation in the first R PCs94

beyond an expectation based on the later M− R PCs. All together, this test allows us to detect adaptive95

trait divergence across a set of lines or individuals without having to group these individuals into specific96

populations.97

We can also calculate variance along specific PCs and compare divergence along specific PCs to the
additive variance estimated using the lower R : M eigenvectors. Looking at specific PCs will be useful for
identifying the specific axes of relatedness variation that drive adaptive divergence as well as for visualizing
results. So, for a given PC, S:

QPC =
E
[
C2

S
]

E
[
~C2

R+1:M

] ∼ F(1, M− (R + 1)). (8)

Again we test only in the upper tail of the distribution. The rejection of the null corresponds to excess98

variance along the sth PC. Eqs. 7 & 8 are valid for any values of S, R, and M as long as R > S and M > R.99

However, picking values of S, R, and M may not be trivial. In our subsequent application of this test, we100

choose to test for excess differentiation along the first set of PCs that cumulatively explain 30% of the total101

variation in relatedness. However, an alternative that we do not explore here would be selecting the set of102

PCs to use with methods from Bryc et al. (2013) or the Tracy-Widom distribution discussed in Patterson et al.103

(2006).104

Testing for selection with QPC in a maize mapping panel105

We applied QPC to test for selection in a panel of 240 inbred maize lines from the GWAS panel developed by106

Flint-Garcia et al. (2005). The GWAS panel includes inbred lines meant to represent the diversity of temperate107

and tropical lines used in public maize breeding programs, and these lines were recently sequenced as108

part of the maize HapMap 3 project Bukowski et al. (2017). In Figure 1A we plot the relatedness of all109

maize lines on the first two PCs. The first PC explains 2.04% of the variance and separates out the tropical110

from the non-tropical lines, while the second PC explains 1.90% of the variance and differentiates the111
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Figure 1 Structure in the maize populations. These plots show the first two principal components of
population structure (the eigenvectors of the kinship matrix) for various maize panels included in this
paper. A) 240 maize lines from the “GWAS panel” that were used in the trait QPC analysis. Each point
represents an inbred line and points are colored by their assignment to subpopulations from (Flint-Garcia
et al. 2005). B) The GWAS panel from (A) along with the 2,704 inbred maize lines of the Ames diversity
panel (Romay et al. 2013). C) The GWAS panel from (A) along with 906 European maize landraces from
(Unterseer et al. 2016)

.

stiff-stalk samples from the rest of the dataset (stiff-stalk maize is one of the major heterotic groups used to112

make hybrids (Mikel and Dudley 2006)). While previous studies have used relatedness to assign lines to113

subpopulations, not all individuals can be easily assigned to a subpopulation and there is a fair amount of114

variation in relatedness within subpopulations (Flint-Garcia et al. 2005) (Figure 1A), suggesting that using115

PCs to summarize relatedness will be useful for detecting adaptive divergence.116

We first validated that QPC would work on this panel by testing QPC on 200 traits that we simulated117

under a multivariate normal model of drift based on the empirical kinship matrix, assuming VA = 1.118

As expected, from Eq. 6, the variance in the standardized projections onto PCs (cm) of these simulated119

traits centered on 1, and, across the 36 PCs tested in 200 simulations, only 317 tests (4.4%) were significant120

at the p < 0.05 level before correcting for multiple testing. Adding simulated environmental variation121

(VE = VA/10 and VE = VA/2) to trait measurements increased the variance of cm, with this excess variance122

falling disproportionately along the later PCs (those that explain less variation in relatedness). These results123

suggest that unaccounted VE increases estimated variance at later PCs, ultimately increasing the variance124

along earlier PCs that will appear consistent with neutrality. However, this reduction in power can be125

minimized by controlling environmental noise — for example by measuring line replicates in a common126

garden or best unbiased linear predictions (BLUPs) from multiple environments (See Appendix 1 for a more127

extensive treatment of VE).128

We then tested for selection on 22 trait measurements that, themselves, are estimates of the breeding value129

(BLUPs) of these traits measured across multiple environments (Hung et al. 2012). These 22 traits include a130

number of traits thought to be important for adaptation to domestication and/or temperate environments in131

maize, such as flowering time (Swarts et al. 2017), upper leaf angle (Duvick 2005), and plant height (Peiffer132

et al. 2014; Duvick 2005). After controlling for multiple testing using an FDR of 0.05, we found evidence of133

adaptive divergence for four traits: days to silk, days to anthesis, leaf length, and node number below ear134

