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Abstract 
 
Powerful new technologies for perturbing genetic elements have expanded the study of genetic 
interactions in model systems ranging from yeast to human cell lines. However, technical 
artifacts can confound signal across genetic screens and limit the immense potential of parallel 
screening approaches. To address this problem, we devised a novel PCA-based method for 
eliminating these artifacts and bolstering sensitivity and specificity for detection of genetic 
interactions. Applying this strategy to a set of >300 whole genome CRISPR screens, we report 
~1 million pairs of correlated “co-functional” genes that provide finer-scale information about 
cell compartments, biological pathways, and protein complexes than traditional gene sets. Lastly, 
we employed a gene community detection approach to implicate core genes for cancer growth 
and compress signal from functionally related genes in the same community into a single score. 
This work establishes new algorithms for probing cancer cell networks and motivates the 
acquisition of further CRISPR screen data across diverse genotypes and cell types to further 
resolve the complexity of cell signaling processes. 
 
 
Introduction 
 
Understanding the complex biological underpinnings of human disease has long been a goal of network 
biologists (Barabási & Oltvai, 2004; Barabási et al, 2011). Because genes vary in their role and 
importance across diverse cell types, it has become increasingly clear that characterizing tissue- and cell 
type-specific regulation of chromatin accessibility (Roadmap Epigenomics Consortium et al, 2015; 
Breeze et al, 2016), chromosome looping (Javierre et al, 2016; Mumbach et al, 2017), and gene 
expression (GTEx Consortium et al, 2017) will be central to developing a coherent understanding of 
disease etiology. The differences in biological pathway importance across tissues is especially vexing 
when modeling diseases such as cancer that specifically exploit tissue-specific pathways and 
preferentially acquire mutations to regulate them. Set against these challenges, the advent of new genetic 
perturbation systems scalable to the size of the human genome offers an unprecedented opportunity for 
the study of cancer cell networks and associated tissue-specific signaling paradigms that do not exist in 
single-celled model organisms like yeast (Gilmore, 2006; Fontana et al, 2010). 
 
Genome-wide CRISPR screens (Shalem et al, 2014; Wang et al, 2014) have already enabled insights into 
cell trafficking (Gilbert et al, 2014), drug mechanism of action (Shalem et al, 2014; Wang et al, 2014; 
Doench et al, 2016), and infectious disease (Gavory et al, 2018; Park et al, 2017). Yet, while these 
methods allow every gene to be perturbed and scored for its effect on a phenotype of interest, this score 
does not provide direct insight into the logic of the biological pathways involved in mediating the 
phenotype. Instead, these screens report one dimensional vectors of values: each gene falls on a single 
spectrum from dis-enriched to enriched. Determining the cellular logic that integrates effects across genes 
requires either specialized experimental design or extensive post-processing of high-throughput screen 
data. Presently, there are three prominent strategies that assign pathways to genes and explain interactions 
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between genes: computing enrichment of hits in curated gene sets, quantifying effect sizes of 
combinations of genetic perturbations, and analyzing diverse CRISPR screens performed in parallel to 
identify genes with correlated effect sizes. Enrichment in curated gene sets can clarify the biological 
processes involved by implicating cell pathways or compartments, but interpreting enrichments can be 
extremely difficult (Rhee et al, 2008; Timmons et al, 2015). Thus, we will focus on the two 
experimentally-driven alternatives. 
 
Combinatorial sgRNA platforms (Bassik et al, 2013; Kampmann et al, 2015) disrupt multiple genes in the 
same cells to identify epistatic interactions that can unmask pathway logic. These platforms are the 
successors of double knockout array technology that has broadened the set of yeast genes thought to 
participate in genetic interactions to 90% of all genes (Tong et al, 2004; Costanzo et al, 2010; 2016). 
While these methods have the power to directly test hypothesized genetic interactions, technological 
constraints have limited individual combinatorial sgRNA studies to measuring interactions for only a 
small fraction of all pairs of human genes (Ogasawara et al, 2015; Han et al, 2017; Shen et al, 2017; 
Wong et al, 2016). Ascertaining appropriate gene pairs for such phenotyping is not trivial, especially for 
synthetic interactions where neither genetic perturbation exhibits an effect on its own, although 
algorithms to overcome this challenge are under development (Medina & Goodin, 2008; Deshpande et 
al). Interpretation of measured interactions is also complicated by the fact that the extent to which genetic 
interactions persist across cell types or samples is unknown.  
 
