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Figure 5: Switch trials differences (n=19). All imaging results shown at p<0.001, k=0. (a)
Within-subject normalised ratings, group by days, pain levels, and switch status, showing that Day 2
switch low pain trials were more painful than non-switch trials. (b) Day 2 decoder predicted scores
(p(pain)*100) for switch/non-switch trials showed differences for high and low pain. (c) Day 2
HL>LL in bilateral amygdala. (d) Beta values extracted using bilateral activation cluster as ROI (at
p<0.001 unc., k=30). (e) Day 2 LL>HL in right ventral striatum / OFC. (f) Beta values extracted
from individuals using striatum activation cluster (k=9).

12

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/369736doi: bioRxiv preprint 



To capture a basic frequency learning process we applied a simple Bayesian learning model to
quantify two key metrics: the ongoing probability of low/high pain, and the level of surprise on
each trial (entropy). Previous studies have shown that such simple models provide a good account
of behavioural and brain measures of surprise in comparable statistical learning environments (Mars
et al., 2008; Meyniel et al., 2016).

We first looked at whether these metrics correlated with behaviour. Using a linear regression
model of pain ratings (see methods), we found no correlation with a posteriori probability of
low pain (z-transformed correlation coefficients Day 2 vs 0: T(18)=-0.582, p=0.568, Day 1 vs 0:
T(18)=0.233, p=0.819, paired t-test between days: T(18)=0.601, p=0.555). However, we found a
strong correlation with entropy, which was specific to Day 2, compared to Day 1. That is, greater
entropy was associated with greater subjective pain (Fig 6a, z-transformed correlation coefficients
Day 2 vs 0: T(18)=4.648, p=1.99e-4, Day 1 vs 0: T(18)=0.259, p=0.798, Paired t-test between days:
T(18)=2.245, p=0.0376).

In the analysis of imaging data on Day 2, we found that the a posteriori probability of low pain
was correlated with BOLD responses in the ventromedial prefrontal cortex (VMPFC) (Fig 6b, Table
2), consistent with this regions strong association with reward and relief value in previous studies of
learning (Kim et al., 2006; Seymour et al., 2012). Most importantly (given the correlation with pain
ratings), we found that entropy was correlated with BOLD responses in both bilateral mid/anterior
insula and pgACC (Fig 6c and 6d, Table 2). The insula response lay within the bilateral insula mask
used for the decoder construction, and the pgACC response was part overlapping with the region
associated with increased accuracy coding during adaptive neurofeedback (Fig 6e). When looking
at the contrast of these responses across days, we found that although there was no significant effect
of day in the insula response. However, the peak pgACC response was significantly greater on Day 2
(SVC corrected p(FWE-corr)=0.021, T=3.70, Z=3.15, peak coordinates [13,41,14]). That is, entropy
correlated with both pain ratings and pgACC BOLD response selectively during neurofeedback on
Day 2.
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Figure 6: Frequency learning evidence on Day 2 (n=19). (a) Entropy (uncertainty regarding
upcoming stimulus being high pain) from frequency learning model correlated with pain rating
residuals from Day 2, but not Day 1 (using pain rating residuals with intensity and session numbers
regressed out, see Methods). (b) Frequency learning model posterior probability of low pain
correlated with VMPFC on Day 2 (peak coordinates [0, 51, -14], T=4.44, shown at p<0.001 unc.).
(c-d) Frequency learning model entropy on Day 2 (i.e. entropy of posterior probability of current
stimulus before updating) correlated with pgACC and bilateral insula (pgACC peak coordinates [13,
41, 14], T=5.91, sagittal and coronal views both at p<0.001 unc.). (e) Overlay of pgACC activations
from both entropy (green) and searchlight (red) analysis (visualised at Z>3.2 for both).
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Discussion

The results show that regional brain responses decoded in real-time can be used as a feedback signal
to teach a machine to reduce the intensity of experimental pain stimuli in an adaptive, closed-loop
setting. However, this is accompanied by two types of endogenous processes that influence both the
neural signals themselves, and the perception of pain. First, in the context of the explicit incentive
to enhance neural decodability, some primary pain-related brain regions (i.e. the insula) show a
paradoxical decline in decodability, and the only region identified as showing enhanced decodability
was the pgACC. Second, subjects learn the performance of the machine in terms of the success
giving low intensity stimuli, and an entropy (uncertainty) signal evoked during learning is positively
correlated with pain - an effect that was also associated with pgACC responses. The results illustrate
how different, specific co-adaptive brain processes are engaged during the operation of closed-loop
systems for pain.