(Figure 2A). We plot the relationship between PC1 and two example traits to illustrate the data underlying135

these signals of selection. In Figure 2B, we show a relationship between PC1 and Kernel Number that is136
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Figure 2 Detecting adaptation within the GWAS panel with QPC. A) A heatmap showing results from
QPC on the first 22 PCs (x-axis) for 22 traits (y-axis). Squares are colored by their p value. If the q value
corresponding to that p value is < 0.5 there is a white dot in the square. B) Total kernel number per cob
plotted against the first principal component of relatedness (PC 1). Each point represents a line in the
GWAS panel, colored by its membership in a subpopulation (same colors as Fig. 1A). The solid line shows
the linear regression of the trait on PC 1 and the dashed lines show the 95% confidence interval of linear
regressions expected under neutrality. Note that the linear regression is not the same as the F test done in
QPC, and that we plot these lines for visualization purposes only. C) Similar to B, but showing days to silk
on the Y axis.
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consistent with neutral processes and in Figure 2C we show a relationship between PC 1 and Days to Silk137

that is stronger than would be expected due to neutral processes and is instead consistent with diversifying138

selection. We detected evidence of diversifying selection on various traits along PC1, PC2, and PC10. While139

PC 1 and PC2 differentiate between known maize subpopulations (Fig. 1A), PC 10 separates out individuals140

within the tropical subpopulation, so our results are consistent with adaptive divergence contributing to141

trait variation within the tropical subpopulation (Fig. S2).142

Detecting selection in un-phenotyped individuals using polygenic scores143

Extending the method described above to detect selection in individuals or lines that have been genotyped
but not phenotyped will expand to detect polygenic adaptation when phenotyping is expensive or impossible.
Here we outline methods for detecting selection in individuals that have been genotyped but not phenotyped
(referred to as the “genotyping panel”). We build on methods developed in Berg and Coop (2014) and
Berg et al. (2017) and extend them to test for adaptive divergence along specific PCs and in the presence of
population structure shared between the GWAS panel and the genotyping panel. To detect selection on traits
in the genotyping panel, we calculate polygenic scores for individuals in this panel. Specifically, if we have a
set of n independent, trait-associated loci found in a GWAS, we can write the polygenic score for individual
or line i

Xi =
n

∑
j=1

2βi pij, (9)

where β j is the additive effect of having an alternate allele of the jth locus, and pij is the alternate allele144

frequency within the ith individual or line (i.e., half the number of allele copies in a diploid individual).145

Here, as before, we can test for excess divergence in genetic scores (X) along specific PCs of relatedness.146

We do this by adapting Eq. 6, replacing our observed trait values (~Z) with polygenic scores for these values147

(~X), so that, if µ is the mean of ~X, ~Um is the mth PC, and λm is the mth eigenvalue of the kinship matrix,148

cm =
(~X− µ)~Um√

λm
, cm ∼ N(0, 2VA). (10)

We can then test for selection using QPC (Eq. 8) to detect excess variance in polygenic scores along specific149

PCs. However, when there is shared population structure between the GWAS panel and the genotyping150

panel, there are two concerns about applying QX or QPC on polygenic scores made using the genotyping151

panel:152

1. If we have already found a signal of selection on our phenotypes of interest in the GWAS panel, then a153

significant test could simply reflect this same signal and not independent adaptation in the genotyping154

panel.155

2. The loci and effect sizes found by our GWAS may be be biased by controls for population structure in156

the GWAS, leading to false positive signals of selection in the genotyping panel.157

This second point is worth considering carefully. Modern GWAS control for false-positive associations due158

to population structure, often by incorporating a random effect based on the kinship matrix K into the159

GWAS model (Yu et al. 2006). However, controlling for population structure will bias GWAS towards finding160

associations at alleles whose distributions do not follow neutral population structure and towards missing161

true associations with loci whose distributions do follow population structure (Atwell et al. 2010). Because of162

this bias, the loci detected may not appear to have neutral distributions in the GWAS panel or, crucially, in163

any additional set of populations that share structure with the GWAS panel.164

Here, we control for the two issues caused by shared structure between the GWAS and genotyping
panel by conditioning on the estimated polygenic scores in the GWAS panel (~X2) when assessing patterns
of selection on the polygenic scores of a genotyping panel (~X1). Specifically, following the multivariate
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Figure 3 Simulations of QPC on polygenic scores. A) The proportion of 200 neutral simulations that were
significant at the p < 0.05 level for the non-conditional QPC test and the conditional QPC test. A horizon-
tal line is plotted at 0.05, to show the proportion of significant tests expected under the null hypothesis B)
The same information, this time for the European landraces.
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normality assumption (Eq. 1), we model the combined vector of polygenic scores in both panels as ~X1

