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Abstract

Since Denis Gabor’s pioneering paper on the discrete Gabor Expansion (Gabor,
1946), time-frequency signal analysis has proven to be an important tool for many
fields. In neurophysiology, time-frequency analysis has often been used to characterize
and describe transient bursts in local field potential data. However, these transient
bursts have a wide range of variable durations, suggesting that a time-frequency-scale
dictionary composed of elementary signal “atoms” may prove useful to more accu-
rately match recorded bursts. While overcomplete multiscale dictionaries are useful,
generating a sparse code over such dictionaries is a difficult computational problem.
Existing adaptive algorithms for discovering a sparse description are slow and com-
putationally intensive. Here we describe the Multiscale Adaptive Gabor Expansion
(MAGE), which uses an implicit dictionary of parametric time-frequency-scale Gabor
atoms to perform fast parameter reassignment to accelerate discovery of a sparse de-
composition. Using analytic expressions together with numerical computation, MAGE
is a greedy pursuit algorithm similar to Matching Pursuit, restricted to a dictionary of
multiscale Gaussian-envelope Gabor atoms. MAGE parameter reassignment is robust
in the presence of moderate noise. By expressing a unknown signal as a weighted sum
of Gabor atoms, MAGE permits a more accurate estimate of the amplitude and phase
of transient bursts than existing methods.

KEYWORDS: Adaptive Gabor Expansion, Multiscale Time-Frequency Analysis, Time-
Frequency Reassignment
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1 Introduction

Bursts are brief periods of increased neural activity that reflect local network coordi-
nation, resulting in transient, non-stationary oscillations that exhibit high trial-to-trial
variability. Mounting evidence suggests that transient bursts play an important func-
tional role in neural coding (Lundqvist et al, 2018) and network coordination (Kirst et
al, 2016). For example, Lundqvist and colleagues (Lundqvist et al, 2016) showed that
the amount of information prefrontal neurons encoded about a stimulus in a working
memory task was dependent on narrow-band oscillatory bursts in the gamma band
(55-90 Hz). In particular, neurons encoded more information during periods of in-
creased gamma power (greater than 2 standard deviations above the mean spectral
power) compared to periods with baseline power levels. In their model, gamma bursts
are signatures of cell assembly activation that are associated with informative spiking
within single cells. Spikes from single neurons are more informative during bursts (high
amplitude or spectral power) compared to inter-burst periods (mean to low power).
Furthermore, the spike timing of individual cells relative to the phase of an ongoing
high-frequency burst carries information about working memory load (Siegel et al,
2009). Similarly, Battaglia and colleagues showed that the amplitude and phase of
burst activity that occurs in multiple areas is associated with the gating and flow of in-
formation within a distributed network (Palmigiano et al, 2017). In their simulations,
small relative phase differences between bursts had a large impact on the direction
and gain of information transmission. These studies highlight the importance of an
accurate estimation of burst parameters, including ongoing amplitude and phase, in
order to better understand the role that dynamic bursts play in perception, cognition,
and action. However, the detection and accurate estimation of burst parameters is a
difficult problem.

While a given burst may exhibit a stable instantaneous frequency for the duration
of its occurrence, subsequent bursts may exhibit high variability in mean frequency,
onset time relative to stimuli, or burst duration. This variability and non-stationarity
can make it difficult to study burst dynamics with the traditional methods often used
in electrophysiology studies. Traditional methods assume signal stationarity and model
the variability of repeated experimental trials as a constant signal waveform embed-
ded in stochastic noise. However, recent studies suggest that the ongoing local field
potential (LFP) signal can be thought of as a non-stationary sequence of discrete, vari-
able, and disjoint atomic bursts occurring within a stationary background of relatively
low-power continuous ongoing activity. The goal of this paper is to describe a novel
adaptive method for detecting transient bursts in non-stationary neurophysiological
signals. Specifically, this method describes bursts as Gaussian-envelope Gabor atoms,
using parameter reassignment and matching pursuit to generate a sparse atomic decom-
position of neural signals. Given an initial set of Gabor parameters describing a burst
in terms of time, frequency, scale, amplitude, and phase, this adaptive method returns
improved parameters using fast refinement rules based on one-shot curve fitting, similar
to the adaptive chirplet method of Yin and colleagues (Yin et al, 2002). Whereas their
method used finite differences and 6 inner product operations to estimate the reassigned
parameters, this method uses 4 inner product operations computing derivatives with
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respect to the parameters for time, frequency, and scale (duration in time or bandwidth
in frequency). For this reason, we term the method the Multiscale Adaptive Gabor Ex-
pansion, or MAGE. In the following we review some of the concepts involved in moving
from linear, non-adaptive, and time-invariant signal processing of stationary signals to
non-linear, sparse, and adaptive signal processing working on non-stationary signals
using overcomplete frames or dictionaries. Next we derive the parameter reassignment
rules at the core of MAGE before applying them to simulated and empirically-recorded
data examples. The sensitivity and speciificy of MAGE are estimated under noiseless
and noisy conditions. Finally, we consider some potential concerns or possibilities for
applying MAGE to neurophysiological signals.