Parallel screening designs approach the identification of interacting genes in a fundamentally different 
manner. All genes of interest, potentially comprising the entire genome, are screened in a diverse panel of 
cell lines, and the perturbation effect sizes across these cell lines are recorded as a gene perturbation 
profile for every gene (Figure 1a, b). The distinct genetic and epigenetic features of each cell line modify 
its susceptibility to disruption of pathways, organelles, or even individual protein complexes. In general, 
two genes that have correlated gene perturbation scores across many cell lines are inferred to be 
functionally related, with greater correlation implying greater shared function. Data from only 6 cell lines 
sufficed to verify essential gene pathways in one study (Hart et al, 2015). A larger panel of 14 parallel 
AML line CRISPR screens allowed more systematic validation of cancer metabolic and signaling 
pathways (Wang et al, 2017). More recently, the availability of 342 published CRISPR screens in cell 
lines drawn from diverse cell lineage and mutational backgrounds has invited even broader surveys of co-
essentiality (Meyers et al, 2017). One study jointly examining RNAi screen data dissects the structure of 
essential protein complexes (Pan et al, 2018), and a second, currently available on a preprint server, 
independently examines the organization of cancer growth pathways (Kim et al, 2018). In all these cases, 
genetic interactions identified from correlated gene profiles operated on multiple levels of cellular 
regulation, validating parallel screening as a powerful tool for reconstructing cell networks.  
 
While effective, parallel screening approaches require more substantial post-processing of results than 
combinatorial screens. Studies involving parallel screens are straightforward to design, but technical 
variation in how the screens are performed as well as copy number variation across cell backgrounds can 
confound the results (Zhang & Lu, 2009; Aguirre et al, 2016). Recent work has shown that copy number 
variation can underlie the strongest hits in CRISPR knockout screens, and multiple groups have proposed 
corrective algorithms to confront this problem (Pommier, 2006; Meyers et al, 2017; Wu et al). Additional 
heuristics aimed at increasing the quality of genetic interactions identified from parallel genetic screens 
have included discarding entire screens with noisy effect sizes, setting an effect size threshold for 
correlating genes, and capping the number of interactions per gene (Wang et al, 2017; Pan et al, 2018; 
Kim et al, 2018); however, reliance on these heuristics prevents truly unbiased genome-wide analyses. 
Furthermore, as the scale and diversity of published genetic screens grows, so will the need for new 
statistical techniques that can correct for technical variation while preserving even small levels of true 
signal. 
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Figure 1: Detecting co-functional interactions from parallel genetic perturbation screens. Diversity 
in a) mutational background and b) pathway activity produce correlated gene essentiality profiles of 
knockout effect sizes for members of the same pathway. Cell lines with inactivating mutations in or 
downregulation of biological pathways are impervious to gene knockout. Discrete and continuous 
differences across cell lines can thus be summarized by a correlation coefficient. c) Nonspecific sources 
of variation across cell lines can be removed by learning principal components from a set of control genes 
that should not contain biological signal and subtracting these components from the raw gene profiles. 	 	
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In this work, we develop a flexible, unsupervised approach for removing confounding from parallel 
genome-wide CRISPR screens. We apply this approach to the 342 CRISPR screens of Project Achilles 
and compute corrected gene profiles for all reported genes. We identify more than 1 million pairs of 
significantly correlated, co-functional genes, substantially more than reported by other studies. Finally, 
we detect functionally delineated gene communities and characterize their specificity with respect to cell 
lineage and mutational backgrounds. Using these gene communities, we provide new insight into cancer 
cell network topology including scores for each gene’s potential to drive a pathway important for cancer 
proliferation. 
 
Results 
 
Correcting for technical confounding found in parallel genetic screen data 
 
We first downloaded CRISPR screen gene summary data corrected for copy number confounding from 
the Project Achilles data depository (Meyers et al, 2017) and matched RNA-seq and mutation data from 
the Cancer Cell Line Encyclopedia (CCLE) website (Barretina et al, 2012). The results of the CRISPR 
screens form a matrix, where each row in the matrix serves as a gene essentiality profile that summarizes 
the knockout phenotype of the gene across the 342 cell lines (the columns of the matrix). As reported by 
others, the degree to which two gene essentiality profiles (rows) are correlated reflects their functional 
relationship. This functional relationship can reflect many gene-gene relationships, including membership 
in the same metabolic pathway or protein complex, and depends on the mutations present in the cell lines 
tested (Figure 1a, b) (Wang et al, 2017; Pan et al, 2018).  
 
