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Abstract Determining the net charge and protonation states populated by a small molecule in an20

environment of interest or the cost of altering those protonation states upon transfer to another environment21

is a prerequisite for predicting its physicochemical and pharmaceutical properties. The environment of22

interest can be aqueous, an organic solvent, a protein binding site, or a lipid bilayer. Predicting the23

protonation state of a small molecule is essential to predicting its interactions with biological macromolecules24

using computational models. Incorrectly modeling the dominant protonation state, shifts in dominant25

protonation state, or the population of significant mixtures of protonation states can lead to large modeling26

errors that degrade the accuracy of physical modeling. Low accuracy hinders the use of physical modeling27

approaches for molecular design. For small molecules, the acid dissociation constant (pK
a
) is the primary28

quantity needed to determine the ionic states populated by a molecule in an aqueous solution at a given pH.29

As a part of SAMPL6 community challenge, we organized a blind pK
a
prediction component to assess the30

accuracy with which contemporary pK
a
prediction methods can predict this quantity, with the ultimate aim31

of assessing the expected impact on modeling errors this would induce. While a multitude of approaches32

for predicting pK
a
values currently exist, predicting the pK

a
s of drug-like molecules can be difficult due to33

challenging properties such as multiple titratable sites, heterocycles, and tautomerization. For this challenge,34

we focused on set of 24 small molecules selected to resemble selective kinase inhibitors—an important class35

of therapeutics replete with titratable moieties. Using a Sirius T3 instrument that performs automated acid-36

base titrations, we used UV absorbance-based pK
a
measurements to construct a high-quality experimental37

reference dataset of macroscopic pK
a
s for the evaluation of computational pK

a
prediction methodologies38

that was utilized in the SAMPL6 pK
a
challenge. For several compounds in which the microscopic protonation39

states associated with macroscopic pK
a
s were ambiguous, we performed follow-up NMR experiments to40

disambiguate the microstates involved in the transition. This dataset provides a useful standard benchmark41

dataset for the evaluation of pK
a
prediction methodologies on kinase inhibitor-like compounds.42

1 of 28

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 25, 2018. ; https://doi.org/10.1101/368787doi: bioRxiv preprint 

timothy_rhodes@merck.com
john.chodera@choderalab.org
https://doi.org/10.1101/368787
http://creativecommons.org/licenses/by/4.0/


September 24, 2018

43

Keywords44

acid dissociation constants ⋅ spectrophotometric pK
a
measurement ⋅ blind prediction challenge ⋅ SAMPL ⋅45

macroscopic pK
a
⋅microscopic pK

a
⋅macroscopic protonation state ⋅microscopic protonation state46

Abbreviations47

SAMPL Statistical Assessment of the Modeling of Proteins and Ligands48

pK
a

–log10 acid dissociation equilibrium constant49

p
s
K
a

–log10 apparent acid dissociation equilibrium constant in cosolvent50

DMSO Dimethyl sulfoxide51

ISA Ionic-strength adjusted52

SEM Standard error of the mean53

TFA Target factor analysis54

LC-MS Liquid chromatography - mass spectrometry55

NMR Nuclear magnetic resonance spectroscopy56

HMBC Heteronuclear Multiple-Bond Correlation57

TFA-d deutero-trifluoroacetic acid58

Introduction59

SAMPL (Statistical Assessment of theModeling of Proteins and Ligands) is a recurring series of blind prediction60

challenges for the computational chemistry community [1, 2]. Through these challenges, SAMPL aims to61

evaluate and advance computational tools for rational drug design. SAMPL has driven progress in a number62

of areas over seven previous rounds of challenge cycles [3–7, 7–15] by focusing the community on specific63

phenomena relevant to drug discovery poorly predicted by current models, isolating that phenomenon64

from other confounding factors in well-designed test systems, evaluating tools prospectively, enabling data65

sharing to learn from failures, and releasing the resulting high-quality datasets into the community as66

benchmark sets.67

As a stepping stone to enabling the accurate prediction of protein-ligand binding affinities, SAMPL68

has focused on evaluating how well physical and empirical modeling methodologies can predict various69

physicochemical properties relevant to binding and drug discovery, such as hydration free energies (which70

model aspects of desolvation in isolation), distribution coefficients (which model transfer from relatively71

homogeneous aqueous to nonpolar environments), and host-guest binding affinities (which model high-72

affinity association without the complication of slow protein dynamics). These physicochemical property73

prediction challenges—in addition to assessing the predictive accuracy of quantities that are useful in various74

stages of drug discovery in their own right—have been helpful in pinpointing deficiencies in computational75

models that can lead to substantial errors in affinity predictions.76

Neglect of protonation state effects can lead to large modeling errors77

As part of the SAMPL5 challenge series, a new cyclohexane-water distribution constant (log D) prediction78

challenge was introduced, where participants predicted the transfer free energy of small drug-like molecules79

between an aqueous buffer phase at pH 7.4 and a nonaqueous cyclohexane phase [16, 17]. While octanol-80

water distribution coefficient measurements are more common, cyclohexane was selected for the simplicity81

of its liquid phase and relative dryness compared to wet octanol phases. While the expectation was that82

this challenge would be relatively straightforward given the lack of complexity of cyclohexane phases,83

analysis of participant performance revealed that multiple factors contributed to significant prediction84

failures: poor conformational sampling of flexible solute molecules, misprediction of relevant protonation85

and tautomeric states (or failure to accommodate shifts in their populations), and force field inaccuracies86

resulting in bias towards the cyclohexane phase. While these findings justified the benefit of future iterations87

of blind distribution or partition coefficient challenges, the most surprising observation from this initial log D88

challenge was that participants almost uniformly neglected to accurately model protonation state effects,89
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and that neglect of these effects led to surprisingly large errors in transfer free energies [16–18]. Careful90

quantum chemical assessments of the magnitude of these protonation state effects found that their neglect91

could introduce errors up to 6–8 kcal/mol for some compounds [18]. This effect stems from the need to92

account for the free energy difference between the major ionization state in cyclohexane (most likely neutral93

state) and in water phase (which could be neutral or charged).94

To isolate these surprisingly large protonation state modeling errors from difficulties related to lipophilic-95

ity (log P and log D) prediction methods, we decided to organize a set of staged physicochemical property96

challenges using a consistent set of molecules that resemble small molecule kinase inhibitors—an important97

drug class replete with multiple titratable moieties. This series of challenges will first evaluate the ability98

of current-generation modeling tools to predict acid dissociation constants (pK
a
). It will be followed by a99

partition/distribution coefficient challenge to evaluate the ability to incorporate experimentally-provided100

pK
a
values into prediction of distribution coefficients to ensure methodologies can correctly incorporate101

protonation state effects into their predictions. A third challenge stage will follow: a new blinded parti-102

tion/distribution coefficient challenge where participants must predict pK
a
values on their own. At the103

conclusion of this series of challenges, we will ensure that modern physical and empirical modeling methods104

have eliminated this large source of spurious errors from modeling both simple and complex phenomena.105

This article reports on the experiments for the first stage of this series of challenges: SAMPL6 pK
a

106

prediction challenge. The selection of a small molecule set and collection of experimental pK
a
data are107

described in detail.108

Conceptualization of a blind pKa challenge109

This is the first time a blind pK
a
prediction challenge has been fielded as part of SAMPL. In this first iteration of110

the challenge, we aimed to assess the performance of current pK
a
prediction methods and isolate potential111

causes of inaccurate pK
a
estimates.112

The prediction of pK
a
values for drug-like molecules can be complicated by several effects: the presence113

of multiple (potentially coupled) titratable sites, the presence of heterocycles, tautomerization, the confor-114

mational flexibility of large molecules, and ability of intramolecular hydrogen bonds to form. We decided115

to focus on the chemical space of small molecule kinase inhibitors in the first iteration of pK
a
prediction116

challenge. A total of 24 small organic molecules (17 drug-fragment-like and 7 drug-like) were selected for117

their similarity to known small molecule kinase inhibitors, while also considering properties predicted to118

affect the experimental tractability of pK
a
and log Pmeasurements such as solubility and predicted pK

a
s.119

Macroscopic pK
a
values were collected experimentally with UV-absorbance spectroscopy-based pK

a
mea-120

surements using a Sirius T3 instrument, which automates the sample handling, titration, and spectroscopic121

measurements to allow high-quality pK
a
determination. The Sirius T3 is equipped with an autosampler122

which allowed us to run 8–10 measurements per day. Experimental data were kept blinded for three months123

(25 Oct 2017 through 23 Jan 2018) to allow participants in the SAMPL6 pK
a
challenge to submit truly blinded124

computational predictions. Eleven research groups participated in this challenge, providing a total of 93125

prediction submission sets that cover a large variety of contemporary pK
a
prediction methods.126

Our selected experimental approach determines macroscopic pKa values127

Whenever experimental pK
a
measurements are used for evaluating pK

a
predictions, it is important to128

differentiate between microscopic and macroscopic pK
a
values. In molecules containing multiple titratable129

moieties, the protonation state of one group can affect the proton dissociation propensity of another130

functional group. In such cases, the microscopic pK
a
(group pK

a
) refers to the pK

a
of deprotonation of131

a single titratable group while all the other titratable and tautomerizable functional groups of the same132

molecule are held fixed. Different protonation states and tautomer combinations constitute different133

microstates. The macroscopic pK
a
(molecular pK

a
) defines the acid dissociation constant related to the134

observable loss of a proton from a molecule regardless of which functional group the proton is dissociating135

from, so it doesn’t necessarily convey structural information.136

Whether a measured pK
a
is microscopic or macroscopic depends on the experimental method used137

(Figure 2). For a molecule with only one titratable proton, the microscopic pK
a
is equal to the macroscopic138
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Figure 1. Assignment of cysteine and glycine pKa values. pKa1, pKa2, and pKa3 are macroscopic acid dissociation
constants for cysteine and glycine [24]. When pKa values of a polyprotic molecule are very different, such as in the case of
glycine, it is possible to assign the pKas to individual groups since the dissociation of protons is stepwise [19]. However,
stepwise dissociation cannot be assumed for cysteine, because pKa2 and pKa3 are very close in value. Four underlying
microscopic pKas (pKa,S , pKa,N , pKa,S′ , and pKa,N ′ ) for cysteine were measured using UV spectra analysis of cysteine and

derivatives [25]. Notice that the proximity of pKa,S and pKa,N values indicates similar probability of proton dissociation
from these groups. This figure is adopted from [19].