~X2

 ∼ MVN

 µ

µ

 , VA

 K11 K12

KT
12 K22

 . (11)

where, µ is the mean of the combined vector [X1, X2], K11 and K22 are the kinship matrices of the165

genotyping and GWAS panels, and K12 is the set of relatedness coefficients between lines in the genotyping166

panel (rows) and GWAS panel (columns). Note that the combination of the four kinship matrices in the167

variance term of Eq. 11 is equivalent to the kinship matrix of all individuals in the genotyping and GWAS168

panels and see Appendix 3 for a more detailed discussion of how these matrices are mean-centered.169

The conditional multivariate null model for our polygenic scores in the genotyping panel conditional on
the GWAS panel is then

~X1|~X2 ∼ MVN(~µ′, 2VaK′), (12)

where ~µ′ is a vector of conditional means with an entry for each sample in the genotyping panel:

~µ′ = µ + K12K−1
22 (~X2 − µ) (13)

and K′ is the relatedness matrix for the genotyping panel conditional on the matrix of the GWAS panel,

K′ = K11 − K12K−1
22 KT

12. (14)

Following equations 6 and 8 we can test for excess variation along the PCs of K′ defining phenotype as the170

difference between polygenic scores ~X1 and the conditional means ~µ′. Specifically, if U′m and λ′m are the mth
171

eigenvector and eigenvalue of K′, then172

C′m =
(~X−~µ′)~U′m√

λm
′ , C′m ∼ N(0, 2VA) (15)

and173

QPC =
E
[
C′2m
]

E
[
~C′2R:M

] ∼ F(1, M− R), (16)

where R > m and M > R. We will refer to the conditional version of the test as ’conditional QPC’.174

It is worth taking some time to discuss how the conditional test controls for the two issues due to shared175

structure that discussed previously. First, by incorporating the polygenic scores of individuals in the GWAS176

panel into the null distribution of conditional QPC, we are able to test directly for adaptive divergence that177

occurred in the genotyping panel. Berg et al. (2017) also uses the conditional test in this manner. Second, the178

conditional test forces the polygenic scores of individuals in the genotyping panel into the same multivariate179

normal distribution as the polygenic scores of individuals in the GWAS panel. Since the polygenic scores180

of GWAS individuals will include the ascertainment biases expected due to controls for structure in the181

GWAS, these biases will be incorporated into the null distribution of polygenic scores expected under drift182

and we will only detect selection if trait divergence exceeds neutral expectations based on this combined183

multivariate normal distribution.184

Applying QPC to polygenic scores in North American inbred maize lines and European landraces185

First, we conducted a set of neutral simulations to assess the ability of the conditional QPC test to control186

for false positives due to shared structure. We applied both the conditional and original (non-conditional)187

QPC test to detect selection on polygenic scores constructed from simulated neutral loci in two panels of188

maize genotypes that have not been extensively phenotyped: a set of 2,815 inbred lines from the USDA that189

we refer to as ’the Ames panel’ (Romay et al. 2013) and a set of 906 individuals from 38 European landraces190
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(Unterseer et al. 2016). We chose these two panels to evaluate the potential of conditional QPC to control for191

shared population structure when the problem is severe, as in the Ames panel (Fig. 1B), and moderate, as in192

the European landraces (Fig. 1C). In addition, we expect that the evolution of many quantitative traits has193

been important for European landraces as they adapted to new European environments in the last ∼500194

years (Unterseer et al. 2016; Tenaillon and Charcosset 2011).195

False positive signatures of selection were common when using the original QPC based on relatedness196

within the genotyping panel to test for selection on polygenic scores based on loci simulated under neutral197

processes (Figure 3A, B.) The increase in false positives due to shared structure persisted to much later PCs198

in the Ames panel than in the European landraces, likely because the extent of shared structure is more199

pervasive for the Ames panel. However, the conditional QPC test appeared to control for false positives in200

both the Ames panel and the European landraces (Figure 3A, B.).201

We then conducted GWAS on 22 traits in the GWAS panel. We used a p value cutoff of 0.005 to choose202

loci for constructing polygenic scores. This cutoff is less stringent then the cutoffs standardly used in maize203

GWAS (Peiffer et al. 2014; Romay et al. 2013), but allowed us to detect a number of loci that we could use to204

construct polygenic scores. After thinning the loci for linkage disequilibrium, we found associations for all205

traits with an average of 350 associated SNPs per trait (range 254 – 493, supp figures). We used these SNPs to206

construct polygenic scores for lines in the Ames panel and individuals in the European landraces following207