Because technical factors in the dataset could drastically skew Pearson correlation values, we explored a 
large set of control genes expected to have little to no phenotype in the context of cancer proliferation: 
olfactory receptors (as classified by the HUGO Gene Nomenclature Committee (HGNC)). Some olfactory 
receptors shared identical sgRNAs, and in these cases we retained only one olfactory receptor to avoid 
duplicate gene profiles. Within this set, all pairwise correlations were calculated under the expectation 
that strong effect sizes would indicate technical confounding. Under a model of uniformly null 
phenotypes, we would expect correlations to be tightly distributed around 0. In fact, olfactory receptors 
often exhibited profiles that were highly correlated across genetic backgrounds, strongly suggesting the 
presence of technical confounding.  
 
To investigate the unanticipated signal of essentiality in olfactory receptors, we evaluated the covariance 
of the knockout growth phenotypes across cell lines using principal components analysis (PCA). We 
performed PCA on the matrix of growth defects from each olfactory receptor (row) and cell line 
background (column) (Figure 1c). The resulting principal components describe how likely each cell line 
is to exhibit essentiality amongst olfactory receptors. If the essentiality measurement of each olfactory 
receptor was being driven by gene function or chromosomal locus, these profiles – a single number per 
cell line – would be expected to be poorly predictive genome-wide. However, found that the top four 
principal components explained significantly more variance than expected by permutation testing, with 
over 65% of the variance explained by the first principal component (Figure S1a). We hypothesize that 
the reason for these significant principal components is differential cell line sensitivity to dsDNA break 
toxicity, something that would be well captured by a single number per cell line and consistent with prior 
work investigating CRISPR screen specificity (Morgens et al, 2017; Rosenbluh et al, 2017). Other cell 
line conditions, such as the culture media, health of the cell sample, or handling of the sample in tissue 
culture could also contribute technical variation captured by principal component signatures.  
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Figure 2: Constructing a set of co-functional genes from all pairs of human genes. a) Demonstration 
of co-functional gene calls before and after correction for three example gene sets: olfactory receptors that 
exhibit nonspecific interactions in the raw data, peroxisome genes that show persistent co-functionality 
before and after correction, and spliceosome complex members that show correlation only after 
correction. b) Correlation for two small nuclear ribonucleoproteins, SNRPD1 and SNRPD3, that required 
for splicing, before and after correction of effect sizes from 342 cell lines. Fit lines are from linear 
regression. c) Area under the receiver operating characteristic (ROC) curve for using cell line profiles to 
determine if two cell lines share a developmental lineage. Cell line profiles (the vector of effect sizes 
across all genes for each cell line) are more correlated amongst cancers of the same type following 
correction. d) The distribution of pairwise correlations of corrected gene essentiality profiles genome-
wide is greatly skewed to more positive values compared to pairs of olfactory receptors. e) Highly 
expressed essential genes regularly have on the order of hundreds of co-functional genes.	 	
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Having identified candidate confounding signatures, we corrected each gene’s essentiality profile by 
subtracting these signatures and creating an improved dataset (Figure 1c). Using these corrected gene 
essentiality profiles, we again computed the correlation of all pairs of genes and assessed the 
performance.  
 
In many cases, as seen for peroxisome genes, learned relationships before and after correction closely 
resembled each other, but in others, as seen for spliceosome scaffold proteins, previously unremarkable 
sets of genes appeared tightly related (Figure 2a). Pairs of olfactory receptors that were persistently 
correlated after correction were often in very close physical proximity on chromosome arms. As observed 
previously (Meyers et al, 2017), physical proximity generally increases the rate of correlation even after 
CERES copy number correction (Figure S1b), suggesting either that there are substantial differences in 
local toxicity to dsDNA breaks or that copy number variation confounding persists at short physical 
distances.  
 
Putting aside potential confounding due to proximal genetic perturbations, we observe other clear 
advantages to working with corrected gene essentiality profiles. By creating cell line profiles from all 
gene knockout effects and comparing the correlations for every pair of cell lines before and after 
correction, we observed marked boosts in accuracy for predicting shared primary disease (AUC increased 
from 0.670 to 0.859), and for predicting shared cell lineage (AUC increased from 0.735 to 0.880) (Figure 
2c, Figure S1c). At the same time the median cell line profile correlation dropped from ~0.85 to nearly 0 
following correction (Figure S1d), suggesting that a single or very few axes of variation – such as relative 
dsDNA break toxicity – underlie large correlations between gene essentiality profiles. 
 