pK
a
. For a molecule with multiple titratable groups, however, throughout a titration from acidic to basic pH,139

the deprotonation of some functional groups can take place almost simultaneously. For these multiprotic140

molecules, the experimentally-measured macroscopic pK
a
will include contributions from multiple micro-141

scopic pK
a
s with similar values (i.e., acid dissociation of multiple microstates). Cysteine provides an example142

of this behavior with its two macroscopic pK
a
s observable by spectrophotometric or potentiometric pK

a
143

measurement experiments [19, 20].144

While four microscopic pK
a
s can be defined for cysteine, experimentally observed pK

a
values cannot145

be assigned to individual functional groups directly (Figure 1, top). More advanced techniques capable of146

resolving individual protonation sites—such as NMR [21], Raman spectroscopy [22, 23], and the analysis of147

pK
a
s in molecular fragments or derivatives—are required to unambiguously assign the site of protonation148

state changes. On the other hand, when there is a large difference between microscopic pK
a
s in a multiprotic149

molecule, the proton dissociations won’t overlap and macroscopic pK
a
s observed by experiments can be150

assigned to individual titratable groups. The pK
a
values of glycine provide a good example of this scenario151

(Figure 1, bottom) [19, 20, 22]. We recommend the short review on the assignment of pK
a
values authored by152

Ivan G. Darvey [20] for a good introduction to the concepts of macroscopic vsmicroscopic pK
a
values.153

The most common methods for measuring small molecule pK
a
s are UV-absorbance spectroscopy (UV-154

metric titration) [28–30], potentiometry (pH-metric titration) [30, 31], capillary electrophoresis [32, 33],155

and NMR spectroscopy [21], with NMR being the most time-consuming approach. Other, less popular156

pK
a
measurement techniques include conductometry, HPLC, solubility or partition based estimations,157

calorimetry, fluorometry, and polarimetry [34]. UV-metric and pH-metric methods(Figure 3) of Sirius T3 are158
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Figure 2. Comparison of macroscopic and microscopic pKa measurement methods. Filled circles represent proto-
nated sites and empty circles represent deprotonated sites with the order of carboxylic acid (1), piperazine nitrogen (2),

and piperazine nitrogen (3). Protonation state populations shown for pH-metric and UV-metric pKa measurement methods
are simulations, calculated using NMR-based microscopic pKa values. (A) Cetirizine has n =3 titratable sites, shown in bold.
(B) Left: The 8 microstates (2n) and 12 microscopic pKas (n2n−1) of cetirizine. Right: Relative population of microspecies with
respect to pH. Potentially all microstates can be resolved via NMR. (C) Simulated pH-metric (potentiometric) titration and

macroscopic populations. For a polyprotic molecule, only macroscopic pKas can be measured with pH-metric titration.
Microstates with different total charge (related to the number of protons) can be resolved, but microstates with the

same total charge are observed as one macroscopic population. (D) Simulated microscopic populations for UV-metric

(spectrophotometric) titration of cetirizine. Since only protonation of the titration sites within four heavy atoms of the

UV-chromophore is likely to cause an observable change in the UV-absorbance spectra, microstates that only differ by

protonation of the distal carboxylic acid cannot be differentiated. Moreover, populations that overlap may or may not

be resolvable depending on how much their absorbance spectra in the UV region differ. Both UV-metric and pH-metric

pKa determination methods measure macroscopic pKas for polyprotic molecules, which cannot easily be assigned to
individual titration sites and underlying microstate populations in the absence of other experimental evidence that

provides structural resolution, such as NMR. Note that macroscopic populations observed in these two methods are

composed of different combinations of microstates depending on the principles of measurement technique. Here,

the illustrative diagram style was adopted from [26], and NMR-determined microscopic pKas for cetirizine were taken
from [27].
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limited to measuring aqueous pK
a
values between 2 and 12 due to limitations of the pH electrode used in159

these measurements. The pH-metric method relies on determining the stoichiometry of bound protons160

with respect to pH, calculated from volumetric titration with acid or base solutions. Accurate pH-metric161

measurements require high concentrations of analyte as well as analytically prepared acid/base stocks162

and analyte solutions. By contrast, UV-metric pK
a
measurements rely on the differences in UV absorbance163

spectra of different protonation states, generally permitting lower concentrations of analyte to be used. The164

pH and UV absorbance of the analyte solution are monitored during titration.165

Both UV-metric and pH-metric pK
a
determination methods measure macroscopic pK

a
s for polyprotic166

molecules, which cannot be easily assigned to individual titration sites and underlying microstate popu-167

lations in the absence of other experimental evidence that provides structural information, such as NMR168

(Figure 2). Macroscopic populations observed in these two methods are composed of different combinations169

of microstates depending on the principles of measurement technique. In potentiometric titrations, mi-170

crostates with same total charge will be observed as one macrostate, while in spectrophotometric titrations,171

protonation sites remote from chromophores might be spectroscopically invisible, and macrostates will be172

formed from collections of microstates that manifest similar UV-absorbance spectra.173

For UV-metric method to resolve populations of microstates, sufficiently different UV spectra between174

microstates and sufficiently non-overlapping change of populations with respect to pH are needed. However,175

relative tautomer populations of microstates with the same total charge do not depend on pH and stay176

constant while pH is titrated (Figure 2B), therefore they cannot be resolved by UV-metric method. The177

pH-metric method also cannot resolve microstates that have the same total charge as shown in Figure 2C.178

Spectrophotometric pK
a
determination is more sensitive than potentiometric determination, requiring179

low analyte concentrations (50–100 µM)—especially advantageous for compounds with low solubilities—180

but is only applicable to titration sites near chromophores. For protonation state changes to affect UV181

absorbance, a useful rule of thumb is that the protonation site should be a maximum of four heavy atoms182

away from the chromophore, which might consist of conjugated double bonds, carbonyl groups, aromatic183

rings, etc. Although potentiometric measurements do not suffer from the same observability limitations,184

higher analyte concentrations (∼5 mM) are necessary for the analyte to provide sufficiently large enough185

buffering capacity signal above water to produce an accurate measurement. The accuracy of pK
a
s fit to186

potentiometric titrations can also be sensitive to errors in the estimated concentration of the analyte in the187

sample solution, while UV-metric titrations are insensitive to concentration errors. We therefore decided to188

adopt spectrophotometric measurements for collecting the experimental pK
a
data for this challenge, and189

selected a compound set to ensure that all potential titration sites are in the vicinity of UV chromophores.190

Here, we report on the selection of SAMPL6 pK
a
challenge compounds, their macroscopic pK

a
values191

measured by UV-metric titrations using a Sirius T3, as well as NMR-based microstate characterization of two192

SAMPL6 compounds with ambiguous protonation states associated with the observed macroscopic pK
a
s193

(SM07 and SM14). We discuss implications of the use of this experimental technique for the interpretation194

of pK
a
data, and provide suggestions for future pK

a
data collection efforts with the goal of evaluating or195

training computational pK
a
predictions.196

Methods197

Compound selection and procurement198

To select a set of small molecules focusing on the chemical space representative of kinase inhibitors for199

physicochemical property prediction challenges (pK
a
and lipophilicity) we started from the kinase-targeted200

subclass of the ZINC15 chemical library [35] and applied a series of filtering and selection rules as depicted201

in Figure 4A. We focused on the availability "now" and reactivity "anodyne" subsets of ZINC15 in the first202

filtering step [http://zinc15.docking.org/subclasses/kinase/substances/subsets/now+anodyne/]. The "now"203

label indicates the compounds were availabile for immediate delivery, while the "anodyne" label excludes204

compounds matching filters that flag compounds with the potential for reactivity or pan-assay interference205

(PAINs) [36, 37].206

Next, we identified resulting molecules that were also available for procurement through eMolecules [38]207
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Pyridoxine HCl

UV-metric pKa measurement pH-metric pKa measurement

C
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F
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B
H2A+ HA A-

Figure 3. UV-metric (spectrophotometric) and pH-metric (potentiometric) pKa measurements of pyridoxine HCl
with Sirius T3. Spectrophotometic pKa measurement (panels A, B, C) relies on differences in the UV absorbance spectra
between microscopic protonation states to deconvolute the population of macrostate species as a function of pH. While

highly sensitive (and therefore requiring a very low analyte concentration of ∼ 50 µM), this approach can only resolve
changes in protonation states for titratable sites near chromophores and cannot separate the populations of microstates

that change in the same manner as a function of pH. (A) Multiwavelength UV absorbance vs pH. Purple lines represents

absorbance at distinct wavelengths in UV region. (B) Derivative of multiwavelength absorbance with respect to pH

(dA/dpH) vs pH is plotted with purple lines. In A and B, blue, red, and green triangles represent population of protonation

states (from most protonated to least protonated) as calculated from a global fit to experimental UV absorbances for all

pH values, while thin lines denote model fits that utilize the fitted model pKas to compute populations. pKa values (green
flags) correspond to inflection point of multiwavelength absorbance data where change in absorbance with respect to

pH is maximum. (C) Molar absorption coefficients vs wavelength for each protonation state as resolved by TFA. D, E, F

illustrate potentiometric pKa measurement where molar addition of acid or base is tracked as pH is titrated. (D) Mean
molecular charge vs pH. Mean molecular charge is calculated based on the model provided for the analyte: predicted

number and nature of titratable sites (acid or base type), and number of counter ions present. pKa values are calculated
as inflection points of charge vs pH plot. (E) Predicted macroscopic protonation state populations vs pH calculated based

on pKa values (H2A+: blue, HA: red, and A –
: green) (F) Buffering index vs pH profile of water (grey solid line, theoretical)

and the sample solution (blue triangles represent experimental data points). A higher concentration of analyte (∼5 mM) is
necessary for the potentiometric method than the spectrophotometric method in order to provide large enough buffering

capacity signal above water for an accurate measurement.
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(free version, downloaded 1 June 2017), the supplier that would be used for procurement in this exercise. To208

find the intersection of ZINC15 kinase subset and eMolecules database, we matched molecules using their209

canonical isomeric SMILES strings, as computed via the OpenEye OEChem Toolkit (version 2017.Feb.1) [39].210