In the context of closed-loop systems, the different patterns of adaptive response illustrate that
different brain regions will generate feedback signals that may affect the performance of closed-loop
systems in different ways. In the case of the experimental electrical stimulus here, secondary
somato-sensory cortex performed best - with the highest decoding accuracy and resistant to the
degradation of decodability seen in insula. It is not clear why insula shows a reduced performance,
but previous evidence suggests that uncertainty (which correlates with a sub-regions of insula in our
data) is integrated into perceptual representations as pain becomes more predictable (Brown et al.,
2008; Geuter et al., 2017), and it may be that such a predictive coding schema disrupts decoder
performance. It is notable, however, that overall the insula still predicts the slight increase in pain
associated with changes in pain feedback (i.e. the switch trials, Fig 5b), so the results are still
consistent with a primary role of insula in the subjective perceptual representation of pain.

However, the pattern of changes in the insula contrasts with that of the pgACC. Overall, the
decoding accuracy in pgACC is much lower, consistent with the fact that it is considered not to be
a primary pain coding region, but a potential center for endogenous control. From an ecological
perspective, endogenous pain control is thought to provide a key mechanism by which animals
cope with threat, and is mediated in part by control of descending pathways to the spinal dorsal
horn neurons (via the PAG) that transmit incoming nociceptive signals (Basbaum and Fields, 1984).
Along with other regions (including the insula and DLPFC), the pgACC has been implicated in
endogenous control across a range of paradigms, including placebo/nocebo (Bingel et al., 2006;
Eippert et al., 2009; Zubieta et al., 2005), attention/distraction (Bantick et al., 2002; Tracey et al.,
2002; Valet et al., 2004), and controllability (Salomons et al., 2007; Zhang et al., 2018). But
functionally dissociating the role of these different regions in endogenous modulation has been
difficult, coupled with the fact that it has remained unclear whether modulation reflects a non-specific
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up- or down-regulation of pain responses, or as we now show here, a process in which the specific
informational representation of pain is under control.

Specifically, the data here show that pgACC correlates both with a pain-modulating effect
of uncertainty (entropy), and an increase in decodability under an appropriate explicit incentive.
Importantly, intensity coding is needed for the computation of entropy, and thus the enhancement
in decodability may reflect the enhancement of information used for this computation, ultimately
leading to an influence on the subjective perception of pain. This is consistent with an attention-like
process engaged specifically during neurofeedback, to enhance pain information processing in the
context of the task. This computationally precise modulation is distinct from the basic representation
of pain itself, and potentially mediated via the descending system given the non-specific enhancement
of PAG activity seen during neurofeedback. Overall, the results show that pgACC may act as a key
hub for neural and behavioural components of the endogenous control of pain, modulating the level
of pain according to the informational value it carries in terms of its ability to guide active learning
and behaviour.

From a neuro-engineering perspective, the experiment demonstrates that in principle, online
decoded pain responses can guide a closed-loop pain control system, and the use of fMRI allows
exploration of a range of target regions for decoding. Although multi-ROI classifiers can have much
higher accuracy (Wager et al., 2013), here we arbitrarily used a single (bilateral) brain region, partly
as it is more realistic in terms of future applications that involve long-term implanted recordings, for
example with electrocorticography (ECoG). However, the choice of region is somewhat irrelevant to
the experimental demonstration of endogenous processes studied here, as all that matters is that the
decoder performs above chance and the incentive for active endogenous modulation exists.

As a general finding, it is clear that the brain actively learns about feedback in the context of
brain-machine systems. Our experimental design here is relatively simple, and frequency learning is
sufficient to capture the efficacy of the system. However, the engagement on brain regions including
the striatum and amygdala suggests that more sophisticated value learning might be possible if the
machine policy were more complex (for example, complex markov state-transition probabilities
(Wang et al., 2017)). It is also possible that brain representations might change over extended periods
of time based on the reinforcement provided by the feedback - and such ‘neural conditioning’ has
been observed over multi-day decoded neurofeedback tasks that involve explicit reward feedback
(Koizumi et al., 2016). It is therefore possible that these additional types of learning could further
influence closed-loop systems in appropriate situations.

