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For a variety of human malignancies, incidence, treatment effi-
cacy and overall prognosis show considerable variation between
different populations and ethnic groups. Disentangling the ef-
fects related to particular population backgrounds can help in
both understanding cancer biology and in tailoring therapeu-
tic interventions. Because self-reported or inferred patient data
can be incomplete or misleading due to migration and genomic
admixture, a data-driven ancestry estimation should be pre-
ferred. While tools to map and utilize ancestry information
from healthy individuals have been introduced, a population as-
signment based on genotyping data from somatic variation pro-
filing of cancer samples is still missing.

We analyzed sequencing-based variation data from the 1000
Genomes project, containing 2504 individuals out of 5 continen-
tal groups. This reference was then used to extract population-
biased SNPs used in genotyping array platforms of varying res-
olutions. We found that despite widespread and extensive so-
matic mutations of cancer profiling data, more than 90 % of can-
cer samples can be correctly mapped to one of the population
group when compared to their paired unmutated normals. Pre-
filtering samples for admixed individuals increased the accuracy
t0 96%.

This work provides a data-driven approach to estimate the
population background from cancer genome profiling data.
This proof-of-concept study will facilitate efforts to understand
the interplay between population and ethnicity related genetic
background and differences in understanding statistical and
molecular differences in cancer entities with respect to possi-
ble hereditary contributions. The docker version of the tool is
provided through "baudisgroup/tum2pop' in DockerHub and
deposited in ""baudisgroup/tum2pop-mapping' in GitHub.
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Introduction

Cancer arises from the accumulation of genomic aberrations
in dividing cells of virtually all types of tissues (somatic vari-
ations). The irregular cellular expansion and other hallmarks
of cancer (1) can result from a plethora of mechanisms af-
fecting multiple cellular processes. Some of the individual
oncogenetic pathways can be initiated by exogenous factors,
e.g. tobacco smoke or ultraviolet radiation (2). However,
exposure to these carcinogenic factors contribute differently
for people with different genetic background, which sug-
gests that somatic variations can be influenced by inherited
("germline") variations (3, 4).

Statistics on cancer report considerable variation in inci-
dence and prognosis between ethnicity groups (5-8). While

such differences have been attributed to unequal social and
economical circumstances influencing risk factors and ther-
apeutic interventions, they may also reflect the impact of
population specific genomic variants with predisposing ef-
fects on malignant transformation and phenotypic behaviour.
Due to the late onset of most cancers, even high-penetrance
Mendelian-type variants may not be purged by natural se-
lection and can accumulate in particular populations. Such
variants may play key roles in cancer development (9). No-
tably, mutations on BRCA1/2 genes confer a high risk to
develop breast and ovarian carcinomas. Three founder mu-
tations in Ashkenazi Jewish population cause the BRCA1/2
mutation prevalence to be 10-fold higher than all sporadic
mutations in the general population (10, 11). Mitochondrial
aldehyde dehydrogenase (ALDH?2) encodes an enzyme in al-
cohol metabolism. Its "oriental" variant with 36% prevalence
in East Asians, ALDH2*504Lys, increases risk for alcohol-
related liver, colorectal and esophageal cancer by alcohol
consumption (12, 13).

Many other studies have reported prevalent genetic vari-
ants in specific population groups which may contribute to
the "racial" disparities in occurrence and prognosis (14—16).
Other than these monogenic determinants, polygenic varia-
tion models for breast cancer which estimate the combined
effect of multiple loci to be highly discriminatory in risk
assessment, suggest the benefits of exploring genome-wide
risk profiles (17). The potential impact of understanding
the germline background of cancer genomes has also been
demonstrated in a study which identified disease-associated
chromosomal regions from only seven individual samples by
using genome-wide relatedness/linkage mapping (18). This
type of studies can be conducted population-wise, with suffi-
cient number of samples from the same population/ethnicity
group.

With the increasing number of available genome profiles and
the decreasing cost to genotype clinical samples, the strati-
fication between patients’ genetic backgrounds has become
feasible with the promise to guide therapeutic strategies and
improve the clinical prognoses. Since several studies have
demonstrated the relevance of considering an individual’s ge-
nomic origin for preventive screening (reviewed in Foulkes et
al. 2015 (11)), information about the population background
of cancer patients may be an additional factor for individual
therapeutic decisions as well as for the stratification of clin-
ical study cohorts. A meta-analysis addressing the interplay
between genetic background, cancer development and ther-
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apeutic responses is desirable, not only for robust statistical
associations in molecular target identification, but also for the
rational design of studies incorporating informative biosam-
ples.