To extract availability and price information from eMolecules, we queried using a list of SMILES (as211

reported in eMolecules database) of the intersection set. We further filtered the intersection set (1204212

compounds) based on delivery time (Tier 1 suppliers, two-week delivery) and at least 100 mg availability in213

powder form (format: Supplier Standard Vial). We aimed to purchase 100 mg of each compound in powder214

form with at least 90% purity. We calculated 100 mg was enough for optimization and replicate experiments215

to measure pK
a
, log P, and solubility measurements with the Sirius T3. Each UV-metric and pH-metric pK

a
216

measurement requires a minimum of 0.01 mg and 1.00 mg compound (solid or delivered via DMSO stock217

solution), respectively. log P and pH-dependent solubility measurements require around 2 mg and 10 mg of218

solid chemical, respectively.219

Filtering for predicted measurable pKas and lack of experimental data220

The Sirius T3 (Pion) instrument used to collect pK
a
and log P/log Dmeasurements requires a titratable group221

in the pK
a
range of 2–12, so we aimed to select compounds with predicted pK

a
s in the range of 3–11 to allow a222

∼1 pK unit margin of error in pK
a
predictions. pK

a
predictions for compound selection were calculated using223

Epik (Schödinger) sequential pK
a
prediction (scan) [40, 41] with target pH 7.0 and tautomerization allowed224

for generated states. We filtered out all compounds that did not have any predicted pK
a
s between 3–11, as225

well as compounds with two pK
a
values predicted to be less than 1 pK

a
unit apart in the hopes that individual226

pK
a
s of multiprotic compounds could be resolved with spectrophotometric pK

a
measurements. With the227

goal of selecting compounds suitable for subsequent log P measurements, we eliminated compounds228

with OpenEye XlogP [42] values less than -1 or greater than 6. Subsets of compounds with molecular229

weights between 150–350 g/mol and 350–500 g/mol were selected for fragment-like and drug-like categories230

respectively. Compounds without available price or stock quantity information were eliminated. As the goal231

was to provide a blind challenge, compounds with publicly available experimental log Pmeasurements were232

also removed. The sources we checked for publicly available experimental log P values were the following:233

DrugBank [43] (queried with eMolecules SMILES), ChemSpider [44] (queried by canonical isomeric SMILES),234

NCI Open Database August 2006 release [45], Enhanced NCI Database Browser [46] (queried with canonical235

isomeric SMILES), and PubChem [47] (queried with InChIKeys generated from canonical isomeric SMILES236

with NCI CACTUS Chemical Identifier Resolver [48]).237

Filtering for kinase inhibitor-like scaffolds238

In order to include common scaffolds found in kinase inhibitors, we analyzed the frequency of rings239

found in FDA-approved kinase inhibitors via Bemis-Murcko fragmentation using OEMedChem Toolkit of240

OpenEye [49, 50]. Heterocycles found more than once in FDA-approved kinase inhibitors are shown in241

Figure 4B. In selecting 25 compounds for the fragment-like set and 10 compounds for the drug-like set, we242

prioritized including at least one example of each heterocycle, although we failed to find compounds with243

piperazine and indazole that satisfied all other selection criteria. We observed that certain heterocycles244

(shown in Figure 4C) were overrepresented based on our selection criteria; therefore, we limited the number245

of these structures in the SAMPL6 challenge set to at most one in each set. To achieve broad and uniform246

sampling of the measurable log P dynamic range, we segregated the molecules into bins of predicted XlogP247

values and selected compounds from each bin, prioritizing less expensive compounds.248

Filtering for UV chromophores249

The presence of UV chromophores (absorbing in the 200–400 nm range) in close proximity to protonation250

sites is necessary for spectrophotometric pK
a
measurements. To filter for molecules with UV chromophores,251

we looked at the substructure matches to the SMARTS pattern [n,o,c][c,n,o]cc which was considered252

the smallest unit of pi-conjugation that can constitute a UV chromophore. This SMARTS pattern describes253

extended conjugation systems comprised of four heavy atoms and composed of aromatic carbon, nitrogen,254

or oxygen, such as 1.3-butadiene, which possesses an absorption peak at 217 nm. Additionally, the final set255

of selected molecules was manually inspected to makes sure all potentially titratable groups were no more256
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than four heavy atoms away from a UV chromophore.257

25 fragment-like and 10 drug-like compounds were selected, out of which procurement of 28 was258

completed in time. pK
a
measurements for 17 (SM01–SM17) and 7 (SM18–SM24) were successful, respectively.259

The resulting set of 24 small molecules constitute the SAMPL6 pK
a
challenge set. For the other four260

compounds, UV-metric pK
a
measurements show no detectable pK

a
s in the range of 2–12, so we decided not261

to include them in the SAMPL6 pK
a
challenge. Experiments for these four compounds are not reported in262

this publication.263

Python scripts used in the compound selection process are available from GitHub [https://github.com/264

choderalab/sampl6-physicochemical-properties]. Procurement details for each compound can be found265

in Supplementary Table 1. Chemical properties used in the selection of compounds are summarized in266

Supplementary Table 2.267

UV-metric pKa measurements268

Experimental pK
a
measurements were collected using the spectrophotometric pK

a
measurement method269

with a Sirius T3 automated titrator instrument (Pion) at 25°C and constant ionic strength. The Sirius T3270

is equipped with an Ag/AgCl double-junction reference electrode to monitor pH, a dip probe attached to271

UV spectrophotometer, a stirrer, and automated volumetric titration capability. The Sirius T3 UV-metric272

pK
a
measurement protocol measures the change in multi-wavelength absorbance in the UV region of the273

absorbance spectrum while the pH is titrated over pH 1.8–12.2 [28, 29]. UV absorbance data is collected274

from 160–760 nm while the 250–450 nm region is typically used for pK
a
determinations. Subsequent global275

data analysis identifies pH-dependent populations of macrostates and fits one or more pK
a
values to match276

this population with a pH-dependent model.277

DMSO stock solutions of each compound with 10 mg/ml concentration were prepared by weighing 1 mg278

of powder chemical with a Sartorius Analytical Balance (Model: ME235P) and dissolving it in 100 µL DMSO279

(Dimethyl sulfoxide, Fisher Bioreagents, CAT: BP231-100, LOT: 116070, purity ≥ 99.7%). DMSO stock solutions280

were capped immediately to limit water absorption from the atmosphere due to the high hygroscopicity281

of DMSO and sonicated for 5–10 minutes in a water bath sonicator at room temperature to ensure proper282

dissolution. These DMSO stock solutions were stored at room temperature up to two weeks in capped glass283

vials. 10 mg/ml DMSO solutions were used as stock solutions for the preparation of three replicate samples284

for the independent titrations. For each experiment, 1–5 µL of 10 mg/ml DMSO stock solution was delivered285

to a 4 mL Sirius T3 glass sample vial with an electronic micropipette (Rainin EDP3 LTS 1–10 µL). The volume286

of delivered DMSO stock solution, which determines the sample concentration following dilution by the287

Sirius T3, is optimized individually for each compound to achieve sufficient but not saturated absorbance288

signal (targeting 0.5–1.0 AU) in the linear response region. Another limiting factor for sample concentration289

was ensuring that the compound remains soluble throughout the entire pH titration range. An aliquot of290

25 µL of mid-range buffer (14.7 mM K
2
HPO

4
and 0.15 M KCl in H

2
O) was added to each sample, transferred291

with a micropipette (Rainin EDP3 LTS 10–100 µL) to provide enough buffering capacity in middle pH ranges292

so that pH could be controlled incrementally throughout the titration.293

pH is temperature and ionic-strength dependent. A peltier device on the Sirius T3 kept the analyte294

solution at 25.0 ± 0.5 °C throughout the titration. Sample ionic strength was adjusted by dilution in 1.5 mL295

ionic strength-adjusted water (ISA water ≡ 0.15 M KCl in H
2
O) by the Sirius T3. Analyte dilution, mixing,296

acid/base titration, and measurement of UV absorbance was automated by the Sirius T3 UV-metric pK
a

297

measurement protocol. The pH was titrated between pH 1.8 and 12.2 via the addition of acid (0.5 M HCl)298

and base (0.5 M KOH), targeting 0.2 pH steps between UV absorbance spectrum measurements. Titrations299

were performed under argon flow on the surface of the sample solution to limit the absorption of carbon300

dioxide from air, which can alter the sample pH to a measurable degree. To fully capture all sources of301

experimental variability, instead of performing three sequential pH titrations on the same sample solution,302

three replicate samples (prepared from the same DMSO stock solution) were subjected to one round of303

pH titration each. Although this choice reduced throughput and increased analyte consumption, it limited304

the dilution of the analyte during multiple titrations, resulting in stronger absorbance signal for pK
a
fitting.305

Under circumstances where analyte is scarce, it is also possible to do three sequential titrations using the306
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ZINC15 kinase subset

available now, anodyne

   intersection with eMolecules library

availability through eMolecules

         Tier1, 100 mg, powder  

             predicted pKa filter

             Epik Sequencial pKa
- at least one pKa value in range 3-11

- pKa values at least 1 pKa unit apart

    predicted log P filter

  -1 ≤ OpenEye XlogP ≤ 6

molecular weight filter

FRAGMENT-LIKE DRUG-LIKE

`150 ≤ mw < 350 350 < mw ≤ 500

price listed and 100 mg available

filter out molecules with experimental log P

47126

111 40

91 15

 10883

1204

292 

180

178

1. Include at least one molecule for each kinase inhibitor ring fragment 

2. Limit the number of frequently appearing rings to at most one 

3. Target broad and uniform sampling of log P dynamic range

4. Prioritize cheaper molecules

compound selection rules

25 (17) 10 (7)

A B

C

Heterocycles found frequently in 
FDA approved kinase inhibitors

Heterocycles overrepresented in 
fragment libraries

Figure 4. Compound selection for the SAMPL6 pKa challenge, with the goal of running subsequent log P/log D
challenges on the same compound set. (A) Flowchart of filtering steps for the selection of compounds that resemble

kinase inhibitors and their fragments. Numbers next to arrows indicate the number of compounds remaining after

each filtering step. A total of 25 fragment-like and 10 drug-like compounds were selected, out of which procurement

and pKa measurements for 17 fragment-like and 7 drug-like compounds were successful, respectively. (B) Frequent
heterocycles found in FDA approved kinase inhibitors, as determined by Bemis-Murcko fragmentation into rings [49].