Eq 9.208

When we applied the original (non-conditional) test from Eq. 8 to detect selection in the Ames panel,209

we uncovered signals of widespread polygenic adaptation (Fig. S3A, Fig. S4A). In contrast, conditional210

QPC found no signatures of polygenic adaptation in the Ames panel that survived control for multiple211

testing (Fig S3B, Fig. S4B). The lack of results in the conditional test is unsurprising because the GWAS212

panel’s population structure almost completely overlaps the Ames panel (Figure 1B), so once variation in the213

GWAS panel is accounted for in the conditional test, there is likely little differentiation in polygenic scores214

left to test for selection. We report these results to highlight the caution that researchers should use when215

applying methods for detecting polygenic adaptation to genotyping panels that share population structure216

with GWAS panels.217

In the European landraces, while we detected selection on a number of traits, as with the Ames panel,218

none of these signals were robust to controlling for multiple testing using a false-discovery rate approach219

(Fig. S4D). However, we report the results that were significant at an uncorrected level in Figure 4A to220

demonstrate how these types of selective signals could be visualized with these approaches. In Figure 4B,221

we show the relationship between conditional PC1 (U1) and the difference between polygenic score for the222

number of brace roots and a conditional expectation (~X− ~u′), which was our strongest signal of selection in223

the panel.224

We conducted power simulations by shifting allele frequencies of GWAS-identified loci along a latitudinal225

selective gradient in the European landraces (see Methods section for details). When selection was strong226

(selection gradient α = 0.05), we detected signals of selection in all 200 simulations along the first conditional227

PC, which had the strongest association with latitude. When selection was moderate (α = 0.01) we detected228

selection in 57 of 200 simulations (Figure 4C,D). These results suggest that there is power to detect selection229

on polygenic scores with QPC in the European landraces if selection actually occurs on the loci used to make230

these polygenic scores.231

Discussion232

In this paper we have laid out a set of approaches that can be used to study adaptation and divergent233

selection using genomic and phenotypic data from structured populations. We first described a method,234

QPC, that can be used to detect adaptive trait divergence in a species-wide sample of individuals or lines235

that have been phenotyped in common garden and genotyped. We demonstrated this method using a panel236

of phenotyped domesticated maize lines, showing evidence of selection on flowering time, leaf length, and237

node number below ear. Second, we present an extension of QPC that can be applied to individuals related238

to the GWAS panel that have not themselves been phenotyped using a conditional test to avoid confounding239

due to shared population structure. We showed that this test is robust to false-positives due to population240
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Figure 4 Detecting adaptation within the European landraces with QPC on polygenic scores. A) A
heatmap showing results from the conditional QPC on the first 17 PCs (x-axis) for 22 traits (y-axis).
Squares are colored by uncorrected p value if p<0.1. B) Marginal evidence of selection on brace root num-
ber. The difference between polygenic score for brace root and the conditional mean (~X − µ′) is plotted
against the conditional PC 1 for each line. The solid line shows the observed linear relationship between
conditional PC 1 and ~X − µ′ and the dotted lines show the 95% confidence interval for this slope based
on neutral expectations uncorrected for multiple testing and the 99.99% confidence interval correspond-
ing to a Bonferonni correction for multiple testing. C) The absolute value of the correlation coefficient (R)
between PCs and latitude. D) The proportion of significant tests for traits simulated under three different
selection strengths along latitude.
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structure shared between the GWAS panel and the genotyping panel and that it has power to detect selection.241

We applied this method to two panels of maize lines and showed marginal evidence of selection on a number242

of traits, but these signals were not robust to multiple testing corrections. Overall, the methods described243

and demonstrated here will be useful to a wide range of study systems.244

While we were able to use QPC to detect diversifying selection on phenotypes in the GWAS panel of245

240 inbred lines, we were unable to detect similar patterns using polygenic scores for the Ames panel and246

European landraces (after controlling for multiple testing). This lack of selective signal was expected in Ames247

because the high overlap in relatedness between the Ames panel and the GWAS panel reduces power to248

detect selection in the Ames panel alone. However, our simulations showed that we did have power to detect249

moderate to strong selection acting on GWAS-associated loci in European landraces, and we expect that250

adaptation to European environments has contributed to trait diversification (Unterseer et al. 2016). There are251

a few factors that could explain our inability to detect selection on polygenic scores for European landraces.252