1.1 From linear, time-invariant processing of stationary signals to
sparse, adaptive decomposition of non-stationary signals via overcom-
plete dictionaries

Signal processing often requires us to characterize an unknown signal f(t). One way to
do so is to compare the unknown signal f(t) to a dictionary of known references signals
G, where each element gk(t) ∈ G is a time-frequency signal “atom” that captures some
feature of interest, such as localization in time, frequency, or scale. The inner product
is a useful procedure for directly comparing an unknown target signal f(t) and a known
probe signal g(t):

〈f, g〉 =

∫ ∞
−∞

f(t)g(t) dt (1)

where z is the complex conjugate of z ∈ C.
The more similar f is to g, the larger the magnitude of the inner product. Con-

versely, if f and g are dissimilar, their inner product will tend toward zero. Therefore,
the set of inner products of the signal f against the dictionary G – that is, the set
{〈f, gk〉|gk ∈ G} – describes how similar the unknown signal is to every atom in the
dictionary and provides a simple measurement technique for generating structured data
about the unknown signal: which reference or probe atoms best describe the unknown
target signal, what part of the target signal different atoms capture, and the relative
importance of different atoms for accurate and robust signal reconstruction.

A surprising number of signal processing transforms can be characterized in this
way, as an ordered set of inner products with a parametric dictionary (Qian and Chen,
1993; Qian and Chen, 1994; Yin et al, 2002). These include 1-dimensional trans-
forms such as the Fourier, Laplace, and fractional Fourier Transforms, 2-dimensional
transforms such as the Short-Time Fourier and Wavelet Transforms, and 3-dimensional
transforms such as the multi-scale Gabor transform (Cohen, 1995; Grochenig, 2000;
Qian, 2001).

1.1.1 From orthogonal bases to sparse overcomplete dictionaries

If the dictionary G spans the same space as the unknown target signal f while each
dictionary atom is orthogonal to every other atom (that is, m 6= n implies 〈gm, gn〉 = 0
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for all gm, gn ∈ G ), then G forms a basis for f . In this case, the analysis and synthesis
of f assumes the form:

ck = 〈f, gk〉 (analysis via orthogonal dictionary) (2)

f =
∑
k

ckgk =
∑
k

〈f, gk〉gk (synthesis via orthogonal dictionary) (3)

The expansion of a signal over orthogonal dictionaries has proven to be very useful
in many domains, most notably in signal compression and communication. However,
in other domains such as biomedical imaging, the primary goal is to characterize a
novel signal, rather than to transmit it elsewhere; in this case orthogonal dictionaries
may miss signal features that we would like to describe. That is, while an orthogonal
basis still provides for perfect reconstruction, describing a single feature of the target
signal may require a weighted sum of several different dictionary atoms.

Therefore, for cases where signal characterization is the primary goal, it may be
more appropriate to use an overcomplete dictionary, also known as a redundant frame.
As with a basis, a frame spans the space of the signal – but unlike a basis, frame
(or dictionary) atoms need not be orthogonal. Relaxing the orthogonality constraint
allows us to include a larger variety of signal atoms in the dictionary, increasing the
likelihood that one of the atoms will prove to be a good match to a part of the target
signal. As before with the orthogonal dictionary, analysis is simple:

ck = 〈f, gk〉 (analysis via overcomplete dictionary G) (4)

In many cases, such as biomedical research, the goal of signal processing is to generate
the set of coefficients {ck} which are then examined directly for some feature of interest
– that is, in many cases there is no need to explicitly reconstruct the original signal f
from the set of dictionary inner products. If desired, synthesis can still be performed
using a synthesis dictionary G† (distinct from the analysis dictionary G), where GG† =
G†G = I:

f =
∑
k

ckg
†
k =

∑
k

〈f, gk〉g†k (synthesis via overcomplete dictionary G†) (5)

In general, however, synthesis becomes more complicated in the overcomplete set-
ting, in that for a given analysis dictionary G, the synthesis dictionary G† is not unique.