Identification of ~106 co-functional interactions from corrected gene essentiality profiles 
 
To detect gene pairs with significantly correlated gene essentiality profiles, or “co-functional” genes, we 
derived p-values for the observed correlations from an empirical null distribution. To build the 
distribution, we used the pairs of olfactory receptors described above as a background set, assuming that 
these receptors would not affect cancer growth. Correlations across all pairs of olfactory receptors were 
roughly normally distributed and centered at zero. Observed correlations across corrected gene 
essentiality profiles genome-wide for all other genes greatly exceeded expectation from the null model 
(Figure 2d). Thus, we assigned p values for every observed correlation, whether positive or negative, 
using a normal distribution fit to the correlations of pairs of olfactory receptors. Across all 17,670 genes 
tested, 1,007,278 co-functional interactions, equal to 0.65% of all possible pairs of genes, met a false 
discovery rate of 10%. A similar procedure on raw gene essentiality profiles yielded 17,615 interactions. 
 
It was immediately apparent that highly expressed essential genes (Hart et al, 2014) generally possessed 
hundreds of co-functional interactions (Figure 2e). One might expect uniformly or invariantly essential 
genes to lack identifiable co-functional gene partners, but this was rarely the case. Furthermore, we 
confirmed past reports (Barretina et al, 2012; Hart et al, 2015; Wang et al, 2015) that genes that are either 
highly or invariantly expressed across tissues on average possess greater knockout effects (Figure 3a). 
Remarkably, this holds true not only across cell types, but even in the context of expression data from a 
panel of lymphoblastoid cell lines (LCLs) (Figure 3b) (Pickrell et al, 2010), suggesting that broad 
mechanisms of gene regulation and not tissue specificity are responsible for the trend. As reported 
previously (Wang et al, 2015; Pan et al, 2018; Wang et al, 2017), differences in essentiality across genes 
thus appear quantitative and not strictly binary across cell types. To facilitate further exploration of our 
co-functional gene dataset, we have developed a shiny app that visualizes all genes co-functional to the 
query gene with added functionality for overlaying interactions from STRING, published CRISPR 
screens or custom files containing scores per gene. 
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Figure 3: Influence of RNA expression mean and variance on gene essentiality. Genes in high mean 
(x-axis) and low variance (y-axis) expression bins tend to have larger knockout effect sizes, whether 
expression is determined from a) a matched RNA-seq dataset or b) a panel of LCL cell lines (right). 
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Gene co-functionality captures variation in drug susceptibility across cancer cell lines 
 
Past analyses (Hart et al, 2015; Wang et al, 2017) explored cell signaling in a restricted number of cancer 
cell lines (Figure 4a). With 342 samples, a much broader view of the diversity of signaling is possible, 
including differences across diverse cell types of origin. For MAPK and p53 pathways, the profiles of 
many genes hew closely to the TP53 status of the cancer, producing two well-separated clusters with 
predictable effect sizes across cell lines (Figure 4b). Excluding a handful of outliers, TP53 loss-of-
function mutants (Barretina et al, 2012) do not respond to TP53 knockout or MDM2 knockout or 
treatment with Nutlin-3, an anti-MDM2 drug. TP53 wild type cells grow following TP53 knockout, die 
following MDM2 knockout, and exhibit slowed growth following treatment with Nutlin-3. These 
observations suggest that negative regulation of TP53 is robust across cancer types, at least for its 
strongest co-functional genes. For example, two proposed drug targets, the deubiquitinase USP7 (Gavory 
et al, 2018) and phosphatase PPM1D (Ogasawara et al, 2015) consistently mirror TP53 knockout 
phenotypes, proving themselves robust to cell lineage and mutations in other biological pathways. 
 
The essentiality of BRAF and its co-functional gene partners paints a similar picture (Figure 4c), 
primarily via melanoma cell lines. The knockout effects of genes co-functional to BRAF depend 
considerably on BRAF V600E status, with BRAF V600E lines especially sensitive to BRAF, MAP2K1 and 
MAPK1 knockout. Our findings are similar to those independently reported by Kim, et al when this 
manuscript was in preparation. Thus, there is strong evidence that genes co-functional to central cancer 
growth genes mediate their essentiality through their involvement in those genes’ pathways. 
 