A key feature of our system is the incorporation of an reinforcement learning decision function
on the part of the machine. This has a key advantage over fixed feedback decision policies because in
principle RL algorithms can be used to search a much larger parameter space, as opposed to the binary
levels of stimulation here - something that has broad applicability for many therapeutic interventions
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(e.g. spinal or brain stimulators). That is, when the optimal configuration of parameters for treatment
under control is not known, the RL algorithm can search and find it over time. Combining the use
of machine learning to generate a value approximation function, with reinforcement learning for
optimal control, provides an ‘intelligent’ control systems approach to pain therapeutics.

Methods and Materials

Participants

19 healthy participants enrolled in a two-day neuroimaging experiment (two female, age 23.5±4.0
years). All subjects gave informed consent prior to participation, had normal or corrected to normal
vision, and were free of pain conditions or pain medications. The experiment was approved by the
Ethics and Safety committee of the Advanced Telecommunications Research Institute, Japan.

Experimental protocol

The experiment spanned two days. On each day, each participant completed 2 sessions of pain
thresholding test outside the scanner and 6 sessions of task with high/low painful stimuli inside the
scanner.

Day 1: Decoder construction

Individual participant’s functional brain images were recorded during fMRI scanning for decoder
training. High and low levels of painful electrical stimuli, determined with the participant’s pain
threshold obtained before task outside the scanner, were delivered in a sequence of random or
pseudo-random trials to elicit two levels of pain. From the participant’s perspective, painful stimulus
was delivered at the beginning of each trial when a ‘+’ symbol appear on screen below the white
bulls-eye fixation point. The ‘+’ stayed on for 10s, then the ‘=’ symbol replaced it for 2s, signalling
a brief inter-trial interval (ITI). In 40% trials (12 randomly chosen out of 30 in each session), the
‘+’ stayed on screen for 4s and the fixation point turned to an orange square (signalling upcoming
rating), followed by a 0-10 visual analogue scale that stayed on for 6s, where participants were
asked to rate how painful the stimulus was by pressing two buttons to move the slider on screen.
The 30-trial session was repeated 6 times with a short break in between (180 trials, 72 ratings per
subject in total).

16 out of 19 participants used another participant’s Day 2 trial sequences on Day 1 as yoked
control. All participants were given the instruction to rest in the scanner and do nothing (see
‘Appendix’).
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Individual-specific, multi-voxel decoder was then trained for automatic classification of pain
level experienced, using bilateral insula as region of interest (ROI, see ‘Decoder construction’).

Day 2: Neurofeedback adaptive control

On Day 2, the level of pain stimuli delivered on each trial was controlled by their decoded pain from
real-time brain activities in the previous trial, determined by an adaptive control algorithm. All
participants were explicitly told that the pain level they received was controlled by the computer
programme, and were aware that modulating their brain activity could therefore influence the
computer. The instructions are detailed in the Appendix, and were intended to reveal the incentive
to modulate pain, but without any explicit instruction whether or how to do so.

After delivering pain, the participants’ probability of experiencing high pain (P(Pain)) was
estimated by multiplying decoder weights with insula BOLD activity from their brain images in that
trial (realigned and resliced to the reference image from Day 1, following Shibata et al. (2011)). The
estimated probability was used to provide the feedback signal with the aim that the computer could
learn to lower the overall level of pain delivered to the participant, based on trial-by-trial updating of
the values of high and low pain stimulus with a basic reinforcement learning algorithm. The details
of this algorithm are described below, but in brief, the stimulation state that elicited lower decoded
pain signal in the participant was reinforced (see ‘Neurofeedback adaptive control’).

Day 1 and 2 were structurally the same apart from the adaptive control process and subject
instructions, which made them approximately yoked conditions that allowed investigation of
whether any brain-machine co-adaptation processes took place. Across any analysis of effect x day
interactions, this sequential comparison necessarily introduces an order confound related to possible
non-specific effects of novelty and anxiety to the experiment. In these instances, they are partly
mitigated by the computational specificity of the analyses, and the fact that the majority of effects of
interest emerge on day, during neurofeedback, when novelty and anxiety effects would be less.