Alternatively, given a large overcomplete dictionary, one can use an iterative pursuit
algorithm to generate a sparse signal description.

1.1.2 Sparse Signal Representation via the Matching Pursuit algorithm

Recall that given an overcomplete dictionary G, any signal can be described as a sum
of weighted atoms:

f(t) =
∞∑
k=1

ckgk(t), (6)
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where m < n implies |cm| ≥ |cn|. For greedy algorithms such as Matching Pursuit
(Mallet and Zhang, 1993), each coefficient ck is extracted sequentially. That is, we can
express any signal f(t) as a filtered signal fN and a residual signal rN :

fN =

N∑
k=1

ckgk (7)

and

rN =

∞∑
k=N+1

ckgk (8)

where

f(t) = fN (t) + rN (t), ‖rN‖2 < ε (9)

More formally, we can describe the Matching Pursuit algorithm as a function that
takes in the unknown signal s to be decomposed, the dictionary D of known signal
atoms, and the number N of atoms to be extracted:

[G, c, r] = MP[D, s,N ] (Matching Pursuit Algorithm)
Inputs:
D: dictionary of normalized signal atoms; ‖g‖2 = 1 for all g ∈ D
s: unknown signal to be decomposed
N : number of signal atoms to extract from s
Outputs:
G: ordered list (sub-dictionary) of extracted atoms; G = {gk}Nk=1 ⊂ D
c: ordered list of coefficients; c ∈ CN
r: residual signal; r = s−

∑N
k=1 ckgk

Initialization:
G(0) = ∅
c(0) = ∅
r(0) = s
Main loop:
for k = 1 to N do
gk = argmaxg∈D|〈r(k−1), g〉| (select best atom from dictionary)

G(k) = {G(k−1), gk} (update list of extracted atoms)
c(k) = {c(k−1), 〈s, gk〉} (update list of coefficients)
r(k) = r(k−1) − 〈s, gk〉 gk (update residual)
end for
return G(N), c(N), r(N)

That is, Matching Pursuit finds the next best atom to extract by computing the
inner product of the unknown signal s with all atoms in the dictionary D:
1. ργ = 〈r(k−1), gγ〉 for all gγ ∈ D (compute inner product of signal with dictionary
atoms)
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2. γ∗ = argmaxγ |ργ | (find index of best atom)
3. gk = gγ∗

4. gk = argmaxg∈D|〈r(k−1), g〉| (select best atom from dictionary):

Unfortunately, steps 1 and 2 are often computatonally expensive. One solution to
this computational burden is to restrict the dictionary D to only use atoms of a known
parametric form, and use the analytic expression for the atom waveform and rather
than storing an explicit numerical waveform. Similarly, for some parametric dictio-
naries the inner product also has an analytic form and can be used to speed up the
discovery of the best-fit atom in matching pursuit.

1.1.3 The dictionary of multiscale Gaussian-envelope Gabor atoms

One signal atom that is very useful in time-frequency analysis is the Gaussian function
ϕ(t):

ϕ(t) = 21/4e−πt
2

(10)

Recall that a signal s : R→ C is finite-energy if and only if

‖s‖22 = 〈s, s〉 =

∫ ∞
−∞

s(t)s(t) dt =

∫ ∞
−∞
|s(t)|2 dt = Es <∞ (11)

Direct integration shows that ϕ has unit energy,

Eϕ,t = 〈ϕ,ϕ〉 =

∫ ∞
−∞
|ϕ(t)|2 dt = 1 (12)

We can use the Gaussian energy density function to compute the average time of
the signal:

µϕ,t =

∫ ∞
−∞

t|ϕ(t)|2 dt = 0, (13)

Similarly, we can compute the time-domain variance:

σ2
ϕ,t =

∫ ∞
−∞

(t− µϕ,t)2|ϕ(t)|2 dt =
1

4π
. (14)

Recall the definition of the Fourier transform F : L2(R) → L2(R) and its inverse
F−1 : L2(R)→ L2(R):