Black structures were represented in SAMPL6 set at least once. Compounds with piperazine and indazole (gray structures)

could not be included in the challenge set due to library and selection limitations. (C) Structures of heterocycles that

were overrepresented based on our compound selection workflow. We have limited the number of occurrences of these

heterocycles to at most one.
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same sample to limit consumption when the loss of accuracy is acceptable.307

Visual inspection of the sample solutions after titration and inspection of the pH-dependent absorbance308

shift in the 500–600 nm region of the UV spectra was used to verify no detectable precipitation occurred309

during the course of the measurement. Increased absorbance in the 500–600 nm region of the UV spectra is310

associated with scattering of longer wavelengths of light in the presence of colloidal aggregates. For each311

analyte, we optimized analyte concentration, direction of the titration, and pH titration range in order to312

maintain solubility over the entire experiment. The titration direction was specified so that each titration313

would start from the pH where the compound is most soluble: low-to-high pH for bases and high-to-low314

pH for acids. While UV-metric pK
a
measurements can be performed with analyte concentrations as low as315

50 µM (although this depends on the absorbance properties of the analyte), some compounds may yet not316

be soluble at these low concentrations throughout the pH range of the titration. As the sample is titrated317

through a wide range of pH values, it is likely that low-solubility ionization states—such as neutral and318

zwitterionic states—will also be populated, limiting the highest analyte concentration that can be titrated319

without encountering solubility issues. For compounds with insufficient solubility to accurately determine a320

pK
a
value directly in a UV-metric titration, a cosolvent protocol was used, as described in the next section321

(UV-metric pK
a
measurement with cosolvent).322

Two Sirius T3 computer programs—Sirius T3 Control v1.1.3.0 and Sirius T3 Refine v1.1.3.0—were used323

to execute measurement protocols and analyze pH-dependent multiwavelength spectra, respectively. Pro-324

tonation state changes at titratable sites near chromophores will modulate the UV-absorbance spectra of325

these chromophores, allowing populations of distinct UV-active species to be resolved as a function of pH.326

To do this, basis spectra are identified and populations extracted via TFA analysis of the pH-dependent327

multi-wavelength absorbance [29]. When fitting the absorbance data to a titratable molecule model to328

estimate pK
a
s, we selected the minimum number of pK

a
s sufficient to provide a high-quality fit between329

experimental and modeled data based on visual inspection of pH-dependent populations.330

This method is capable of measuring pK
a
values between 2–12 when titratable groups are at most 4–5331

heavy atoms away from chromophores such that a change in protonation state alters the absorbance332

spectrum of the chromophore. We selected compounds where titratable groups are close to potential333

chromophores (generally aromatic ring systems), but the possibility exists that our experiments did not334

detect protonation state changes of titratable groups distal from UV chromophores.335

Cosolvent UV-metric pKa measurements of molecules with poor aqueous solubilities336

If analytes are not sufficiently soluble during the titration, pK
a
values cannot be accurately determined via337

aqueous titration directly. If precipitation occurs, the UV-absorbance signal from pH-dependent precipitate338

formation cannot be differentiated from the pH-dependent signal of soluble microstate species. For com-339

pounds with low aqueous solubility, pK
a
values were estimated from multiple apparent pK

a
measurements340

performed in ISA methanol:ISA water cosolvent solutions with various mole fractions, from which the pK
a

341

at 0% methanol (100% ISA water) can be extrapolated. This method is referred to as a UV-metric p
s
K
a

342

measurement in the Sirius T3 Manual [51]. p
s
K
a
value is the apparent pK

a
value measured in the presence343

of a cosolvent.344

The cosolvent spectrophotometric pK
a
measurement protocol was very similar to the standard aqueous345

UV-metric pK
a
measurement protocol, with the following differences: titrations were performed in typically346

in 30%, 40%, and 50% mixtures of ISA methanol:ISA water by volume to measure apparent pK
a
values (p

s
K
a
)347

in these mixtures. Yasuda-Shedlovsky extrapolation [52, 53] was subsequently used to estimate the pK
a

348

value at 0% cosolvent (Figure 5) [31, 54, 55].349

psKa + log[H2O] = A∕� + B (1)

Yasuda-Shedlovsky extrapolation relies on the linear correlation between psKa + log[H2O] and the reciprocal350

dielectric constant of the cosolvent mixture (1∕�). In Eq. 1, A and B are the slope and intercept of the line351

fitted to experimental datapoints. Depending on the solubility requirements of the analyte, the methanol352

ratio of the cosolvent mixtures was adjusted. We designed the experiments to have at least 5% cosolvent353
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ratio difference between datapoints and no more than 60% methanol content. Calculation of the Yasuda-354

Shedlovsky extrapolation was performed by the Sirius T3 software using at least 3 p
s
K
a
values measured in355

different ratios of methanol:water. Addition of methanol (80%, 0.15 M KCl) was controlled by the instrument356

before each titration. Three consecutive pH titrations at different methanol concentrations were performed357

using the same sample solution. In addition, three replicate measurements with independent samples358

(prepared from the same DMSO stock) were collected.359

Calculation of uncertainty in pKa measurements360

Experimental uncertainties were reported as the standard error of the mean (SEM) of three replicate pK
a

361

measurements. The standard error of the mean (SEM) was estimated as362

SEM = �
√

N
; � =

√

√

√

√
1
N

N
∑

i=1
(xi − �)2 ; � = 1

N

N
∑

i=1
xi (2)

where � denotes the sample standard deviation and � denotes the sample mean. xi are observations and N363

is the number of observations.364

Since the Sirius T3 software reports pK
a
values to only two decimal places, we have reported the SEM365

as 0.01 in cases where SEM values calculated from 3 replicates were lower than 0.01. SEM calculated from366

replicate measurements were found to be larger than non-linear fit error reported by the Sirius T3 Refine367

Software from UV-absorbance model fit of a single experiment, thus leading us to believe that running368

replicate measurements and reporting mean and SEM of pK
a
measurements is better for capturing all369

sources of experimental uncertainty. Notably, for UV-metric measurements, the measured pK
a
values370

should be insensitive to final analyte concentration and any uncertainty in the exact analyte concentration of371

the original DMSO stock solution, justifying the use of the same stock solution (rather than independently372

prepared stock solutions) for multiple replicates.373

Quality control for chemicals374

Compound purity was assessed by LC-MS using an Agilent HPLC 1200 Series equipped with auto-sampler,375

UV diode array detector, and a Quadrupole MS detector 6140. ChemStation version C01.07SR2 was used376

to analyze LC & LC/MS. An Ascentis Express C18 column (3.0 x 100 mm, 2.7 µm) was used, with column377

temperature set at 45° C.378

• Mobile phase A: 2 mM ammonium formate (pH = 3.5) aqueous379

• Mobile phase B: 2 mM ammonium formate in 90:10 acetonitrile:water (pH = 3.5)380

• Flow rate : 0.75 ml/min381

• Gradient: Starting with 10% B to 95% B in 10 minutes then hold at 95% B for 5 minutes.382

• Post run length: 5 minutes383

• Mass condition: ESI positive and negative mode384

• Capillary voltage: 3000 V385

• Drying gas flow: 12 ml/min386

• Nebulizer pressure: 35 psi387

• Drying temperature: 350°C388

• Mass range: 5-1350 Da; Fragmentor: 70; Threshold: 100389

The percent area for the primary peak is calculated based on the area of the peak divided by the total390

area of all peaks. The percent area of the primary peak is reported as an estimate of sample purity. The391

purity of primary LC peak was checked by ChemStation software with threshold 995, to check that there is392

no significant impurity underneath the main peak.393

NMR determination of protonation microstates394

In general, the chemical shifts of nuclear species observed in nuclear magnetic resonance (NMR) spectra395

report on and are very sensitive to the chemical environment. Consequently, small changes in chemical396
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Spectral data by pH in 59.07% methanol  

Spectral data by pH in 49.72% methanol 

Spectral data by pH in 40.08% methanol 

: 2.45
: 7.42

A

B

C

D

Figure 5. Determination of SM22 pKa values with cosolvent method and Yasuda-Shedlovsky extrapolation. A, B,
and C show psKa of SM22 determined at various methanol concentrations: 59.07%, 49.72%, 40.08% by weight. Purple
solid lines indicate the derivative of the absorbance signal with respect to pH vs pH at multiple wavelengths. psKa values
(green flags) were determined by Sirius T3 Refine Software. Blue, red, and green triangles show relative populations

of macroscopic protonation states with respect to pH calculated from the experimental data. Notice that as cosolvent

concentration increases, psKa1 decreases from 1.90 to 1.47 and psKa2 increases from 7.84 to 8.24. D Yasuda-Shedlovsky
extrapolation plot for SM22. Red datapoints correspond to psKa determined at various cosolvent ratios. Based on linear
fitting to psKa + log[H2O] vs 1∕�, pKa1 and pKa2 in 0% cosolvent (aqueous solution) was determined as 2.45 and 7.42,
respectively. R2 values of linear fits are both 0.99. The slope of Yasuda-Shedlovsky extrapolation shows if the observed

titration has acidic (positive slope) or basic (negative slope) character dominantly, although this is an macroscopic

observation and should not be relied on for annotation of pKas to functional groups (microscopic pKas).
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environment, such as the protonation events described in this work, are manifest as changes in the chemical397

shift(s) of the nuclei. If perturbation occurs at a rate which is fast on the NMR timescale (fast exchange),398

an average chemical shift is observed. This phenomena has been exploited and utilized as a probe for399

determining the order of protonation for molecules with more than one titratable site [56]. In some400

cases, direct observation of the titrated nuclei can be difficult, for example nitrogen and oxygen, due to401

sample limitations and/or low natural abundance of the NMR active nuclei (0.37% for 15N and 0.038% for402