Stimulus delivery

Painful electrical stimuli were delivered using two constant current stimulators (Digitimer model
DS7A, Welwyn Garden City, Hertfordshire, UK), at two current levels for high/low pain determined
using the participant’s own threshold. The levels were fixed across sessions (except in 4 subjects,
minor adjustments were made where pain ratings were either too high, or there were no difference
between two levels), but were allowed to differ on Day 2 based on the new pain threshold. All
stimuli were delivered as a train of 50 5ms square wave pulses at 10Hz, lasting 500ms (DS7 settings:
x1 mA, 200µs).

The two stimulators were connected to a custom-made switch that allowed current delivery
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through the same custom-made, MRI-compatible ring electrode (10mm diameter). The electrode
was taped to the back of the left hand of the participant, its location marked on Day 1 as reference
for attachment on Day 2.

Pain thresholding procedure (Day 1 and 2)

On each day, participants completed a thresholding procedure at the beginning of the experiment. In
the first session, the staircase method was used to evaluate their highest pain limit. Stimuli current
were linearly increased at 0.2-0.5mA interval, and participants were asked for verbal feedback of
a 0-10 pain rating in person after each stimulation. This procedure was rerun a few times using
different starting points and both stimulators. In the second session, 14 trials of randomised painful
stimuli were given within the range of lowest perceivable to highest tolerable current level determined
in session 1. Subjects rated each stimulus 1s after receiving it, on a 0-10 VAS scale on screen using
a keyboard (as practice to the rating procedure used in the task). To determine the final current level
to use, a Weibull and Sigmoid function were fitted to session 2’s stimuli and ratings, and current
levels for VAS = 1 and 8 were used for low / high pain stimulus for the experiment respectively. The
same procedure was repeated for Day 2, and the new fitted current levels were used.

fMRI data acquisition (Day 1 and 2)

Neuroimaging data was acquired with a 3T Siemens Prisma scanner with the standard 64 channel
phased array head coil. Whole-brain functional images were collected with a single echo EPI
sequence (repetition time TR=2000ms, echo time TE=26ms, flip angle=80, field of view=240mm),
33 contiguous oblique-axial slices (voxel size 3.2 × 3.2 × 4 mm) parallel to the AC-PC line were
acquired. Whole-brain high resolution T1-weighted structural images (dimension 208 × 256 × 256,
voxel size 1 × 1 × 1 mm) using standard MPRAGE sequence were also obtained.

Decoder construction (Day 1)

Preprocessing All preprocessing were conducted using SPM12 (http://www.fil.ion.ucl.
ac.uk/spm/software/spm12/) in MATLAB (The MathWorks Inc., Natick, MA, USA).

All functional images were realigned and resliced to the reference functional volume (the first
baseline TR after the first 3 dummy TRs obtained in the first session on Day 1). Structural T1 images
were coregistered and segmented according to the canonical single subject T1 images. The resulting
inverse transformation matrix was used to normalise the bilateral insula ROI obtained from the
Automated Anatomical Labeling (AAL) atlas from MNI space to individual subject space. These
warped ROI images were then coregistered to the reference functional TR.
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Feature extraction Time series were extracted from all voxels within the individual’s insula ROI.
To account for BOLD delay and to minimise motion contamination, the times series from TR 3-5
(4-10s) were used from each trial, the first two TRs (0-4s) immediately following pain stimulus were
omitted. For denoising, the 5 TRs following 3 dummy TRs at the beginning of each session were
used as baseline, each trial ROI time series were normalised by subtracting session baseline mean
and divided by baseline standard deviation, then the mean across the TR 3-5 from all trials were
extracted for classifier training.

Decoder training Mean insula voxel activity as feature and high/low pain delivered as label were
aggregated across all trials within participant for decoder training. Binary classification by Sparse
Logistic Regression (SLR, version 1.51) with variational parameters approximation (Yamashita
et al., 2008) was used. This results in a sparse matrix of weights for about 5 percent of all voxels
within the given ROI. By multiplying weights with feature/voxel intensity signals, the decoder
produces the probability of observing current label given trial features (referred as (P(pain) from
here, P(pain)=1 means highly likely to have received high pain, P(pain)=0 means unlikely to have
received high pain, or highly likely to have received low pain).