Incorporating drug-gene associations into gene networks 
 
By correlating the maximal activities of anticancer compounds in each cell line to the gene profiles 
derived from knockout effects, it is possible to test for drug-gene associations and combine drugs and 
genes into a single network (Figure 4e, Figure S2). The ErbB family of proteins includes four well-
characterized receptor tyrosine kinases (RTKs) that act upstream of PI3-K and MAPK pathways and 
complex with each other to mediate growth signaling (Medina & Goodin, 2008). ErbB family members 
are highly druggable and have been targeted by erlotinib, an anti-EGFR drug, and lapatinib, a dual anti-
HER2, anti-EGFR drug. We confirmed that lapatinib-sensitive cell lines were typically sensitive to 
knockout of ErbB family members (EGFR, ERBB2/HER2 and ERBB3/HER3), whereas erlotinib sensitive 
lines were associated with sensitivity to EGFR and not other ErbB members. The important role of GRB2 
in mediating EGFR signaling to the MAPK pathway is shown as drug-gene associations linking GRB2 to 
both erlotinib and AZD6244, a MEK inhibitor. Somewhat counterintuitively, GRB2 knockout sensitivity 
is negatively correlated with BRAF knockout sensitivity because the most BRAF-dependent lines (BRAF 
V600E melanoma) are not sensitive to EGFR knockout, producing a mutually exclusive relationship. 
 
After pooling all drug sensitivity data, drug-gene associations clustered into approximately five classes 
(Figure 4e). Foremost among these was a large number of gene knockouts enriched for terms relating to 
ribosome biogenesis and DNA break repair that were correlated with sensitivity to nutlin-3. Because cell 
stress rapidly induces p53 signaling (Zhang & Lu, 2009), we might expect gene knockouts that interfere 
with ribosome activity or DNA repair to probe the integrity of the p53 pathway: if a cell stress-inducing 
knockout swiftly kills a cell line, it is likely that p53 is intact in that cell line. Interestingly, topotecan 
participates in many more drug-gene associations with these genes than the mechanistically related drug 
irinotecan (Pommier, 2006). The second class of genes exhibits interactions for the same drugs as the first 
but features mostly negative drug-gene associations and is unremarkable except for containing TP53. 
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Figure 4: Drug-gene associations in cancer cell networks. a) Schematized version of selected cancer 
growth signaling pathways: ErbB family members (green), MAP kinase (blue) and p53-Akt (gold). b) 
Example of the most correlated genes co-functional to TP53. Each column represents one of 342 cell 
lines. Cell lines with TP53 loss-of-function (LOF) mutations or sensitivity to nutlin-3 (binarized by k-
means) are indicated in strips above. The mean effect for each gene is shown to the right of the heatmap, 
as is the corrected gene essentiality profile correlation with TP53. Effect sizes are variance-normalized by 
row. Scatterplot of the TP53 and MDM2 rows is shown on right. c) Same as in b) but for BRAF and its 
top co-functional genes. d) Illustration of the top five drug-gene associations for each of the drugs in a) 
plus their strongest co-functional genes. Beige edges represent positive correlations, gray negative. e) 
Gene knockout effects sharing significant Pearson correlation coefficients with drug activity, clustered by 
k-means, for all drugs screened in the Cancer Cell Line Encyclopedia. Asterisks highlight distant 
clustering of topoisomerase inhibitors irinotecan and topotecan. 
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The third class of drug-gene associations most notably features numerous ErbB signaling genes. In 
general, knockout of these genes is prognostic for sensitivity to receptor tyrosine kinase inhibitors like 
erlotinib, lapatinib, ZD6474 and AEW541. A fourth class is mostly driven by MEK and ERK signaling in 
melanoma cell lines dependent on BRAF V600E. These lines are uniquely susceptible to PLX4720. In 
fact, the mutual exclusivity of PLX4720 sensitivity and ErbB knockout sensitivity produces several 
negative drug-gene associations between the cluster of ErbB signaling genes and PLX4720.  
 
A final class uncovered a link between perturbation of respiration and metabolism genes and broad 
sensitization to many different drugs. To explain this, we hypothesize that cell lines that are sensitive to 
metabolic perturbation are, on average, more likely to be susceptible to pharmacological perturbation. 
 