First, the polygenic scores we constructed used GWAS results from traits measured in North American253

environments. If there is G × E for these traits, we may not be measuring traits that are actually under254

selection in Europe. Second, it is likely that in our small GWAS panel (n = 263 or 281) we are underpowered255

to detect most causal loci and so our predictions are too inaccurate to pull out a signal of selection. All256

together, our results suggest that while GWAS are undoubtedly useful to identify loci underlying traits, an257

analysis of phenotypes expressed in a common environment will often be the most powerful approach for258

detecting adaptation, especially in systems with under-powered GWAS.259

We made use of principal component analysis (PCA) to separate out independent axes of population260

structure. There is a clear connection between PCA and average pairwise coalescent times (McVean 2009)261

and, because of this connection, PCA has been useful in a range of population genetic applications, including262

the detection and visualization of population structure (Patterson et al. 2006; Novembre et al. 2008), under-263

standing the roles of population history and geography (Menozzi et al. 1978; Novembre and Stephens 2008),264

controlling for population structure in genome-wide association studies (Price et al. 2006). While PCs provide265

a useful way of separating signals, in some cases the constraints of PCA make the PCs unintuitive in terms266

of geography and environmental variables Novembre and Stephens (2008). Therefore, it will also be useful267

to explore approaches like that outlined in Eq. 9 of Berg et al. (2018) could be used to test for over-dispersion268

along specific environmental gradients.269

There are a number of connections between the methods presented here and previous approaches.270

Ovaskainen et al. (2011); Karhunen et al. (2013) calculated a QST − FST -like measure of diversifying selection271

using the kinship matrix to model variation in relatedness among subpopulations. Their approach, however,272

is still reliant on identifying sub-populations and on using trait measurements in families or crosses to obtain273

estimates of VA. For single loci, a number of FST-like approaches have been developed that use PCs to274

replace subpopulation structure to detecting individual outlier loci that deviate from a neutral model of275

population structure (Duforet-Frebourg et al. 2015; Luu et al. 2016; Galinsky et al. 2016; Chen et al. 2016). Our276

methods can be viewed as a a phenotypic equivalent to these locus-level approaches. In addition, Liu et al.277

(2018) have recently explored a related approach using projections of polygenic scores along PCs. Finally278

it may be useful to recast our method in terms of the animal model by splitting the kinship matrix into a279

’between population’ matrix described by early PCs and a ’within population’ matrix described by later PCs.280

We could then detect selection by comparing estimates of VA for these two matrices. Such an animal-model281

approach may also offer a way to incorporate environmental variance in systems where replicates of the282

same genotype are not possible.283

There are a number of caveats for applying the methods discussed here to additional systems and datasets.284

When applying QPC directly to traits, it is important to carefully consider the assumption underlying QPC that285

all traits are made up of additive combinations of allelic effects. First, if environmental variation contributes286

to trait variation, it will reduce the power of QPC to detect diversifying selection because environmental287

variation will contribute most to variation at later PCs (Appendix 1). Second, additive-by-additive epistasis288

has the potential to contribute to false-positive signals of adaptation because additive-by-additive epistatic289

variation will contribute most to phenotypic variance along earlier PCs (Appendix 2). In general, non-290

additive interactions between alleles may cause difficulty for QPC in systems, like maize, where traits are291
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measured on inbred lines but selection occurs on outbred individuals. However, there is evidence that292

additive-by-additive variance will often be small compared VA within populations (Hill et al. 2008); for293

example, the genetic basis of flowering time variation in maize is largely additive (Buckler et al. 2009),294

suggesting that our conclusions about adaptive divergence in flowering time are likely robust to concerns295

about epistasis.296

Our results highlight a number of issues with polygenic adaptation tests that depend on polygenic297

scores using GWAS-associated loci. As has been recently highlighted by Berg et al. (2018) and Sohail et al.298

(2018), structure in a GWAS panel can contribute to false signals of polygenic adaptation in polygenic scores299

constructed from the results of that panel. We observed that this problem is especially strong when there is300

shared population structure between the GWAS panel and the genotyping panel used to construct polygenic301

scores but that the use of a conditional test that accounts for shared structure between the two datasets can302

control for these false positives. There is potential for these methods to be used to address problems due to303

structure in GWAS panels in both non-human and human systems, although the conditional test approach304

would need to be adapted to the very large sample sizes used in human GWAS.305

All together, the methods presented here provide an approach to detecting the role of diversifying selection306

in shaping patterns of trait variation across a number of species and traits. A number of further avenues307

exist for extending these methods. First, we applied this test to traits independently, but extending QPC to308

incorporate multiple correlated traits will likely improve power to detect selection by reducing the number309

of tests done. In addition, this extension could allow the detection of adaptive changes in trait correlations.310

Second, these methods could be extended to take advantage of more sophisticated methods of genomic311

prediction than the additive model presented here (as in Beissinger et al. (2018); Liu et al. (2018)). Pursuing312

this goal will require carefully addressing issues related to linkage disequilibrium between marker loci.313