For decoder training, all trials were used for training. To estimate decoder accuracy, all trials were
partitioned into 10 equal sets with 9 sets for training and 1 set for testing (10 fold cross-validation).
The average testing accuracy of 10 iterations of cross-validation were used as estimated decoder
accuracy (Table 1). Trained decoder was tested with another day’s data using the experimental
setting.

Neurofeedback adaptive control algorithm (Day 2)

To allow automated adaptive control of pain stimulus delivery, we used a simple reinforcement
learning algorithm (Sutton and Barto, 1998) to update the value of high/low pain states trial-by-trial:

Qt+1(a) = Qt(a) + α(−P(pain) −Qt(a)) (1)

where t represent trials, Q is the value of given state, a is the actions available for the algorithm (i.e.
either giving high or low pain, collectively shown as action set A), α is learning rate fixed at 0.5.

P(pain) is the decoder-generated probability of current trial’s stimulus being high pain. It’s
scaled between [-1,1] when used in the updating function. Higher P(pain) would decrease the value
of current pain state more and vice versa, while the value of un-chosen state remained unchanged.

The algorithm selects which pain level to deliver for the next trial using ε-greedy action selection
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rule based on current values:

pt+1(a|Qt) =

random action a ∈ A, if ξ > ε

argmaxa∈AQt(a), otherwise
(2)

where ε is the explore ratio fixed at 0.4 (i.e. exploring by choosing a random action by either giving
high or low pain 40% of the time, exploiting the other times), ξ is a uniform random number drawn
within [0,1] at each trial. The random exploration allows a sufficient proportion of alternative pain
level to be delivered, to ensure the next participant who uses current participant’s Day 2 sequence to
have enough trials of both high and low pain for decoder construction. We also set values to be 0 for
both states at the beginning of each session.

Frequency learning model

The frequency learning model M assumes a participant estimates the posterior distribution of a
given stimuli θ from a previously observed sequence of two possible stimuli y1:t (i.e. high or low
pain) using Bayesian updating (Mars et al., 2008; Meyniel et al., 2016).

p(θ |y1:t, M) ∝ p(y1:t |θ, M)p(θ, M) (3)

Given the experiment design, participants are assumed to have uninformative prior over the two
stimuli at the beginning of each session, which can be represented by a Beta distribution with
parameters [1,1]. Since the product of two Beta distributions results in a Beta distribution, the
posterior distribution depends only on the frequency of the high and low stimuli Nh, Nl , which has
an analytical solution. The posterior mean of the predicted high pain distribution is:

p(h|Nh, Nl) =
Nh + 1

Nh + Nl + 2
(4)

and P(l |Nh, Nl) = 1 − p(h|Nh, Nl) given the reciprocal relationship between high/low pain stimuli.
The uncertainty/surprise of current stimulus h/l at trial t can be estimated as the entropy H of

the posterior mean before updating from trial t − 1:

H(P(ht)) = −log2(P(ht−1)) (5)

This model does not require model fitting, as participants were assumed to cumulate stimulus
counts over the entire session (30 trials), where we assumed perfect memory retention. It is possible
to limit the number of trials for frequency memory, or introduce a forgetting ‘leaky factor’ to
discount previously experienced trials. However, given that we had no other behavioural data for
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fitting apart from selective pain ratings, and relatively short sessions, we decided to use the simplest
frequency model without fitted parameters.

To determine any learning effects on subjective ratings, we followed the method in Woo et al.
(2017) to use subjective rating residuals for correlation analysis with learning model predictors. We
regressed subjective ratings with a matrix of high/low pain stimulus identities (high=1, low=-1), and
session numbers (1-6) for each individual to obtain rating residuals. The fluctuation of the resulting
residuals can be interpreted as modulatory effects on pain beyond the level of nociceptive inputs.