Enrichment of co-functional genes in curated gene set databases 
 
To evaluate the extent to which co-functional genes reflect distinct kinds of functional relationships, we 
calculated the enrichment of co-functional gene relationships across gene sets maintained by the 
Molecular Signatures Database (Subramanian et al, 2005). Globally, curated gene sets contained more co-
functional pairs of genes than expected by chance: two-fold enrichment for genes annotated with the same 
biological process or molecular function, more than threefold for cellular component, and more than 
fivefold for KEGG pathways (Figure 5a) (Ashburner et al, 2000; The Gene Ontology Consortium, 2017). 
With respect to reconstituting curated gene sets, our co-functional gene dataset exhibits lower enrichment 
than state-of-the-art protein mass spectrometry but contains 70 times more potential interactions (Rolland 
et al, 2014). Even with low enrichment, approximately one-third of biological process and 60% of cellular 
component terms were enriched above random matched networks (Figure 5b, see methods). We also 
performed gene set enrichment on genes with no co-functional gene edges and found that 
underrepresented pathways were mostly limited to genes involved in lineage-specific (e.g., muscle) 
development and differentiation (Figure S3a). Despite these blindspots, we conclude that many diverse 
biological pathways, not simply pathways typically associated with essentiality, contribute to gene co-
functionality. 
 
Co-functional gene edges overrepresented amongst protein-protein interactions 
 
Relative to curated gene sets, reported protein-protein interactions exhibited greater enrichment of co-
functional genes. This was true for large-scale repositories of experimental data, as curated by the 
STRING consortium (Szklarczyk et al, 2015) (16-fold amongst interactions above 500 confidence), and for 
well-studied protein complexes, as curated in the CORUM core complex resource (Ruepp et al, 2010) 
(77-fold for proteins in the same complex). In fact, we identified the majority (50.2%) of gene pairs in 
CORUM core complexes (N = 48,408) as co-functional genes (binomial test p < 1e-300). 
 
We next explored how STRING interactions related to our set of co-functional genes in more detail. 14% 
of co-functional interactions were present in the STRING database of protein-protein interactions, 
compared to 3% of all pairs of genes. The probability of a STRING interaction being called varied 
depending on the type of annotation and in accordance with its confidence (Figure S3b). 7% of low 
confidence (score 1-150) experimentally derived STRING interactions were amongst our co-functional 
interactions, compared to a full 82% of high confidence (score 900-1000) STRING interactions. 
Likewise, only 3% of low confidence co-expression transferred STRING interactions were amongst our 
co-functional interactions, compared to 64% of high confidence STRING interactions. Nonetheless, all 
categories were enriched for co-functional genes above the global average of 0.65%. 
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Figure 5: Comparison of gene co-functionality to diverse gene annotation databases. a) Pairs of 
genes annotated with the same Gene Ontology term (BP = biological process, MF = molecular function, 
CC = cellular component) or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway are enriched 
for co-functional interactions. Pairs of genes with annotated interactions from STRING, especially high 
confidence (>500) interactions, are also enriched. Pairs of genes belonging to the same protein complex 
as curated in the Comprehensive Resource of Mammalian Protein Complex (CORUM) core complex 
database exhibit the greatest enrichment. b) Percent of gene sets containing at least 5 pairs of co-
functional genes and, amongst those, the fraction that are enriched for co-functional interactions above 
degree-matched random graphs. c) Rates of co-functional gene calls for gene pairs binned by their path 
length in the STRING experimentally derived PPI network. “Inf” (infinite) refers to genes that are in 
separate components. d) Co-functional call rates amongst CORUM protein complex edges split by 
complex size. The binomial expectation for the number of edges called as co-functional is shown in gray. 
Co-functionality rates per complex are bimodal and greater for large protein complexes. e) Extension of 
d) to larger protein complexes, with the number of edges expressed as the fraction of all possible edges in 
the complex, equal to !"#$. The area of each point reflects the number of multiple protein complexes with 
the same complex size and edge density. Complexes with fewer co-functional genes than expected 
according to the average rate are shown below the dashed line. The 90% binomial confidence interval for 
random co-functionality calls given the average rate is shown in gray. Large complexes again exhibit 
more co-functional interactions. f) Reconstruction of the Mediator complex from gene co-functionality, 
shown in a force-directed graph. Subunits in the same domain (head, middle, tail, or CDK effector) of the 
complex are more likely to be co-functional than subunits in different domains. The area of each gene 
node corresponds to its loading on the first principal component of the corrected gene essentiality profile 
matrix. g) Mediator subunit knockout effect sizes in each cell line can be summarized by a “Mediator 
score,” the first principal component score for each cell line, plotted against the knockout phenotype of 
specific genes (first four facets) or a pool of all genes in the complex (bottom row).	  
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Interestingly, we find only a small fraction (~3%) of co-functional genes to be negatively correlated.  
Amongst pairs of genes in STRING with detailed functional annotations, 21% of the highest confidence 
(>900) activating interactions were called, in contrast to 7.3% of highest confidence inhibiting 
interactions (Figure S3c). High confidence (score > 700) activation, catalysis, reaction and binding 
interactions were overwhelmingly positively correlated (99.0%, 99.7%, 99.9% and 99.9% of correlations 
above zero, respectively, Figure S3d). While the statistically significant correlations for inhibiting 
interactions might be expected to be broadly negative, this was not the case: only 2.7% of correlations 
were negative. We found that 64% of STRING interactions annotated as inhibiting were also annotated as 
activating or catalyzing and could predominantly operate in a cooperative rather than inhibitory manner, 
but even among pairs of genes exclusively annotated as sharing an inhibitory relationship, only 5.8% 
were negatively correlated. This dearth of anti-correlated co-functional genes is consistent with the 
observation by Wang, et al. that anti-correlated co-essential genes are rarely detected (Wang et al, 2017). 
Pooled CRISPR knockout screens, even with diverse panels of cell lines, may have low sensitivity for 
detecting inhibitory relationships across pairs of genes, or negative regulation more broadly. 
 