Fs = F [s(t)] = (Fs)(ν) = ŝ(ν) =

∫ ∞
−∞

s(t)e−2πiνt dt (15)

F−1ŝ = F [ŝ(ν)] = (F ŝ)(t) = s(t) =

∫ ∞
−∞

ŝ(ν)e2πiνt dν (16)

which we take here as already extended to be bounded, linear, unitary operators.
Applying the Fourier Transform to the time-domain Gaussian function, we find the
frequency-domain expression
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Fϕ = F [ϕ(t)](ν) = ϕ̂(ν) = 21/4e−πν
2

(17)

From this we determine the frequency-domain energy, mean frequency, and frequency-
domain variance:

Eϕ̂,ν = 〈ϕ̂, ϕ̂〉 =

∫ ∞
−∞
|ϕ̂(ν)|2 dν = 1 (18)

µϕ̂,ν =

∫ ∞
−∞

ν|ϕ̂(ν)|2 dν = 0 (19)

σ2
ϕ̂,ν =

∫ ∞
−∞

(ν − µϕ,ν)2|ϕ̂(ν)|2 dν =
1

4π
(20)

Here we see why Gaussian functions are so useful in time-frequency analysis. Recall
that for any signal s,

σs,tσs,ν ≥
1

4π
(21)

meaning that there is a lower limit on how concentrated a signal can simultane-
ously be in both the time- and frequency-domains. In general, if the energy of s is
concentrated in time, then the energy of s is spread out in frequency, and vice versa.
However, Gaussian-type functions make this inequality an equality; that is,

σϕ,tσϕ,ν =
1

4π
(22)

meaning that Gaussian functions are maximally localized in time and frequency.
There exist no signals which have a tighter concentration of energy in the time-
frequency plane. Therefore, if you want to decompose an unknown signal by describing
in terms of simple, known time-frequency ”atoms,” then Gaussian functions are an ex-
cellent choice, given their strong energy concentration.

1.1.4 The translation, modulation, and dialation operators

To be able to move ϕ to any location in the time-frequency plane, we introduce two
operators Tx,Mx : L2(R)→ L2(R), where t, x ∈ R, f(t) ∈ L2(R).

The translation operator

Txf = Tx[f(t)] = (Txf)(t) = f(t− x) (23)

shifts or translates the signal f in time, while the modulation operator

Mxf = Mx[f(t)] = (Mxf)(t) = f(t) exp[2πixt] (24)

shifts or modulates the signal f in frequency. Applying these operators to ϕ permit
us to shift the mean time and mean frequency of the localized signal atom. That is,
given the simple reference function ϕ as a fundamental signal ”atom” which is well-
localized in time and frequency, together with the operators Tx and Mx that move
signal atoms in time and frequency, we can fully tile an unknown signal within the
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time-frequency plane, comparing small segments of this unknown signal to time- and
frequency-shifted version of the known reference signal ϕ. To describe an unknown
signal f , we can compute the inner product of it with the dictionary {TτMωϕ}. This is
the origin of the continuous STFT (where τ, ω ∈ R) as well as its sampled counterpart,
the Gabor expansion (where τ = am and ω = bn for small, fixed a, b ∈ R and m,n ∈ Z).

However, time- and frequency-shifts alone do not capture all signal features of
interest. Complex signals such as the local field potential recorded in neuroelectro-
physiology often involve components that reflect different durations or scales – some
signal sub-components may rise and decay quickly while others evolve more slowly.

We can examine variations in scale by introducing another operator Dx : L2(R)→
L2(R), where the dialation operator

Dxf = Dx[f(t)] = (Dxf)(t) = e−
x
4 s(te−

x
2 ) (25)

dialates or re-scales the input domain of f while preserving the signal energy.
Given the Gaussian function ϕ together with the translation, modulation, and

dialation operators defined above, we can generate an overcomplete dictionary G =
{TaMbDcϕ|a, b, c ∈ R3}. This dictionary tiles the time-frequency plane, in that for each
time-frequency coordinate (a, b) we can find an atom centered at that location – in fact,
centered at each time-frequency point (a, b) is a continuous family of atoms that span
all possible scales or durations specified by the duration parameter c. Furthermore,
since the Gaussian ϕ satisfies the uncertainty principle relation as an equality, each
such atom provides the most compact time-frequency energy concentration possible.