The "population group" of a sample can be determined based
on a geographical location associated with the sample; from
self-reported "race", as commonly used in U.S. census data,
or based on a computational estimate of ancestry by mod-
elling population related genomic variants.

In the context of anonymized or pseudonymized research
data, an approximation of a biosample’s geographic origin
can be achieved by using the location of the study’s research
facility or alternatively the contact address of its main au-
thors. However, while these data can be easily retrieved,
they may not provide an accurate representation of patients’
origins for the purpose of population-specific ancestry map-
ping. Self-reported data is often inconsistent across stud-
ies, vague in category description (e.g. "white", "black” v.s.
"Caucasian", "African") and misleading when patients do not
know the migration and admixture histories of their ances-
tors. Overall, when associating oncogenic molecular signa-
tures with germline variations, information from the above
sources lacks in relevant detail and consistency.

A better approach to population assessment would be the
direct inference from genomic data. This has been shown
previously for germline profiles, achieving 90% accuracy by
using as few as 100 population-diverging single nucleotide
polymorphisms (SNPs) (19), and nowadays is the standard
methodology behind a number of commercial "ancestry" ser-
vices. We hypothesise that a similar strategy can be applied
to cancer genome data, despite the additional cancer-related
somatic mutations which leads to both information loss (e.g.
large scale homozygous or allelic deletions) and added noise
(e.g. somatic mutations masking germline variants). An ex-
ample of a cancer genome containing copy number loss and
copy-neutral loss of heterozygocity (CN-LOH) events and its
paired normal sample is shown in Figure 1. Additionally to a
general test of feasibility, we also set out to benchmark pop-
ulation mapping procedures for heterogeneous datasets from
different genotyping platforms, with varying SNP content.

Results and Discussion

We retrieved the genomic reference data from the 1000
Genomes Project (20), containing sequencing data of 2,504
individuals from 26 populations of five continental ances-
tries. SNPs of the selected array platforms were extracted
from the sequencing data for reference samples. In order
to achieve between-study consistency for selection of infor-
mative SNPs, we used a model-based approach (21) where
an admixture model is optimized with the reference set for
each genotyping platform. The allele frequency and ances-
try fraction parameters were projected to the incoming can-
cer dataset of the same platform. Applying a random forest
classification, we assigned the population label to the high-
est voted group and produced a score for the difference be-
tween highest and second highest percentage votes (Figure
2). We benchmarked our method with various normal and
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cancer datasets to demonstrate the feasibility and reliability
of this approach.

Cross-platform benchmarking. We first used the origi-
nal data from 1000 Genomes to validate the level of res-
olution needed for accurate population assignment from
the pipeline. The number of SNPs per platform ranged
from 10,204 (Affymetrix MappinglOK) to 934,946 SNPs
(Affymetrix Genome Wide SNP 6). For all nine genotyp-
ing platforms (of seven levels of resolution), the model per-
formed equally well in capturing the informative SNPs and
predicting the population category. The 26 population groups
are assigned into the 5 continental categories with low margin
error for all genotyping platforms (less than 12 in 2,504 in-
dividuals) (Figure 3). When evaluating the 12 mis-classified
individuals by cross-validation, we discovered that they were
repetitively assigned into the same aberrant category; there-
fore, they were removed for the final implementation (Addi-
tional File 1). In addition, we removed 396 individuals from
the random forest assignment based on the admixture back-
ground.

Benchmarking normal genome profile assignment
with HapMap data. To validate the general ability to map
population origins from non-cancer SNP datasets, we used
112 samples found in Gene Expression Omnibus (GEO (22))
belonging to the HapMap project (23) but not included in the
reference set. While most assigned labels matched the meta-
data from HapMap, five samples labeled "European" were
assigned to the "American" category (Table 1).
Table 1. Comparison of HapMap metadata and predicted population group.