Overall, developing and applying methods for detecting polygenic adaptation in a wide range of species314

will be crucial for understanding the broad contribution of adaptation to phenotypic divergence.315

Materials and Methods316

Analyses were done in R and we used the dplyr package (R Core Team 2018; Wickham et al. 2017). All code317

is available at https://github.com/emjosephs/qpc-maize.318

The germplasm used in this study319

We analyzed three different maize diversity panels.320

• The GWAS panel: The Major Goodman GWAS panel, also sometimes referred to as ’the 282’ or ’the321

Flint Garcia GWAS Panel’, contains 302 inbred lines meant to represent the genetic diversity of public322

maize-breeding programs (Flint-Garcia et al. 2005). Genotype-by-sequencing (GBS) data is available for323

281 of these lines from Romay et al. (2013) and 7X genomic sequence from 271 of these lines is available324

from Bukowski et al. (2017). In addition, these lines have been phenotyped for 22 traits in multiple325

common garden experiments (Hung et al. 2012).326

• The Ames panel: A panel of 2,815 inbred lines from the USDA that have been genotyped with GBS327

(Romay et al. 2013) at 717,588 SNPs.328

• The European landraces: A panel of 906 individuals from 38 European landraces (31 Flint-type and 7329

Dent-type) that were genotyped at 547,412 SNPs using an array (Unterseer et al. 2016).330

QPC in the GWAS panel331

We tested for selection on 22 traits phenotyped in the GWAS panel. Best unbiased linear predictions (BLUPs)332

for these traits were sourced from Hung et al. (2012) and genomic sequence data from Bukowski et al. (2017).333

Out of the 302 individuals in the GWAS panel, we retained 240 individuals that had data for all 22 traits of334

interest and had genotype calls for >70% of the SNPs in the genomic dataset.335

To construct a kinship matrix for the GWAS panel, we randomly sampled 50,000 SNPs from across the336

genome after removing sites that were missing any data or had unrealistic levels of heterozygosity (the337

proportion of heterozygous individuals exceeded 0.5). The allele frequencies (0, 0.5, or 1) for individuals338
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at these 50,000 SNPs were arranged in an MxN matrix (referred to here as G) where M is the number of339

individuals (240) and N is the number of loci (50,000). Then we centered the matrix using a centering matrix,340

T, which is an M− 1 by M matrix with M−1
M on the diagonal and −1

M at all other cells. Note that multiplying341

G by T also drops one individual from the kinship matrix to reflect the fact that by mean centering, we342

have lost one degree of freedom. We also standardized G by dividing by the square root of the expected343

heterozygosity of all loci, calculated by taking the mean of ε(1− ε) across all loci, where ε is the mean allele344

frequency of a locus. All together, we calculated K as the covariance of the centered and standardized matrix:345

K = cov

(
TG√

E [ε(1− ε)]

)
(17)

We used the kinship matrix K to test for selection on traits using Eq. 8 on the first 36 PCs that, cumulatively,346

explain 30% of the variation in K. For the denominator of Eq. 8 we used the 165-215th PCs, which were the347

PCs corresponding to the 50 lowest eigenvalues after removing the lowest 10% of PCs because those showed348

excess estimation noise. We conducted 200 simulations by simulating traits that evolve neutrally along the349

kinship matrix using the mvrnorm R function in the MASS package (Venables and Ripley 2002) and testing350

for selection using Eq. 8.351

GWAS in maize inbreds352

We used GEMMA (Zhou and Stephens 2012) to conduct GWAS for trait blups in the GWAS panel, controlling353

for population structure with a standardized kinship matrix generated by GEMMA. We conducted two354

separate GWAS for use in testing for selection in the Ames panel and in the European panel separately. First,355

for finding SNP associations that we could use to construct breeding values in the Ames panel, we used GBS356

data for 281 lines from the GWAS panel that had been genotyped by Romay et al. (2013). Next, for finding357

SNP associations for constructing breeding values in the European landraces, we took whole genome data358

from Bukowski et al. (2017) for 263 individuals that had genotype calls for >70% of polymorphic sites and359

extracted genotypes for sites that overlapped with those present in the European landrace dataset from360

Unterseer et al. (2016). All genotypic data was aligned to v3 of the maize reference genome, except the361

genotypes of the European landraces, which we lifted over from v2 to v3 using CrossMap (Zhao et al. 2013).362

For both sets of GWAS analyses, tested all SNPs with a minor allele frequency above 0.01, less than 0.05363

missing data, and we picked all hits with a likelihood-ratio test p value below 0.005. We pruned both sets of364