17O)—amongst other factors. In these situations, chemical shifts changes of the so-called “reporter” NMR403

nuclei—1H, 31P, or 13C nuclei, which are directly attached to or are a few bonds away from the titrated404

nuclei—have been utilized as the probe for NMR-pH titrations [21, 57, 58]. This approach is advantageous405

since the sensitive NMR nuclides (1H and 31P) are observed. In addition, 31P and 13C offer large spectral406

widths of ~300 ppm and ~200 ppm, respectively, which minimize peak overlap.407

However, reporter nuclei chemical shifts provide indirect information subject to interpretation. In complex408

systems with multiple titratable groups, such analysis will be complicated due to a cumulative effect of these409

groups on the reporter nuclide due to their close proximity or the resonance observed in aromatic systems.410

In contrast, direct observation of the titratable nuclide where possible, affords a more straight-forward411

approach to studying the protonation events. In this study, the chemical shifts of the titratable nitrogen412

nuclei were observed using the 1H-15N-HMBC (Heteronuclear Multiple-Bond Correlation) experiments — a413

method that affords the observation of 15N chemical shifts while leveraging the sensitivity accrued from the414

high abundance the 1H nuclide.415

The structures of samples SM07 and SM14 were assigned via a suite of NMR experiments, which included416

1H NMR, 13C NMR, homonuclear correlated spectroscopy (1H-1H COSY), heteronuclear single quantum417

coherence (1H-13C HSQC), 13C heteronuclear multiple-bond correlation (1H-13C-HMBC) and 15N heteronuclear418

multiple-bond correlation (1H-15N-HMBC)—see SI. All NMR data used in this analysis were acquired on a419

Bruker 500 MHz spectrometer equipped with a 5 mm TCI CryoProbeTM Prodigy at 298 K. The poor solubility420

of the analytes precluded analysis in water and thus water-d
2
/methanol-d

4
mixture and acetonitrile-d

3
were421

used as solvents. The basic sites were then determined by titration of the appropriate solutions of the422

samples with equivalent amounts of deutero-trifluoroacetic acid (TFA-d) solution.423

SM07424

5.8 mg of SM07 was dissolved in 600 µL of methanol-d
4
:water-d

2
(2:1 v/v ratio). A 9% v/v TFA-d solution in425

water-d2 was prepared, such that each 20 µL volume contained approximately 1 equivalent of TFA-d with426

respect to the base. The SM07 solution was then titrated with the TFA-d solution at 0.5, 1.0, 1.5, and 5.0427

equivalents with 1H-15N HMBC spectra (optimized for 5 Hz) acquired after each TFA addition. A reference428

1H-15N HMBC experiment was first acquired on the SM07 solution prior to commencement of the titration.429

SM14430

5.5 mg of SM14 was dissolved in 600 µL of acetonitrile-d
3
. A 10% v/v TFA-d solution in acetonitrile-d

3
was431

prepared, 20 µL of which corresponds to 1 equivalent of TFA-d with respect to the base. Further 1:10 dilution432

of the TFA-d solution in acetonitrile-d
3
, allowed measurement of 0.1 equivalent of TFA-d per 20 µL of solution.433

The SM14 solution was then titrated with the TFA-d solutions at 0.0, 0.5, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6,434

5.1, and 10.1 equivalents. The chemical shift changes were monitored by the acquisition of 1H-15N HMBC435

spectra (optimized for 5 Hz) after each TFA addition.436

Results437

Spectrophotometric pKa measurements438

Spectrophotometrically-determined pK
a
values for all molecules from the SAMPL6 pK

a
challenge are shown439

in Figure 6 and Table 1. The protocol used—cosolvent or aqueous UV-metric titration—is indicated in440

Table 1 together with SEM of each reported measurement. Out of 24 molecules successfully assayed, five441

molecules have two resolvable pK
a
values, while one has three resolvable pK

a
values within the measurable442

pK
a
range of 2–12. The SEM of reported pK

a
measurements is low, with the largest uncertainty reported443

being 0.04 pK units (pK
a1
of SM06 and pK

a3
of SM18). Individual replicate measurements can be found in444
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Table 1. Experimental pKas of SAMPL6 compounds. Spectrophotometric pKa measurements were
performed with two assay types based on aqueous solubility of analytes. "UV-metric pKa" assay
indicates spectrophotometric pKa measurements done with Sirius T3 in ISA water. "UV-metric pKa
with cosolvent" assay refers to pKa determination by Yasuda-Shedlovsky extrapolation from psKa
measurements in various ratios of ISA methanol:water mixtures. Triplicate measurements were

performed at 25.0 ± 0.5° C and in the presence of approximately 150 mM KCl to adjust ionic strength.

Molecule ID pK
a1

pK
a2

pK
a3

Assay Type

SM01 9.53 ± 0.01 UV-metric pK
a

SM02 5.03 ± 0.01 UV-metric pK
a
with cosolvent

SM03 7.02 ± 0.01 UV-metric pK
a
with cosolvent

SM04 6.02 ± 0.01 UV-metric pK
a

SM05 4.59 ± 0.01 UV-metric pK
a
with cosolvent

SM06 3.03 ± 0.04 11.74 ± 0.01 UV-metric pK
a

SM07 6.08 ± 0.01 UV-metric pK
a

SM08 4.22 ± 0.01 UV-metric pK
a

SM09 5.37 ± 0.01 UV-metric pK
a
with cosolvent

SM10 9.02 ± 0.01 UV-metric pK
a
with cosolvent

SM11 3.89 ± 0.01 UV-metric pK
a

SM12 5.28 ± 0.01 UV-metric pK
a

SM13 5.77 ± 0.01 UV-metric pK
a

SM14 2.58 ± 0.01 5.30 ± 0.01 UV-metric pK
a

SM15 4.70 ± 0.01 8.94 ± 0.01 UV-metric pK
a

SM16 5.37 ± 0.01 10.65 ± 0.01 UV-metric pK
a

SM17 3.16 ± 0.01 UV-metric pK
a

SM18 2.15 ± 0.02 9.58 ± 0.03 11.02 ± 0.04 UV-metric pK
a
with cosolvent

SM19 9.56 ± 0.02 UV-metric pK
a
with cosolvent

SM20 5.70 ± 0.03 UV-metric pK
a
with cosolvent

SM21 4.10 ± 0.01 UV-metric pK
a
with cosolvent

SM22 2.40 ± 0.02 7.43 ± 0.01 UV-metric pK
a
with cosolvent

SM23 5.45 ± 0.01 UV-metric pK
a
with cosolvent

SM24 2.60 ± 0.01 UV-metric pK
a
with cosolvent

1 pK
a
values are reported as mean ± SEM of three replicates.

Supplementary Table 3. Reports generated for each pK
a
measurement by the Sirius T3 Refine software can445

also be found in the Supplementary Information. Experimental pK
a
values for nearly all compounds with446

multiple resolvable pK
a
s are well-separated (more than 4 pK

a
units), except for SM14 and SM18.447

Impact of cosolvent to UV-metric pKa measurements448

For molecules with insufficient aqueous solubilities throughout the titration range (pH 2–12), we resorted449

to cosolvent UV-metric pK
a
measurements, with methanol used as cosolvent. To confirm that cosolvent450

UV-metric pK
a
measurements led to indistinguishable results compared to aqueous UV-metric measure-451

ments, we collected pK
a
values of 12 highly soluble SAMPL6 compounds—as well as pyridoxine—using452

both cosolvent and aqueous methods. Correlation analysis of pK
a
values determined with both methods453

demonstrated that using methanol as cosolvent and determining aqueous pK
a
s via Yasuda-Shedlovsky454

extrapolation did not result in significant bias (Figure 7), since 95% CI for mean deviation (MD) between455

two measurements includes zero. Means and standard errors of UV-metric pK
a
measurements with and456

without cosolvent are provided in Supplementary Table 5. pK
a
measurement results of individual replicate457

measurements with and without cosolvent can be found in Supplementary Table 4.458
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SM01	
  
pKa	
  	
  9.53	
  ±	
  0.01	
  

	
  

SM02	
  
pKa	
  	
  5.03	
  ±	
  0.01	
  

	
  

SM03	
  
pKa	
  	
  7.02	
  ±	
  0.01	
  

	
  

SM04	
  
pKa	
  	
  6.02	
  ±	
  0.01	
  

	
  

SM05	
  
pKa	
  	
  4.59	
  ±	
  0.01	
  

	
  

SM06	
  
pKa1	
  	
  	
  3.03	
  ±	
  0.04	
  
	
  pKa2	
  	
  11.74	
  ±	
  0.01	
  

	
  
	
  

SM07	
  
pKa	
  	
  	
  6.08	
  ±	
  0.01	
  

	
  
	
  

SM08	
  
pKa	
  	
  	
  4.22	
  ±	
  0.01	
  

	
  
	
  

SM09	
  
pKa	
  	
  	
  5.37	
  ±	
  0.01	
  

SM10	
  
pKa	
  	
  	
  9.02	
  ±	
  0.01	
  

SM11	
  
pKa	
  	
  	
  3.89	
  ±	
  0.01	
  

SM12	
  
pKa	
  	
  	
  5.28	
  ±	
  0.01	
  

SM13	
  
pKa	
  	
  	
  5.77	
  ±	
  0.01	
  

SM14	
  
pKa1	
  	
  	
  2.58	
  ±	
  0.01	
  
pKa2	
  	
  	
  5.30	
  ±	
  0.01	
  

	
  