CEU CHB YRI
AFR 0 0 45

AMR 5 0 0
EAS 0 6 0
EUR 56 0 0

Columns indicate HapMap population labels. CHB for Han Chinese in
Beijing, China. YRI for Yoruba in Ibadan, Nigeria

Paired cancer-normal comparison. The emphasis of the
pipeline lies in the determination of population origin from
cancer genome profiles carrying varying somatic mutations.
Since the non-cancer samples could be correctly assigned
according to HapMap categories, we validated the cancer
genome based assignments in samples where normal genome
profiles of the same patients (e.g. from peripheral blood or
non-cancer tissue samples) were available as reference.

GEO data. From the GEO repository, we selected paired nor-
mal and cancer samples from 1219 individuals and compared
the outcome of the population assignment. When including
all individuals, 92.5% of the normal samples matched with
paired tumor samples. After setting a threshold of normal
samples with score > 0.2, 96.2% accuracy can be achieved
for the remaining 762 individuals. When also setting the
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Fig. 1. CNV examples for a pair of normal/cancer samples. Compared to the normal sample (upper panel), the cancer sample (lower) has copy number loss in chr8, 10p, 18,
19qter, 22q and copy-neutral loss of heterozygocity in chr9,12q.
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Fig. 2. Pipeline to derive population assignment for individual cancer samples.
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Fig. 3. Margin plot of prediction on platforms of seven different resolution.
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Margin is defined as the difference between highest vote and the correct vote in random forest, a positive value indicates correct prediction.

score threshold for cancer samples to > 0.2, 99.0% of the
now 721 remaining samples could be matched correctly (Fig-
ure 4). This comparison suggests that a correct assignment of
cancer samples to a population category can be achieved, and
that the level of accuracy increases with a lower admixture
background of the individual.

TCGA data. We performed a similar measurement with
436 randomly selected individuals from the TCGA project
(24), where at least one normal and one tumor sample
per individual were available. 433 out of 436 (99.1%)
individuals had matched tumor/normal categories, with the
three outliers switching from EUR to AMR between samples
5. Additionally, we compared our results with the values of
the "race" attribute provided in the TCGA metadata. There,
six categories are being distinguished: "American Indian
or Alaska native", "Asian", "Black or African American",
"Native Hawaiian or other Pacific Islander", "White or Not
Reported". The relevant ratio of these groups is shown in
Figure 5. Most assignments were accurate: EUR samples
were mostly "White"; AMR has mostly "White" and a few
"African American" samples; SAS are all "Asian" samples.
Additionally to "Asian" samples, "American Indian or
Alaska Natives" or "Pacific Islanders" were all assigned to
EAS.

Together, these two validation tests confirmed that a high as-
signment accuracy for cancer samples can be achieved, mir-
roring the assignment of their corresponding germline sam-
ples. Since samples with scores lower than the threshold had
a highly admixed background, we also noted a mixture be-
tween AMR and EUR observed in both normal samples and
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cancer samples. We attribute this to the complex, recent ad-
mixture events in the last hundreds of years in the locations
from where individuals were recruited as AMR in reference
data (e.g. Colombia, Puerto Rico).

Self-reported ethnicity metadata. After the validation of
the method, we tested the accuracy of self-reported meta-
data from various sources deposited in GEO. We retrieved
a total of 1724 samples with interpretable self-reported meta-
data. Out of those, 1523 samples (88.3%) were correctly as-
signed. When setting a threshold of the assignment score to
0.2, 92.7% (1310 out of 1412) samples were correctly as-
signed (Figure 6). This increase on matched assignments
is more limited compared to the previous validation tests on
GEO data, suggesting the contribution of curation errors and
inaccuracies in self-reported ethnicity metadata.

Conclusions

We demonstrate the feasibility and accuracy of assigning
population group provenance based on SNP genotyping ar-
ray data of cancer samples, where somatic mutations obfus-
cate parts of the ancestry related SNP signal. This work can
facilitate meta-analysis of available cancer data with respect
to the association of the genetic background to cancer spe-
cific mutations or, as proxy, to the correct assignment of sam-
ple provenance. In addition, our method provides the basis
for subsequent haplotype phasing and refinement of genomic
landscape for emerging somatic variation. Concerning the
delicate balance between data utilization and confidentiality
protection, it has not escaped our notice that the relative feasi-
bility of such an approach suggests the potential of individual
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Fig. 4. Accuracy of assignment with paired tumor and normal samples from GEO.