Specifically, let

φk = (tk, νk, sk) ∈ R3 (26)

represent the (time, frequency, scale) parameters for a given atom gk ∈ L2(R). Then

gk = TtkMνkDskϕ, (27)

gk(t) = g(t|φk) = g(t|tk, νk, sk) = TtkMνkDskϕ(t), (28)

such that
gk(t) =

4
√

2 exp
[
−sk

4
− πe−sk (t− tk)2 + 2πiνk (t− tk)

]
. (29)

Applying the Fourier Transform to gk results in

ĝk(ν) = ĝ(ν|φk) = ĝ(ν|tk, νk, sk) =
4
√

2 exp
[sk

4
− πesk (ν − νk) 2 − 2πiνtk

]
. (30)

Given these time- and frequency-domain formulas of the atom gk, we can calculate
the total energy, the mean time, and the mean frequency of the Gabor atom:

Ek = 〈gk, gk〉 = 〈ĝk, ĝk〉 =

∫ ∞
−∞
|gk(t)|2 dt =

∫ ∞
−∞
|ĝk(ν)|2 dν = 1, (31)

µk,t =

∫ ∞
−∞

t|gk(t)|2 dt = tk, (32)
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µk,ν =

∫ ∞
−∞

ν|ĝk(ν)|2 dν = νk. (33)

This shows that the generative parameters (tk, νk) correspond to the measured
values of mean time and mean frequency.

Finally, as a measure of signal duration, we can calculate the time-domain and
frequency-domain variance:

σ2
k,t =

∫ ∞
−∞

(t− µk,t)2|gk(t)|2 dt =
exp [sk]

4π
, (34)

σ2
k,ν =

∫ ∞
−∞

(ν − µk,ν)2|ĝk(ν)|2 dν =
exp [−sk]

4π
. (35)

Showing that the duration parameter sk captures the variance in signal energy in
both the time and frequency domains.

1.1.5 Inner product relation between Gabor atoms

Using the parametric formula for gk given above, we can identify an analytic expression
for the inner product between two Gabor atoms:

ρ = 〈gt, gp〉 =

∫ ∞
−∞

gt(t)gp(t) dt = Φ(tt, νt, st, tp, νp, sp) = Aρ exp [iθρ] , (36)

where

Aρ =

√
sech

[s∆

2

]
exp

[
−
πe−spt2∆
1 + es∆

−
πespν2

∆

1 + e−s∆

]
, (37)

θρ = − 2πt∆ν∆

1 + e−s∆
− 2πνpt∆, (38)

and the difference between target and probe Gabor parameters are given by

t∆ = tt − tp, (39)

ν∆ = νt − νp, (40)

and

s∆ = st − sp. (41)

Thus, the inner product between two gabors can be computed numerically or ana-
lytically. This is useful once we recall that, as in Matching Pursuit, any signal can be
decomposed into a weighted sum of atoms and a residual signal:

〈s, gp〉 = 〈
N∑
k=1

ckgk, gp〉 =

N∑
k=1

ck〈gk, gp〉 (42)

Since the derivate operator is conjugate linear, we also have
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xp ∈ {tp, νp, sp}, (43)

∂

∂xp
〈s, gp〉 =

∂

∂xp

N∑
k=1

ck〈gk, gp〉 =
N∑
k=1

ck
∂

∂xp
〈gk, gp〉 (44)

∂

∂xp
〈gt, gp〉 = 〈gt,

∂

∂xp
gp〉 = 〈gt, zxpgp〉 (45)

∂

∂xp
〈s, gp〉 =

N∑
k=1

ck〈gk,
∂

∂xp
gp〉 =

N∑
k=1

ck〈gk, zxpgp〉 (46)

for some zxp . To compute zxp , recall that the derivative of the inner product of
two gabors with respect to a given Gabor parameter is equal to the inner product of a
gabor atom with a derivative atom. That is, we can the exchange the derivative and
inner product operators.

1.1.6 Derivation of MAGE parameter reassignment rules

Recall that our goal is to derive parameter reassignment rules such that if we are given
a coarse parameter estimate of a target Gabor atom, then our reassignment rules will
give us the parameters for a Gabor atom nearer to the target (ideally in one step).
Since the operators in the prior sections are conjugate linear, we can exchange the
order of operators to generate analytic expressions that are easier to deal with, as
when we replace the derivative of an inner product between two Gabor atoms with the
inner product between a target Gabor and a derivative kernel. Finally, we note that
these derivative atoms have an analytic form, allowing us to rearrange and simplify to
produce our reassignment rules.