SM15	
  
pKa1	
  	
  	
  4.70	
  ±	
  0.01	
  
pKa2	
  	
  	
  8.94	
  ±	
  0.01	
  

	
  

SM16	
  
pKa1	
  	
  	
  5.37	
  ±	
  0.01	
  

	
  	
  	
  pKa2	
  	
  	
  10.65	
  ±	
  0.01	
  
	
  

SM17	
  
pKa	
  	
  	
  3.16	
  ±	
  0.01	
  

	
  

SM18	
  
pKa1	
  	
  	
  2.15	
  ±	
  0.02	
  
pKa2	
  	
  	
  9.58	
  ±	
  0.03	
  
	
  	
  pKa3	
  	
  	
  11.02	
  ±	
  0.04	
  

	
  
	
  
	
  

SM19	
  
pKa	
  	
  	
  9.56	
  ±	
  0.02	
  

	
  

SM20	
  
pKa	
  	
  	
  5.70	
  ±	
  0.03	
  

	
  

SM21	
  
pKa	
  	
  	
  4.10	
  ±	
  0.01	
  

	
  

SM22	
  
pKa1	
  	
  	
  2.40	
  ±	
  0.02	
  
pKa2	
  	
  	
  7.43	
  ±	
  0.01	
  

	
  
	
  

SM23	
  
pKa	
  	
  	
  5.45	
  ±	
  0.01	
  

	
  
	
  

SM24	
  
pKa	
  	
  	
  2.60	
  ±	
  0.01	
  

	
  
	
  

Figure 6. Molecules used in the SAMPL6 pKa challenge. Experimental UV-metric pKa measurements were performed
for these 24 molecules and discernable macroscopic pKas are reported. Uncertainties are expressed as the standard
error of the mean (SEM) of three independent measurements. We depicted neutral states of the molecules as sites of

protonation were not determined by UV-metric methods. 2D structures were created with OpenEye OEDepict Toolkit [59].

Canonical isomeric SMILES of molecules in this figure and pKa values measured in replicate experiments can be found in
Table SI 1 and Table SI 3, respectively.
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Figure 7. pKa measurements with UV-metric method with cosolvent and UV-metric method in water show good
correlation. 17 pKa values (blue marks) of 13 chemicals were measured with both UV-metric pKa method in water and
UV-metric pKa method with methanol as cosolvent (Yasuda-Shedlovsky extrapolation to 0% methanol). Dashed black
line has slope of 1, representing perfect correlation. Dark and light green shaded areas indicate ±0.5 and ±1.0 pKa unit
difference regions, respectively. Error bars are plotted as the SEM of replicate measurements, although they are not visible

since the largest SEM is 0.04. MD: Mean difference, MAD: Mean absolute deviation, RMSD: Root-mean-square deviation.

Confidence intervals (reported in brackets) report the 95%ile CI calculated over 10 000 bootstrap samples. Experimental

data used in this plot is reported in Supplementary Table 4.

Purity of SAMPL6 compounds459

LC-MS based purity measurements showed that powder stocks of 23 of the SAMPL6 pK
a
challenge com-460

pounds were >90% pure, while purity of SM22 was 87%—the lowest in the set (Supplementary Table 6). Addi-461

tionally, molecular weights detected by LC-MS method were consistent with those reported in eMolecules,462

as well as supplier-reported molecular weights, when provided. It is recommended by Sirius/Pion technical463

specialists to use compounds with ∼90% purity to minimize the impact on high-accuracy pK
a
measurements.464

Impurities with no UV-chromophore, or elute too late in LC may not be detected with this method, although465

chances are small. The peak purity check of primary peak can detect the presence of a large impurity466

underneath the main peak, but if the UV spectrum of the impurity is exactly same with analyte in the main467

peak, it may not be resolved. HPLC UV detector’s wavelength inaccuracy is <1%. Mass inaccuracy of MS468

instrument is ~0.13 um within the calibrated mass range in the scan mode.469

Characterization of SM07 microstates with NMR470

15NChemical shifts (ppm, referenced to external liquid ammonia at 0 ppm) for N-8, N-10 and N-12—measured471

from the 1H-15N HMBC experiments—were plotted against the titrated TFA-d equivalents (0.0, 0.5, 1.0, 1.5,472

and 5.0 equivalents) (Figure 8 A). A large upfield shift of ~82 ppm is observed for N-12. The initial linear473

relationship between chemical shift and TFA equivalents, shown in Figure 8A for N-12, is expected for strong474

monoprotic bases—as is the case for SM07. The large upfield chemical shift change (82 ppm) is consistent475

with a charge delocalization as shown in the resonance structures in Figure 8A. Further evidence for this476

delocalization is observed for N-8, which exhibited a downfield chemical shift change of ~28 ppm compared477

to just ~1.5 ppm for N-10. Titration of SM07 with more than 1 equivalent of TFA-d did not result in further478

significant chemical shift changes—establishing that SM07 is a monoprotic base.479
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Characterization of SM14 microstates with NMR480

Determining the protonation sites for SM14, which has pK
a
values of 2.58 and 5.30 (Table 1), was more481

challenging due to multiple possible resonance structures in the mono- and di-protonated states. We482

noticed that the water/methanol co-solvent exhibited strong solvent effects, which complicated the data483

interpretation for SM14. For instance, titration of SM14 in methanol/water (Figure SI 36) showed incomplete484

protonation of N-9 even after 5 equivalents of TFA-d were added. This observation is consistent with UV-485

metric p
s
K
a
measurements done in the presence of methanol as cosolvent, where both p

s
K
a
values were486

decreasing as the percentage of methanol was increased, making observation of these protonation states487

more difficult. Thus the utilization of an aprotic solvent was necessary for unambiguous interpretation of488

the data.489

Due to the problem just delineated for the methanol/water cosolvent, acetonitrile-d
3
was selected as490

our solvent of choice. Titration of SM14 (5.5 mg) with up to 10 equivalents of TFA-d in acetonitrile-d
3
(0.0,491

0.5, 1.0, 1.1, 1.2, 1.3, 1.5, 1.8, 2.0, 2.1, 2.6, 5.1, and 10.1 equivalents), provided a much clearer picture of its492

protonation states (Figure 8 B). N-9, with the large upfield chemical shift change ~72 ppm at 1 equivalent493

of TFA-d, clearly is the site of first protonation. Concurrently, the downfield chemical shift changes were494

observed for N-7 (Δ� ≈ 6.5) and N-16 (Δ� ≈ 5) that can be attributed to electronic effects rather than a495

direct protonation. The large upfield shift for N-9 indicates this to be the site of first protonation; complete496

protonation was attained at roughly 2.5 equivalents of TFA-d, suggesting that SM14 is a weak base under497

these experimental conditions. Following the protonation of N-9, a second protonation event occurs at N-16498

nitrogen as evident by the upfield chemical shift change observed for N-16. However, a continuous change499

in the chemical shift of N-16 even after addition of 10 equivalents of TFA-d indicates that this protonation500

event is incomplete but provides evidence for N-16 being the second protonation site. This observation is501

consistent with N-16 being even a weaker base than N-9, which is expected of the aniline-type amines. Other502

notable observations were the slight downfield chemical shift changes for N-7 and N-9, during the second503

protonation event. These changes were attributed to electronic effects from the protonation of N-16.504

Discussion505

Effect of sample preparation and cosolvents in UV-metric measurements506

Samples for UV-metric pK
a
measurements were prepared by dilution of up to 5 µL DMSO stock solution507

of analyte in 1.5 mL ISA water, which results in the presence of ∼0.3% DMSO during titration, which is508

presumed to have a negligible effect on pK
a
measurements. For UV-metric or pH-metric measurements, it is509

possible to prepare samples without DMSO, but it is difficult to prepare samples by weighing extremely low510

amounts of solid stocks (in the order of 0.01–0.10 mg) to target 50 µM analyte concentrations, even with511

an analytical balance. For experimental throughput, we therefore preferred using DMSO stock solutions.512

Another advantage of starting from DMSO stock solutions is that it helps to overcome kinetic solubility513

problems of analytes.514

A lower analyte concentration is needed for spectrophotometric pK
a
measurement than potentiometric515

method. With spectrophotometric method, very dilute analyte solutions as low as 10−5 − 10−6 M can be516

used [28] with strength of the UV signal as limiting factor. In this study we used analyte concentrations517

around 50 µM, which is 2 orders of magnitude lower than the minimum concentration required for typical518

potentiometric pK
a
measurements. Theoretically, low analyte concentrations lead to more accurate pK

a
519

measurements by minimizing the potential for the solute to influence solvent properties. In the extreme,520

if it were possible to measure the pK
a
at the infinite dilution of the analyte that would be the best. But of521

course, in practice the minimum analyte concentration is limited by the detection strength of the UV signal.522

The higher the analyte concentration the more it affects the solvent properties such as ionic strength and523

dielectric constant. Also, the risk of analyte aggregation or precipitation increases with higher concentration.524

In UV-metric measurements, both water and methanol (when used as cosolvent) stock solutions were525

ionic strength adjusted with 150 mM KCl, but acid and base solutions were not. This means that throughout526

pH titration ionic strength slighly fluctuates, but on average ionic strength of samples were staying around527

150–180 mM. By using ISA solutions the effect of salt concentration change on pK
a
measurements was528
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Figure 8. Dominant protonation microstates of SM07 and SM14 characterized by NMR. (A) Sequence of protonation

sites of SM07 were determined by 1H-15N HMBC experiments in 1:2 water:methanol mixture. Left: The plot of 15N chemical
shifts of the N-10, N-12, and N-8 resonances of SM07 vs titrated TFA-d equivalents, showing the mono-protonation of
N-12 as evidenced by its large upfield chemical shifts change. Acidity of the medium increased as more equivalents of

TFA-d were added. Electronic effects due to protonation of N-12 caused downfield chemical shift change of N-10 and
N-8 between 0–1 equivalents of TFA-d. Right: NMR-based model of the order of dominant protonation states for SM07.
The protonation event was only observed at N-12. Microstates shown in the figure are the most likely contributors to the