Behavioural data

Behavioural data were analysed using Python 3.6, with pandas 0.19.2, scipy 0.18.1, afex 0.16-1.

fMRI data offline analyses

Preprocessing

For offline analysis, functional images were preprocessed using the fmriprep software (build date
21/05/2017, pypi version 0.4.4, freesurfer option turned off, https://github.com/poldracklab/
fmriprep), a pipeline that performs slicetime correction, motion correction, field unwarping,
normalisation, field bias correction, and brain extraction using a various set of neuroimaging tools
available. The confound files output by fmriprep include the following signals: mean global,
mean white matter tissue class, three FSL-DVARS (stdDVARS, non-stdDVARS and voxel-wise
stdDVARS), framewise displacement, six FSL-tCompCor, six FSL-aCompCor, and six motion
parameters (matrix size 24 × number of volumes). Resulting functional images were smoothed with
an 8mm Gaussian kernel in SPM12, except for those in used searchlight analysis.

fMRI GLM model

All event-related fMRI data were analysed with GLM models constructed using SPM12, estimated
for each participant in the first level. Stick functions at pain stimulation onset were convolved with a
canonical hemodynamic response function (HRF). We also included rated trials (duration=10s, from
beginning until ITI) as regressor of no interest, in addition to the 24 columns of confound matrix
output by fmriprep. Day 1 and 2 data were included in the same GLM, but first-level contrasts were
estimated separately for days.

Whole-brain comparison (Fig 3) 2 regressors: high/low pain onset (duration=0).
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Switch trials differences (Fig 5) 4 regressors: trials stimulus different from or identical to that of
the previous trial were labelled as switch or non-switch trials, separately for high/low pain (HH, LL,
LH, HL), at pain onset (duration=0).

Frequency learning posterior probability and entropy (Figs 6b, 6c, 6d) 3 regressors at pain
onset (duration=0) with parametric modulators: posterior probability of current stimulus (updated
prediction), entropy of previous posterior probability of current stimulus (uncertainty of prediction
before updating), actual identity of stimulus (high pain=1, low pain=-1). All parametric modulators
mean centred within session, SPM orthogonalisation for these 3 regressors were turned off.

For correction for multiple comparison here and in all analyses, we use whole brain correction
or ROI based correction based on a priori hypotheses as appropriate, and the details appear in Table
2. For ROI analyses, we used anatomical binary masks generated using the Harvard-Oxford Atlas
(Desikan et al., 2006) (freely available with the FSL software, https://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/Atlases), and periaqueductal grey probabilistic atlas (Ezra et al., 2015) for small
volume correction. All probability maps were thresholded at 50%, and all masks were applied
separately, not combined. We used the frontal medial cortex mask as approximation for VMPFC.
Bilateral masks for vlPAG and lPAG were combined respectively. We also used the pgACC peak
identified in our previous study of active relief learning (Zhang et al., 2018) for the 8mm spherical
ROI mask (sphere peak used: [6,40,12]). We reported all results with p<0.05 (FWE cluster-level
corrected, using a p<0.001 cluster-forming threshold (Eklund et al., 2016)), with the exception of
searchlight analysis results (MFG/DLPFC SVC had p=0.06, see Table 2).

ROI analysis

Beta estimates were extracted from activation ROIs (see text for mask details). Beta values plotted
were the average of all voxels within ROI masks, with statistics showing subject-level SEM. Post-hoc
repeated measure ANOVA were conduced with the R package ‘afex’. All t-tests performed were
two-tailed. pgACC responses were overlaid on subject-averaged anatomical scans using MRIcroGL
(https://www.nitrc.org/projects/mricrogl/). We used voxel-wise correction for multiple
comparisons within the ROIs: the insula (required by the task paraigm itself, and the pgACC and
PAG given their proposed role in endogenous control (Zhang et al., 2018).)

Decoder comparison

Decoders were constructed using Day 2 data with the same procedure as Day 1 (Fig 4). This was
done to determine whether the decoding performance of insula ROI remained the same, or whether
any learning-induced changes might have changed the decoder properties.
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Whole-brain searchlight analysis was conducted using the Decoding Toolbox (TDT, v3.98)
in MATLAB (Hebart et al., 2015). The toolbox can conduct multivariate decoding analyses at
combined trial types within fMRI runs, by extracting features from beta images of relevant regressors
in the first level GLM analysis output by SPM. This could lead to higher classification accuracy and
lower computation time, comparing to single trial decoding.

A searchlight analysis was carried out within a 10mm radius sphere for the whole brain, with
high/low pain categories as unsmoothed beta images from each run for individual participant. TDT
produced a decoding accuracy map for each voxel using a leave-one-run-out cross validation scheme,
which can be interpreted as the local information content of each voxel (Kriegeskorte et al., 2006).
The Day 1 and 2 accuracy maps from each individual were then smoothed with a Gaussian kernel of
4mm, and entered into a standard SPM second level paired t-test as in the GLM analysis above. The
resulting T map indicates the changes in decodable information used for pain level decoding across
days.