1219 individuals from GEO with paired tumor and normal samples were examined. "all" indicates the total 1219 individuals. "RMmixNorm" indicates results for 762 individuals,
after 447 individuals were removed because of low score in the normal sample. "RMmixBoth" indicates results for 721 individuals, after additional 41 individuals were removed
due to low score found in the cancer sample.

Composition of metadata groups with predicted population groups from TCGA
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Fig. 5. Accuracy of assignment with paired tumor and normal samples and comparison to metadata from TCGA project.
436 individuals with paired tumor and normal samples from TCGA project were recruited. Upper panel compares the assignment with metadata and lower panel indicates
the matching proportion of predicted population groups between tumor and normal samples of the same individuals.
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Fig. 6. Accuracy of assignment with self-report metadata.

883 samples from GEO which contain adequate population/ethnicity metadata were examined. The "totalCount" indicates all samples. The "HiScoreCount" indicates the

samples which have score > 0.2.

re-identification from cancer genotyping data.

Methods

Data preparation. Reference sequencing data are provided
by 1000 Genomes Project, a publicly available reference cat-
alogue of human genotype variation. Data used for bench-
marking are accessed through arrayMap database (25), using
a collection of re-processed genotyping series from the GEO
repository, and the TCGA data repository.

Reference data preparation. The SNP positions for each plat-
form were acquired from Affymetrix annotation files. The al-
lele information was extracted for all positions with vcftools.
The 12 mislabeled or admixed individuals were removed
from the reference dataset, leaving 2,492 individuals. The
SNP positions with duplicated rsIDs in annotation files were
removed. The reference/alternative alleles were flipped ac-
cording to the SNP array annotation. Sites with minor al-
lele frequency (MAF) of less than 5 percent were removed.
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SNPs were subsequently pruned with variance inflation fac-
tor(VAF) at 1.5 with a sliding window of 50bp and a Sbp
shift of window at each step using PLINK 1.9. The result
files were stored as PLINK output for each platform in .bed,
.bim and .fam formats, of which the .bim files were used to
extract SNP positions from target data.

Target data preparation. The SNP array data were processed
with ACNE R package (26) to extract allele-specific copy
numbers as B-allele frequencies (BAF). SNPs were labeled
as homozygous A, heterozygous AB or homozygous B by
the BAF value in ranges 0-0.15, 0.15-0.85 or 0.85-1, respec-
tively, to allow both for noise and expected aneuploidy in the
biosamples.

Admixture model. While many approaches use principle
component analysis (PCA) to select informative SNPs for
population assignment, deriving them prior to clustering
methods, either by removing correlated SNPs (with Pearson’s
r > 0.99) or by global fixation index (Fst > 0.45), results in
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varying remaining SNPs between datasets.

We used the allele information output from the reference
panel to generate an admixture statistical model (21), which
estimates the contribution of each SNP to the population cat-
egory by alternately updating allele frequency and ancestry
fraction parameters. Models were built with choosing the
number of theoretical ancestor, K = 6, considering the cross-
validation error, iteration steps and runtime. The ancestry
fraction plot for reference individuals demonstrates a proper
information extraction to distinguish the five continental cat-
egories. By projecting a correspondingly learned model de-
rived from the reference dataset to a new sample with the
corresponding platform, a robust and consistent output with
6 ancestry fractions was generated.

Random Forest label assignment. 396 samples were se-
lected out of the random forest training set, due to the admix-
ture structure found in the ancestry fraction (Additional File
2). 2,096 (2,492 less 396) samples were used as training set.
The six ancestry fractions from the reference population per
platform were used to build a random forest model to predict
the five population categories. The model was then used to
predict a label to the population category from 6 fractions of
the target sample. The score was calculated as the difference
in percentage votes between the best and the second best pre-
dicted labels.
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Additional file 1 — Removed 12 individuals. 12 individu-
als from the reference 1000 Genomes database, with admixed
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or mislabeled origin and therefore removed from the pipeline,
leaving 2,492 in the reference.

Additional file 2 — Removed 396 individuals. The 396
individuals contain a admixture background which could mix
up with another population category, including 225 AMR
(101 Puerto Rican, 88 Colombian, 32 Mexican-American,
4 Peruvian), 40 SAS (30 Punjabi, 10 Gujarati), 33 AFR (9
African-Caribbean, 24 African-American SW).
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