Note that the 1st derivative of probe Gabor atom with respect to the center time
parameter tp is

∂

∂tp
gp(t) = ztp(t)gp(t), (47)

where

ztp(t) = 2π
(
e−sp (t− tp)− iνp

)
, (48)

The 1st derivative of probe Gabor atom with respect to the center frequency pa-
rameter νp is

∂

∂νp
gp(t) = zνp(t)gp(t), (49)

where

zνp(t) = 2πi(t− tp), (50)
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The 1st derivative of probe Gabor atom with respect to the duration parameter sp
is

∂

∂sp
gp(t) = zsp(t)gp(t), (51)

where

zsp(t) = πe−sp(t− tp)2 − 1

4
, (52)

Let m stand for numerically-measured inner product values. Note that

m0,mxp : R3 → C, (53)

m0(φp) = 〈s(t), gp(t|φk)〉 = 〈s, gp〉, (54)

mxp(φp) =
∂

∂xp
〈s(t), gp(t|φk)〉 = 〈s, ∂

∂xp
gp〉. (55)

Analytically, we have

∂

∂xp
〈gt, gp〉 = ζxp〈gt, gp〉, (56)

for

xp ∈ {tp, νp, sp}. (57)

ζtp =
2π (iespνp + iestνt + tt − tp)

esp + est
, (58)

ζνp =
2πesp (est (νt − νp)− i (tt − tp))

esp + est
, (59)

ζsp =
8πi (tt − tp) esp+st (νt − νp) + e2st

(
1− 4πesp (νt − νp) 2

)
+ esp

(
4π (tt − tp) 2 − esp

)
4 (esp + est) 2

.

(60)
This allows us to define a reassignment function for each Gabor parameter:

(t, ν, s)− > (t∗t , ν
∗
t , s
∗
t ) (61)

s∗t = sp + log

[
2πesp

esp
(
esp<[ζtp ]2 − 4π<[ζsp ] + π

)
−<[ζνp ]2

− 1

]
, (62)

ν∗t = νp +

(
e−sp + e−s

∗
t
)
<[ζνp ]

2π
, (63)
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t∗t = tp +

(
esp + es

∗
t
)
<[ζtp ]

2π
. (64)

where <[z],=[z] stand for the real and imaginary parts of a complex number z.
Interestingly, not all derivatives are needed, since the derivative of the inner product

of two Gabor atoms with respect to center time and center frequency are related, with
the imaginary part of one correponding to the real part of the other. That is, the
relation of ζtp to ζνp is:

<
[
ζtp
]

= −=
[
ζνp
]
e−sp , (65)

and

<
[
ζνp
]

= =
[
ζtp
]
esp − 2πespνp. (66)

Thus, given an initial probe Gabor gk that has a moderate inner product magnitude
with an unknown signal s, MAGE provides parameter reassignment formulas that may
represent a Gabor with a better fit to the unknown signal. Given a moderately good
initial probe Gabor, the reassignment function (t, ν, s)− > (t∗t , ν

∗
t , s
∗
t ) suggests the next

test point in time-frequency-scale space.

1.1.7 From Matching Pursuit to the Multiscale Adaptive Gabor Expansion (MAGE)

This gives us an update function for parameter reassignment which we can include
within the Matching Pursuit algorithm to produce MAGE:

Multiscale Adaptive Gabor Expansion (MAGE) Algorithm:
[Φ, C, r] = MAGE[s,N ]
Inputs:
s: unknown signal to be decomposed, s ∈ L2(R)
N : number of signal atoms to extract from s
Outputs:
Φ: ordered list of Gabor atom parameters; Φ = {φk}Nk=1, φk = (tk, νk, sk) ∈ R3

C: ordered list of coefficients; C = {ck}Nk=1, ck ∈ C
r: residual signal; r = s−

∑N
k=1 ckgk = s(t)−

∑N
k=1 ckg(t|φk)

Initialize:
Φ(0) = {} (empty list)
C(0) = {} (empty list)
r(0) = s
Main loop:
for k = 1 to N do
φk = argmaxφ|〈r(k−1), g(t|φ)〉| (find parameters of best dictionary atom)
(t∗t , ν