Appendix

Participant instructions

Day 1 (Decoder construction)

Please rest in the scanner. We are looking at your brain’s response to different levels of pain. You
don’t have to do anything.

Day 2 (Adaptive control)

You don’t need to do anything in this task. The computer is trying to work out if you feel pain
or not, by looking at your brain activity. If it thinks you felt pain, it will try and change the pain
stimulation to stop you from having pain. If it thinks you did not feel much pain, it will try not to
change anything. However, it cannot do this very reliably, as reading the brain activity is difficult, so
it may often make mistakes.

During your first scan, we gave a random sequence of pain stimuli - some high, and some low.
Using this data, we have trained a computer program to tell how much pain you were feeling during
each shock, based on your brain activity. It is good, but not perfect - it gets it right about 80% of the
time.

In today’s scan, the computer program can influence the pain level you get. If it thinks you
felt a lot of pain, it will influence the pain machine to give you less pain in the future. If it thinks
you did not feel much pain, it will try to influence the pain machine to continue to give you little
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Table 2: Multiple correction (cluster-forming threshold of p <0.001 uncorrected unless stated
otherwise, regions from Harvard-Oxford, PAG probabilistic atlas, and previous study. *FWE
cluster-level corrected. n=19. H: high pain, L: low pain)

p* k T Z MNI coordinates (mm) Region mask
x y z

Fig 3: Whole brain comparison (D2>D1, L>H, p<0.005)

0.032 8 4.38 3.57 -16 -7 -18 Amygdala L

0.021 28 3.81 3.22 -22 9 6 Putamen L
3.62 3.10 -19 6 2
3.62 3.09 -26 -1 2

0.040 18 3.47 3 23 9 6 Putamen R
3.29 2.88 26 15 -2

Fig 3: Whole brain comparison (D2>D1, H>L, p<0.005)

0.034 1 3.14 2.76 -3 -30 -6 dlPAG (Ezra et al., 2015)
0.034 1 2.94 2.62 3 -30 -6

0.036 1 3.14 2.76 -3 -30 -6 lPAG (Ezra et al., 2015)
0.036 1 2.94 2.62 3 -30 -6

Fig 4: Searchlight analysis - decreased information content (D2>D1)

0.048 2 3.94 3.3 -42 3 -2 Insula L

0.061 2 4.41 3.59 -38 15 42 Middle Frontal Gyrus L
0.078 1 4.37 3.56 -38 35 30

Fig 4: Searchlight analysis - increased information content (D2>D1, p<0.005)

0.045 5 3.50 3.02 6 44 14 8mm pgACC sphere at [6,40,12]
(Zhang et al., 2018)

Fig 5: Whole brain comparison (D2, HL>LL)

0.014 2 4.41 3.59 -26 -4 -14 Amygdala L
0.008 6 4.81 3.81 26 -7 -14 Amygdala R

Fig 5: Whole brain comparison (D2, LL >HL)

striatum did not survive SVC

Fig 6: Frequency learning model - posterior probability of low pain (D2)

0.007 10 4.44 3.6 0 51 -14 Frontal Medial Cortex

Fig 6: Frequency learning model - entropy (D2)

0.039 5 5.30 4.06 10 41 10 Cingulate Anterior
0.033 6 4.36 3.56 0 3 38

0.002 14 5.91 4.35 13 41 14 8mm pgACC sphere at [6,40,12]
(Zhang et al., 2018)

0.002 31 5.24 4.03 -38 -7 2 Insular cortex (bilateral)
0.032 6 4.60 3.69 39 -4 6
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pain. In other words, it is trying to help you get less pain! This is a difficult job for the computer
program, because it is not perfect at reading your brain activity as soon as it is active (i.e. within a
few seconds).

It is up to you what you do in the task. You can do nothing, and hope that the system works well,
and the computer learns to reduce the pain. Or you can try to influence the computer using your
thoughts, in any way that you like.

Post-training survey (Day 2)

1. Do you think the machine was successful in reading your pain and trying to reduce it?

2. Did you try to influence the computer by doing or thinking anything?

3. If so, what did you do/think?

4. And if so, do you think you were successfully able to influence it?

5. Any other comments or feedback?
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