UV-metric pKa of 6.08 ± 0.01. (B) Sequence of protonation sites of SM14 were determined by 1H-15N HMBC experiments in
acetonitrile. Left: The plot of 15N chemical shifts of N-9, N-7, and N-16 of SM14 vs titrations of TFA-d equivalents, showing
two sequential protonation events. The first protonation occured at N-9; a large upfield chemical shift change of 71.6 ppm

was seen between 0–1 equivalents of TFA-d. Downfield chemical shift changes observed for N-7 and N-19 in this region
were due the electronic effect from the protonation of N-9. N-16 also exhibited a small upfield chemical shift change of

4.4 ppm between 2.5–10 equivalents of TFA-d, which indicated N-16 as the second site of protonation. Right: NMR based
model of the order of dominant protonation states for SM14, showing two sequential protonation events. Also, two pKa
values were detected with UV-metric pKa measurements for SM14. Assuming that the sequence of protonation events will
be conserved between water and acetonitrile solvents, SM140 and SM14+1 microstates shown in the figure are the major

contributors to the UV-metric pKa value 5.30 ± 0.01. SM14+1 and SM14+2 microstates shown in the figure are the major
pair of microstates contributing to the UV-metric pKa value 2.58 ± 0.01. There could be minor microstates with very low
populations that could not be distinguished in these NMR experiments.
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minimized.529

If an analyte is soluble enough, UV-metric pK
a
measurements in water should be preferred over cosolvent530

methods, since pK
a
measurement in water is more direct. For pK

a
determination via cosolvent extrapolation531

using methanol, the apparent pK
a
s (p

s
K
a
) in at least three different methanol:water ratios must be measured,532

and the pK
a
in 0% cosolvent computed by Yasuda-Shedlovsky extrapolation. The number and spread of533

p
s
K
a
measurements and error in linear fit extrapolation influences the accuracy of pK

a
s determined by this534

approach. To test that UV-metric methods with or without cosolvent have indistinguishable performance,535

we collected pK
a
values for 17 SAMPL6 compounds and pyridoxine with both methods. Figure 7 shows there536

is good correlation between both methods and the mean absolute deviation between two methods is 0.12537

(95% CI [0.07, 0.18]). The mean deviation between the two sets is -0.04 (95% CI [-0.12, 0.03]), showing there is538

no significant bias in cosolvent measurements as the 95% CI includes zero. The largest absolute deviation539

observed was 0.41 for SM06.540

Impact of impurities to UV-metric pKa measurements541

Precisely how much the presence of small amounts of impurities impact UV-metric pK
a
measurements is542

unpredictable. For an impurity to alter UV-metric pK
a
measurements, it must possess a UV-chromophore and543

a titratable group in the vicinity of the chromophore—otherwise, it would not interfere with absorbance signal544

of the analyte. If a titratable impurity does possess a UV-chromophore, UV multiwavelength absorbance545

from the analyte and impurity will be convoluted. How much the presence of impurity will impact the546

multiwavelength absorbance spectra and pK
a
determination depends on the strength of the impurity’s molar547

absorption coefficient and concentration, relative to the analyte’s. In the worst case scenario, an impurity548

with high concentration or strong UV absorbance can shift the measured pK
a
value or create the appearance549

of an extra pK
a
. As a result, it is important to use analytes with high purities to obtain high accuracy pK

a
550

measurements. Therefore, we confirmed the purities of SAMPL6 compounds with LC-MS.551

Interpretation of UV-metric pKa measurements552

Multiwavelength absorbance analysis on the Sirius T3 allows for good resolution of pK
a
s based on UV-553

absorbance change with respect to pH, but it is important to note that pK
a
values determined from this554

method are often difficult to assign as either microscopic or macroscopic in nature. This method potentially555

producesmacroscopic pK
a
s for polyprotic compounds. If multiple microscopic pK

a
s have close pK

a
values556

and overlapping changes in UV absorbance spectra associated with protonation/deprotonation, the spectral557

analysis could produce a single macroscopic pK
a
that represents an aggregation of multiple microscopic pK

a
s.558

An extreme example of such case is demonstrated in the simulated macrostate populations of cetirizine that559

would be observed with UV-metric titration (Figure 2).560

If protonation state populations observed via UV-metric titrations (such as in Figure 3B) are composed561

of a single microstate, experimentally measured pK
a
s are indeed microscopic pK

a
s. Unfortunately, judging562

the composition of experimental populations is not possible by just using UV-metric or pH-metric titration.563

Molecules in the SAMPL6 pK
a
challenge dataset with only one pK

a
value measured in the 2–12 range could564

therefore be monoprotic (possessing a single titratable group that changes protonation state by gain or565

loss of a single proton over this pH range) or polyprotic (gaining or losing multiple protons from one or566

more sites with overlapping microscopic pK
a
values). Similarly, titration curves of molecules with multiple567

experimental pK
a
s may show well-separated microscopic pK

a
s or macroscopic experimental pK

a
s that568

are really composites of microscopic pK
a
s with similar values. Therefore, without additional experimental569

evidence, UV-metric pK
a
s should not be assigned to individual titratable groups.570

Sometimes it can be possible to assign pK
a
s to ionizable groups if they produce different UV-absorbance571

shifts upon ionization, but it is not a straight-forward analysis and it is not a part of the analysis pipeline of572

Sirius T3 Refine Software. Such an analysis would require fragmentation of the molecule and determining573

how UV-spectra of each chromophore changes upon ionization in isolation.574

UV-metric pK
a
values for nearly all compounds in our dataset with multiple resolvable pK

a
s are well-575

separated (more than 4 pK
a
units), except for SM14 and SM18. Tam et al. states that spectrophotometric576

pK
a
values of multiprotic molecules can be unambiguously assigned to the functional groups as microscopic577
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pK
a
s "if the pKa values are at least 4 pH units apart (i.e. pKa,2 − pKa,1 ≥ 4)" based on general knowledge of578

functional groups and consideration of electronic and inductive effects [28]. In this study, we refrained from579

reporting such a knowledge-based assignment of pK
a
values to functional groups without experimental580

evidence.581

Determination of the exact microstates populated at different pH values via NMR can provide a com-582

plementary means of differentiating between microscopic and macroscopic pK
a
s in cases where there is583

ambiguity. As determination of protonation microstates via NMR is very laborious, we were only able to584

characterize microstates of two molecules: SM07 and SM14.585

In UV-metric pK
a
measurements with cosolvent, the slope of the Yasuda-Shedlovsky extrapolation can586

be interpreted to understand if the pK
a
has dominantly acidic or basic character. As the methanol ratio587

is increased, p
s
K
a
values of acids increase, while p

s
K
a
values for bases decrease. However, it is important588

to remember that if the measured pK
a
is macroscopic, acid/base assignment from cosolvent p

s
K
a
trends589

is also a macroscopic property, and should not be used as a guide for assigning pK
a
values to functional590

groups [60].591

NMRmicrostate characterization592

The goal of NMR characterization was to collect information on microscopic states related to experimental593

pK
a
measurements, i.e., determine exact sites of protonation. pK

a
measurements performed with spec-594

trophotometric method provide macroscopic pK
a
values, but do not provide information on the specific595

site(s) of protonation. Conversely, most computational prediction methods primarily predict microscopic596

pK
a
values. Protonation sites can be determined by NMR methods, although these measurements are597

very laborious in terms of data collection and interpretation compared to pK
a
measurements with the598

automated Sirius T3. Moreover, not all SAMPL6 molecules were suitable for NMR measurements due to599

the high sample concentration requirements (for methods other than proton NMR, such as 13C and 15N600

based 2D experiments) and limiting analyte solubility. Heavy atom spectra that rely on natural isotope601

abundance require high sample concentrations (preferably in the order of 100 mM). It is possible that drug602

or drug-fragment-like compounds, such as the compounds used in this study, have insufficient aqueous603

solubility, limiting the choice of solvent and pH. It may be necessary to use organic cosolvents to prepare604

these high concentration solutions or only prepare samples at pH values that correspond to high solubility605

states (e.g., when the charged state of the compound is populated).606

We performed NMR based microstate characterization only for SM07 and SM14. We were able to identify607

the order of dominant protonation microstates, as shown in Figure 8. These pairs of microstates and608

the order of microscopic transitions can be associated with experimental pK
a
s determined by UV-metric609

titrations, under the assumption that different organic solvents used in NMR measurements will have610

negligible effect on the sequence of microstates observed as the medium was titrated with acid, although611

shift in pK
a
values is expected. NMR measurements for SM07 and SM14 were done in water:methanol612

(1:2 (v/v)) and acetonitrile solutions, respectively. On the other hand, pK
a
values of these two compounds613

were determined by UV-metric titrations in ISA water. Additional UV-metric pK
a
measurements of these614

compounds with methanol as a cosolvent showed that their p
s
K
a
values decreased as the cosolvent ratio615

increased (i.e., dielectric constant decreased) as expected from base titration sites. Identification of SM07616

and SM14 titratable sites type as base is consistent between NMR based models and UV-metric cosolvent617

titrations. The order of microstates observed in the titration of NMR samples are very likely to corresponds618

to the dominant microstates associated with UV-metric pK
a
measurements. N-12 of SM07 was observed as619

the only protonation site of SM07 during TFA-d titration up to 5 equivalents which supports that SM07 is620

mono-protic and UV-metric pK
a
value 6.08 ± 0.01 corresponds to microscopic protonation of N-12. For SM14,621

two protonation sites were observed (N-16 and N-9, in the order of increasing p
s
K
a
). Microstate pairs shown622

in Figure 8B were determined as dominant contributors to UV-metric pK
a
s 2.58±0.01 and 5.30±0.01, although623

minor microspecies with very low populations (undetected in NMR experiments) could be contributing to624

the macroscopic pK
a
values observed by the UV-metric method.625

In addition to SM07, there were five other 4-aminoquinazoline derivatives in the SAMPL6 set: SM02, SM04.626

SM09, SM12, and SM13. For these series, all the potential titratable sites are located in 4-aminoquinazoline627
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scaffold and there are no other additional titratable sites present in these compounds compared to SM07.628