SNPs by using a linkage map from Ogut et al. (2015) to construct one cM windows with GenomicRanges in365

R (Lawrence et al. 2013). We picked the SNP with the lowest p value per window and, when multiple SNPs366

had the same p value, we sampled one SNP randomly.367

Applying QPC to polygenic scores from the Ames panel and European landraces368

We generated combined genetic matrices for each genotyping panel (either Ames or European) and the369

GWAS panel. In both datasets, we removed sites with a minor allele frequency below 0.01 and a proportion370

of missing data more than than 0.05 across the combined dataset, leaving 108,110 SNPs in the Ames-GWAS371

dataset and 441,986 SNPs in the European-GWAS dataset. Missing data points were imputed by replacing372

each missing genotype from a random sample of the pool of genotypes present in the individuals without373

missing data. The random imputation step was done once for each missing data point and the same374

randomly-imputed dataset was used for all subsequent analyses.375

We constructed kinship matrices for the Ames panel combined with the GWAS paneland the European376

panel combined with the GWAS panel following the procedure described in Eq. 17, using 50,000 randomly377

sampled SNPs with a minor allele frequency > 0.01 and less than 5% missing data. The genotype information378

from the combined datasets was used to construct polygenic scores following Eq. 9.379

We used these polygenic scores to test for diversifying selection on 22 traits (described above) for the380

PCs that cumulatively explained the first 30% of variation in the conditional kinship matrix (182 for the381

Ames panel and 17 for European maize). As in the QPC test, we chose the last 50 PCs to estimate VA after382

discarding the last 10% of PCs due to excess noise. We used Qvalue (Storey et al. 2015) to generate false383

discovery rate estimates (’q values’).384
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Simulations of QPC on polygenic scores385

We conducted neutral simulations to detect the rate of false-positive inferences of selection on neutrally-386

evolving traits. For each of 200 simulations, we simulated a phenotype by randomly picking 500 sites in387

the combined genotype datasets and assigning each alternate allele an effect size drawn from a normal388

distribution with mean 0 and variance 1. For each individual in the GWAS panel, we then calculated a389

simulated breeding value following Eq. 9. These simulated traits were mapped using a GWAS with the390

same procedure described above. The loci identified in these GWAS were pruned for LD and then used for391

analysis. We tested for evidence of diversifying selection on polygenic scores in two ways for each set of392

simulations. First, we used QPC with the standard kinship matrix generated using lines in the genotyping393

set (either Ames or European landraces). Second, we used the conditional QPC test described in Eq 12.394

We also conducted power simulations using the European landraces. We first simulated traits evolving
under diversifying selection by taking trait-associated loci from the neutral simulations and shifting the
allele frequencies at these loci in the European landraces based on their latitude of origin. Let p be the intial
allele frequency in the jth landrace population, L the latitude of the jth landrace population, β the effect size
of a alternate allele at the ith locus, ε the mean allele frequency of the ith allele, α the selection gradient, and
p′ the allele frequency after selection. Then

p′ = p + βε(1− ε)αL (18)

We conducted simulations for three values of α: 0.05, 0.01, and 0.005 and tested for selection with condition395

QPC.396

Data and code availability397

All code and data is available at https://github.com/emjosephs/qpc-maize.398
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Appendix 1 – Environmental variation and inferences of selection from QPC550

Eq. 1 assumes that there is no environmental variation contributing to fitness. It can be rewritten to include551

the effects of environmental variation as follows:552

~Z ∼ MVN(µ, 2VAK + VE I), (19)

where ~Z is a vector of traits with mean µ, I is the identity matrix, K is a kinship matrix, and VE is a553

constant that measures environmental variation (Falconer and Mackay 1996; Hill 2010). Increases in VE will554

thus increase the diagonal entries of the variance-covariance matrix for the multivariate normal distribution555

of ~Z. The intuition behind the effect of VE on the var(~Z) is that, in a properly designed common garden556

experiment, VE will increase individual deviations from the expected trait value by increasing the diagonals557

of the variance-covariance matrix, but will not affect covariance between individuals.558

Now, when we mean center ~Z and project it onto a matrix of the eigenvectors of the kinship matrix (U),
we can get an expression for the set of projections (~zm) across all eigenvectors:

~zm = (~Z− µ)U = UT(~Z− µ). (20)

We can express the variance and distribution of X as

Var( ~zm) = UT(2VAK + VE I)U, (21)

~zm ∼ MVN(0, 2VAΛ + VE). (22)

We can standardize zm by the variance explained by each principal component (the eigenvalues of K):559
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~C =
~zm√
Λ