∗
t , s
∗
t ) < −(t, ν, s) (apply analytic parameter reassignment formula)

gk = g(t|φk) (generate atom)
ck = 〈r(k−1), gk〉 (compute coefficient)
r(k) = r(k−1) − ckgk (update residual)
C(k) = {C(k−1), ck} (update coefficient list)
Φ(k) = {Φ(k−1), φk} (update atom parameter list)

13

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/369116doi: bioRxiv preprint 

https://doi.org/10.1101/369116
http://creativecommons.org/licenses/by-nd/4.0/


end for
return Φ, C, r

Including parameter reassigment rules within Matching Pursuit, as we do to develop
MAGE, is justified for several reasons. First, recall that most matching pursuit algo-
rithms use an explicit dictionary of sampled waveforms, such that Matching Pursuit
only explores a discrete subset of parameter values corresponding to dictionary atoms.
MAGE, however, performs its parameter reassignment in a continous parameter space
relatively unaffected by issues of sampling or regularity of the search grid (eg, rect-
angular vs. triangluar-quincunx). This means that initial sampling grid can be fairly
coarse to speed up the numerical computation, while relying on the MAGE parameter
reassignment to generate a more refined estimate. Second, the analytic Gabor inner
product relation used in the derivation of the reassignment rules can be used to quickly
determine if a Gabor inner product value needs to be updated or not, greatly speeding
up the Matching Pursuit algorithm. Third and finally, multiple probe Gabors (with
different specific noise interference terms) can be used to estimate the parameters for
the same target Gabor, implementing a simple form of noise reduction.

1.2 Application of MAGE to synthetic and empirically-recorded data
examples

TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT

1.2.1 Example 1: synthetic data with known ground-truth

TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT

1.2.2 Example 2: empirically-recorded electrophysiology data

TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT

1.3 Sensitivity and specificity under noiseless and noisy conditions

TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT TEXT

1.4 Discussion and Conclusion

While the theoretical foundations of Matching Pursuit and similar adaptive algorithms
is well established (Mallet and Zhang, 1993; Qian and Chen, 1994), fast and practical
numerical implementations remain an open research topic. One of the most useful
options right now is the Matching Pursuit Toolkit or MPTK (Krstulovic and Gribonval,
2006), a C++ open source toolkit which maintains a list of atoms that are local maxima
in amplitude space and updates only those atoms that have a large inner product with
the last atom extracted. MAGE can be seen as a similar augmentation of Matching
Pursuit, where the known analytic expressions for Gaussian-envelope Gabor atoms is
used to estimate the location of the best local maximum in parameter space, even
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if it is off of the Matching Pursuit search grid. That is, Matching Pursuit finds the
best Gabor atom in its set of regularly sampled atoms (initial coarse estimate step in
sampled discrete space), which is then input into the MAGE reassignment rules to find
an improved estimate (fast parameter refinement step in continuous parameter space).
This fast refinement is a non-iterative parameter reassignment, although an iterative
version of MAGE may be useful for denoising. Since MPTK partitions its search tree
using time alone (no need to update atoms that do not overlap), it would be interesting
to see if MAGE could be incorporated into MPTK, since the inner product relation
between any two Gabor atoms can be used to partition the search space in time,
frequency, and scale rather than just time alone.

Another concern is the relation between empirically-observed bursts and the para-
metric model of Gabor time-frequency-scale atoms. Gabor atoms are essentially Gaussian-
windowed sinusoids, but recent studies have reminded researchers of the often non-
sinusoidal nature of empirically-recorded electrophysiological brain signals (Cole and
Voytek, 2017). One response to this concern is to note that the mean time and mean
frequency are well-defined concepts for any finite-energy signal (Cohen, 1994). Recall
that the center time and center frequency parameters correspond to the mean time and
mean frequency, respectively, of any Gabor atom. Similarly, the time-domain variance
and the frequency-domain variance of any finite-energy signal can be estimated from the
numerical vector representing a sampled version of it, and these values can be used to
estimate the Gabor atom scale parameter. So up to the level of 2nd order signal statis-
tics, parametric Gabor atoms and non-parametric (empirically-recorded) signals can be
matched. Additionally, data-driven learning methods such as single-channel Indepen-
dent Component Analysis (ICA; Bell and Sejnowski, 1995) and Kernel-Singular Value
Decomposition (k-SVD; Elad, 2010) can be used to further refine a non-parametric
description of a burst once the best-fit parametric Gabor atom has been identified. For
example, Brockmeier and Principe (2016) show that alternating Matching Pursuit with
data-driven kernel-learning via k-SVD and ICA generate a small set of waveforms with
consistent clustering properties that permit experimenters to express human EEG via
a sparse code. In this regard, MAGE could be used as an initial step in data-driven
kernel learning techniques used to identify segments of raw data containing high-power
bursts, thus making learning more efficient.