Therefore, based on structural similarity, it is reasonable to predict that N-12 is the microscopic protonation629

site for all of these compounds. We can infer that UV-metric pK
a
values measured for the 4-aminoquinazoline630

series are also microscopic pK
a
s and they are related to the protonation of the same quinazoline nitrogen631

with the same neutral background protonation states as shown for SM07 in Figure 8A.632

Recommendations for future pKa prediction challenges633

Most high-throughput pK
a
measurement methods measure macroscopic pK

a
s. One way to circumvent634

this problem is to confine our interest in future pK
a
challenges to experimental datasets containing only635

monoprotic compounds if UV-metric or pH-metric pK
a
measurements are the method of choice, allowing636

unambiguous assignment of pK
a
values to underlying protonation states. However, it is important to637

consider that multiprotic compounds are common in pharmaceutically interesting molecules, necessitating638

the ability to model them reliably. It might also be interesting to select a series of a polyprotic compounds639

and their monoprotic fragments, to see if they can be used to disambiguate the pK
a
values.640

Although relatively efficient, UV-metric pK
a
measurements with the Sirius T3 do not provide structural641

information about microstates. Even the acid-base assignment based on direction of p
s
K
a
shift with cosolvent642

is not a reliable indicator for assigning experimental pK
a
values to individual functional groups in multiprotic643

compounds. On the other hand, most computational pK
a
prediction methods output microscopic pK

a
s.644

It is therefore difficult to use experimental macroscopic pK
a
values to assess and train microscopic pK

a
645

prediction methods directly without further means of annotating macroscopic-microscopic correspondence.646

It is not straight-forward to infer the underlying microscopic pK
a
values from macroscopic measurements647

of a polyprotic compound without complementary experiments that can provide structural information.648

Therefore, for future data collection efforts for evaluation of pK
a
predictions, if measurement of pK

a
s via649

NMR is not possible, we advise supplementing UV-metric measurements with NMR characterization of650

microstates to show if observed pK
a
s are microscopic (related to a single group) or macroscopic (related to651

dissociation of multiple groups), as performed for SM07 and SM14 in this study.652

Another source of complexity in interpreting macroscopic pK
a
values is how the composition of macro-653

scopic pK
a
s can change between different experimental methods as illustrated in Figure 2. Different subsets654

of microstates can become indistinguishable based on the type of signal the experimental method is con-655

structed on. In potentiometric titrations, microstates with the same total charge are indistinguishable656

and are observed as one macroscopic population. In spectrophotometric pK
a
measurements, the factor657

that determine if microstates can be resolved is not charge. Instead, microstates whose populations, and658

therefore UV-absorbance spectra, change around the same pH value become indistinguishable.659

The "macroscopic" label is commonly ascribed to transitions between different ionization states of a660

molecule (all microstates that have the same total charge form one macrostate), but this definition only661

applies to potentiometric methods. In UV-absorbance based methods, the principle that determines which662

microstates will be distinguishable is not charge or number of bound protons, but molecular absorbance663

changes, and how closely underlying microscopic pK
a
values overlap. To compare experimental macroscopic664

pK
a
and microscopic computational predictions on common ground, the best solution is to compute "pre-665

dicted" macroscopic pK
a
values from microscopic pK

a
s based on the detection limitations of the experiment.666

A disadvantage of this approach is that experimental data cannot provide direct guidance on microscopic667

pK
a
resolution for improving pK

a
prediction methods.668

Since analyte purity is critical for accuracy, necessary quality control experiments must be performed to669

ensure at least 90% purity for UV-metric pK
a
measurements. Higher purities may be necessary for other670

methods. For potentiometric methods, knowing the stoichiometry of any counterions present in the original671

powder stocks is also necessary. Identity of counterions also needs to be known to incorporate titratable672

counterions, e.g. ammonia in the titration model.673

For the set of SAMPL6 pK
a
challenge compounds, we could not use potentiometric pK

a
measurements674

due to the low aqueous solubility of many of these compounds. The lowest solubility observed somewhere in675

the experimental pH range of titration is the limiting factor, since for accurate measurements the analyte676

must stay in the solution phase throughout the entire titration. Since the titration pH range is determined677
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with the goal of capturing all ionization states, the analyte is inevitably exposed to pH values that correspond678

to low solubility. Neutral and zwitterionic species can be orders of magnitude less soluble than ionic species.679

If a compound has a significantly insoluble ionization state, the pH range of titration could be narrowed to680

avoid precipitation, but it would limit the range of pK
a
values that could be accurately measured.681

For future pK
a
challenges with multiprotic compounds, if sufficient time and effort can be spared, it would682

be ideal to construct an experimental pK
a
dataset using experimental methods that canmeasure microscopic683

pK
a
s directly, such as NMR. In the present study, we were only able to perform follow up NMR microstate684

characterization of two compounds because we relied on intrinsically low-sensitivity and time-consuming685

1H-15N HMBC experiment at natural abundance of 15N nuclei. 1H-15N HMBC experiments of SM07 and SM14686

required high analyte concentrations and thus the use of organic solvents for solubility. Alternatively, it687

might be possible to determine microstates with 1H-NMR by analyzing chemical shift changes of reporter688

protons [21] in aqueous solutions with lower analyte concentrations and with much higher throughput than689

15N-based experiments. However, it should be noted that 1H NMR titration data may not always be sufficient690

for unambiguous microstate characterization. In this case, other reporter nuclei such as 13C, 19F and 31P691

can be used where appropriate to supplement 1H data To prepare sample solutions for NMR at specific pH692

conditions, the Sirius T3 can be used to automate the pH adjustment of samples. Another advantage of693

using the Sirius T3 for NMR sample preparation includes preparing ionic strength adjusted NMR samples694

and minimizing consumption of the analyte since small volumes (as low as 1.5 mL) of pH adjusted solutions695

can be prepared.696

In the future pK
a
challenges, it would be especially interesting to expand this exercise to larger and697

more flexible drug-like molecules. pK
a
values are environment dependent and it would be useful to be698

able to predict pK
a
shifts based on on ionic strength, temperature, lipophilic content, with cosolvents or in699

organic solvents. Measuring the pK
a
of molecules in organic solvents would be useful for guiding process700

chemistry. To test such predictions, special pK
a
experiments would need to be designed to measure pK

a
s701

under different conditions.702

The next iteration of the SAMPL log D prediction challenge will include a subset of compounds from pK
a

703

challenge. We therefore envision that the collected dataset of pK
a
measurements will also be of use for704

this challenge. Experimental pK
a
values will be provided as an input to separate the pK

a
prediction issue705

from other problems related to log D predictions. We expect that the experimental pK
a
s can be used as an706

indication if protonation states need to be taken into account for a log D prediction at a certain pH and for707

the validation of protonation state population predictions in the aqueous phase. Even for compounds for708

which microstates were not experimentally determined, macroscopic pK
a
value can serve as an indicator of709

how likely it is that protonation states will have a significant effect on the log D of a molecule. Additionally, the710

information from NMR experiments in this study provided the site of protonation for six 4-aminoquinazoline711

compounds, which could be incorporated as microstate information for log D predictions. For predicting712

log D we suggest as a rule of thumb to include protonation state effects for pK
a
values at least within 2 units713

of the pH of the log D experiment. pK
a
values of six 4-aminoquinazoline compounds in this study were714

determined to be within 2 pK
a
units from 7.715

Conclusion716

This study reports the collection of experimental data for the SAMPL6 pK
a
prediction challenge. Collection of717

experimental pK
a
data was performed with the goal of evaluating computational pK

a
predictions, therefore718

necessary quality control and uncertainty propagation measures were incorporated. The challenge was719

constructed for a set of fragment-like and drug-like small molecules, selected from kinase-targeted chemical720

libraries, resulting in a set of compounds containing heterocycles frequently found in FDA-approved kinase721

inhibitors. We collected pK
a
values for 24 compounds with the Sirius T3 UV-metric titration method, which722

were then used as the experimental reference dataset for the SAMPL6 pK
a
challenge. For compounds with723

poor aqueous solubilities we were able to use the Yasuda-Shedlovsky extrapolation method to measure pK
a

724

values in the presence of methanol, and extrapolate to a purely aqueous phase.725

In our work, we highlighted the distinction between microscopic and macroscopic pK
a
s which is based726

on the experimental method used, especially how underlying microstate composition can be different for727
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macroscopic pK
a
values measured with UV-metric vs pH-metric titration methods. We discuss how macro-728

scopic pK
a
values, determined by UV, introduce an identifiability problem when comparing to microscopic729

computational predictions. For two compounds (SM07 and SM14) we were able to alleviate this problem by730

determining the sequence of microscopic protonation states using 1H-15N HMBC experiments. Microstates731

of five other compounds with 4-aminoquinazoline scaffold were inferred based on the NMR characterization732

of SM07 microstates which showed that it is monoprotic.733

The collected experimental data constitute a potentially useful dataset for future evaluation of small734

molecule pK
a
predictions, even outside of SAMPL challenges. We expect that this data will also be useful for735

participants in the next SAMPL challenge on small molecule lipophilicity predictions.736

Code and data availability737

• SAMPL6 pK
a
challenge instructions, submissions, experimental data and analysis is available at

https://github.com/MobleyLab/SAMPL6

• Python scripts used for compound selection are available at compound_selection directory of

https://github.com/choderalab/sampl6–physicochemical–properties

738

Overview of supplementary information739

Supplementary tables and figures appearing in SI document:740

• TABLE SI 1: Procurement details of SAMPL6 compounds741

• TABLE SI 2: Selection details of SAMPL6 compounds742

• TABLE SI 3: pK
a
results of replicate experiments CSV743

• TABLE SI 4: pK
a
results of water and cosolvent replicate experiments CSV744

• TABLE SI 5: pK
a
mean and SEM results of water and cosolvent replicate experiments745

• TABLE SI 6: Summary of LC-MS purity results746

• FIGURE SI 1 - 24: LC-MS Figures747

• FIGURE SI 25-35: NMR characterization of SM07 microstates748
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