(23)

Var(~C) = Λ−1/2(2VAΛ + VE)(Λ−1/2)T (24)

~C ∼ MVN(0, 1 +
VE

2VA
Λ−1) (25)

This result suggests that the contribution of VE will be strongest along PCs with smaller eigenvalues (’later560

PCs’), so QPC is conservative in the face of VE since it looks for an excess of differentiation along early PCs561

with larger eigenvalues compared to PCs with smaller eigenvalues.562

We tested the intuition described above with simulations of traits that evolve neutrally for with VA = 1563

and VE = 0, 0.1, and 0.5. We found that increasing VE increased the variance of CM at later PCs more than at564

early PCs (Fig. S1A) and that this meant that fewer simulations showed significant signals of selection than565

would be expected under neutrality (Fig. S1B)566

Appendix 2 — Additive-by-additive epistasis and QPC567

We denote the variance contributed by additive-by-additive epistasis as VAA. Assuming no linkage disequi-
librium, we can rewrite Eq. 1 as follows:

~Z ∼ MVN(µ, 2VAK + 2VAAK2), (26)

following e.g. Eq. 9.13 in Falconer and Mackay (1996) and Hill (2010). Using the eigendecomposition of K,
K = UΛU−1, where U is a matrix whose columns are the eigenvectors of K and Λ is a diagonal matrix with
the eigenvalues of K, we find that K2 = UΛ2U−1. As in Appendix 1, we can calculate the Var(~C) where ~C is
a vector of the projections of ~Z onto U, standardized by dividing by Λ−1/2.

~C ∼ MVN(0, 1 +
VAA
VA

Λ) (27)

Intuitively, we can see that when VAA is much larger than VA, additive-by-additive epistasis will contribute568

disproportionately to variation along PCs that correspond to higher eigenvalues. Therefore, additive-by-569

additive epistasis that exceeds VA can contribute to false positive signals of diversifying selection by570

increasing trait divergence along earlier PCs. However, in most situations, VAA is unlikely to be large enough571

to significantly impact trait variance (Falconer and Mackay 1996; Hill 2010)572

Appendix 3 — Mean centering573

Properly mean-centering conditional expectations for polygenic scores and the kinship matrix used to574

calculate QPC on these scores is crucial. However, the choice of how to properly mean-center these two575

parameters is not entirely straightforward when working with conditional distributions (as in Eq. 11).576

To illustrate the problem, imagine that we mean center the conditional expectations for polygenic scores in577

the genotyping panel (~µ′) around the mean of the GWAS panel, such that ~µ′ = µ2 + K12K−1
22 (~X2− µ2), where578

µ2 is the mean polygenic score of individuals in the GWAS panel, ~X2 is the vector of polygenic scores in the579

GWAS panel, and K12 and K22 are subsets of the relatedness matrix between individuals in the genotyping580

panel and GWAS panel as defined for Eq. 11. At the same time, we generate K11, K22, and K12 from the581

kinship matrix K following Eq. 17, where K is mean centered around the combined mean of the genotyping582

and GWAS panel. While these two choices, made separately, seem intuitive, together they lead to a situation583

where, if µ2 6= µ, we can infer signals of adaptive divergence even if none exist. Therefore, we choose to584

mean center both K and ~µ′ around the mean of all individuals in the genotyping and GWAS panels.585
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Figure S1 QPC on simulated neutral traits with varying amounts of VE A) var(Cm across 200 neutral sim-
ulations for varying levels of VE. The PCs used to estimate VA within populations (the denominator of
QPC) are shaded green. B) The proportion of 200 neutral simulations that showed evidence of diversifying
selection at p < 0.05. We expect that, under neutrality, 0.05 of all simulations should appear significant, but
we see that as simualted VE, fewer simulations are significant
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Figure S2 Selection on days to silk along PC10 in the GWAS panel Each point represents a line in the
GWAS panel, colored by its membership in a subpopulation (same colors as Fig. 1A). The solid line shows
the linear regression of the trait on PC 10 and the dashed lines show the 95% confidence interval of linear
regressions expected under neutrality. Note that the linear regression is not the same as the F test done in
QPC, and that we plot these lines for visualization purposes only.
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Figure S3 P values from applying QPC to polygenic scores in the Ames panel. A) Results from the non-
conditional test B) Results from the conditional test
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Figure S4 Histograms of P values from applying QPC to polygenic scores. A) P values for the non-
conditional test in the Ames panel B) P values for the conditional test in the Ames panel. C) P values
for the non-conditional test in the European landrace panel. D) P values for the conditional test in the
European landrace panel.
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