The goal of this paper was to introduce an improved version of fast parameter
refinement, similar to that suggested by [Yin et al, 2002]. As with their algorithm,
MAGE is performing a curve-fitting operation in order to suggest an atom with a
better fit to a signal to be filtered. The fast refinement algorithm of Yin et al uses
finite differences to compute points for curve fitting. The spacing between points is
an arbitrary hand-tuned parameter which MAGE does away with by using derivatives.
Importantly, these derivatives are used to compute values for curve fitting, and are not
used for an iterative hill-climbing optimization. Also, while the Yin algorithm uses 6
points for curve fitting, MAGE uses 4 points, which reduces the number of multily-add
operations required.

15

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/369116doi: bioRxiv preprint 

https://doi.org/10.1101/369116
http://creativecommons.org/licenses/by-nd/4.0/


1.5 Bibliography

Bell, AJ, Sejnowski, TJ. (1995). An Information-Maximization Approach to Blind
Separation and Blind Deconvolution. Neural Computation, 7, 6, 1129-1159.

Brockmeier, AJ, Principe, JC. (2016). Learning Recurrent Waveforms Within
EEGs. IEEE Transactions on Biomedical Engineering, 63, 1, 43-54.

Cohen, L. (1994). Time-frequency analysis. Prentice-Hall.
Cole, SR, Voytek, B. (2017). Brain oscillations and the importance of waveform

shape. Trends in Cognitive Sciences, 21, 2, 137-149.
Elad, M. (2010). Sparse and Redundant Representations. Springer.
Gabor, D. (1946). Theory of communication. Part 1: The analysis of information.

Journal of the Institution of Electrical Engineers, 93, 36, 429-441.
Grochenig, K. (2000). Foundations of Time-Frequency Analysis. Birkhauser.
Krstulovic, S, Gribonval, R. (2006). MPTK: Matching Pursuit made tractable.

Proc. Int. Conf. Acoust. Speech Signal Process (ICASSP06), 3, 496-499.
Kirst, C, Timme, M, Battaglia, D. (2016). Dynamic information routing in complex

networks. Nature Communications, 7, 11061.
Lundqvist, M, Rose, J, Herman, P, Brincat, SL, Buschman, TJ, Miller, EK. (2016).

Gamma and beta bursts underlie working memory. Neuron, 90(1), 152-164.
Lundqvist, M, Herman, P, Warden, MR, Brincat, SL, Miller, EK. (2018). Gamma

and beta bursts during working memory readout suggest roles in its volitional control.
Nature Communications, 9, 1, 394.

Mallat, S, Zhang, Z. (1993). Matching Pursuit with Time-Frequency Dictionaries.
IEEE Transactions on Signal Processing, 41, 12, 3397-3415.

Palmigiano, A, Geisel, T, Wolf, F, Battaglia, D. (2017). Flexible information rout-
ing by transient synchrony. Nature Neuroscience, 20, 1014-1022.

Qian, S and Chen, D. (1993). Discrete Gabor transform. IEEE Transactions on
Signal Processing, vol 41(7), 2429–2438.

Qian, S, Chen, D. (1994). Signal representation using adaptive normalized Gaussian
functions, Signal Processing, 36, 1, 1-11.

Qian, S. (2001). Introduction to time-frequency and wavelet transforms. Prentice-
Hall.

Siegel, M, Warden, MR, Miller, EK. (2009). Phase-dependent neuronal coding of
objects in short-term memory. Proceedings of the National Academy of Sciences, 106,
50, 21341-21346.

Yin, Q, Qian, S, Feng, A. (2002). A fast refinement for adaptive Gaussian chirplet
decomposition. IEEE Transactions on Signal Processing, 50, 6, 1298-1306.

16

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 14, 2018. ; https://doi.org/10.1101/369116doi: bioRxiv preprint 

https://doi.org/10.1101/369116
http://creativecommons.org/licenses/by-nd/4.0/