Because our reported number of co-functional interactions exceeds the estimated number of human gene 
pairs that physically interact (Venkatesan et al, 2009; Stumpf et al, 2008) by as much as tenfold, we 
explored the potential underpinnings of co-functionality in greater detail. While we infer a substantial 
fraction of experimentally validated genetic interactions in STRING as co-functional, most of our co-
functional gene pairs fail to appear STRING’s database of experimentally supported interactions. In total, 
only 13% of co-functional genes are annotated by any co-expression/experimental study, suggesting that 
physical interactions among proteins and gene co-regulation explain a minority of co-functional 
interactions. To follow up on this result, we calculated the rate of gene co-functionality as a function of 
the path length dictated by the STRING database to evaluate the extent to which co-functional genes 
could be linked indirectly by cascades through the human interactome. Pairs of genes separated by two to 
four experimentally derived STRING edges had consistently higher rates compared to pairs of genes in 
separate components of the network. Amongst STRING interactions of confidence > 700, genes with one 
intermediate gene, or path length 2, were enriched 51-fold (Figure 5c). In addition to gene regulatory and 
metabolic relationships that do not require physical interaction, signaling cascades that travel via multiple 
binary interactions can underlie additional co-functional interactions. 
 
Characterizing co-functionality amongst members of the same protein complexes 
 
Across CORUM core complexes, we note that the number of co-functional interactions per complex 
deviates far from expected assuming independent draws from a binomial distribution. In fact, oftentimes 
all or none of a protein complex’s members were labeled co-functional (Figure 5d, e). Complex size also 
played a role, as 67% of core complexes with 5 or fewer members contained no co-functional genes, 
whereas 91% of complexes with more than five members exceeded the average rate of co-functional 
interaction calls. Protein complex essentiality appears to explain some of this bimodality: co-functionality 
is rarely detected amongst CORUM core complex members that only weakly affect growth, whereas 
CORUM core complexes that strongly affect growth are almost complete graphs of co-functionality 
(Figure S3e), as seen for mitochondrial and cytosolic ribosomes, the proteasome, U2 snRNP, and RNA 
polymerase II complexes. 
 
Although the rate at which we identified the members of a protein complex co-functional varied 
according to the knockout growth phenotype, we identified other factors that guided which of a complex’s 
members were co-essential and which were not. The Mediator complex, a transcriptional coactivator that 
has been previously examined using a similar parallel screening analytical approach (Pan et al, 2018), 
serves as an example. Although knockout of every Mediator complex member is associated with impaired 
growth, we called fewer than half of the pairs of genes comprising the Mediator complex co-functional 
(Figure 5f). The network of co-functional gene edges describing the members of the Mediator complex in 
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fact mirrors the 3-dimensional structure and function of the complex; gene knockouts cluster by their 
topology, divided into head, middle, tail and effector module (Yin & Wang, 2014). We also summarized 
cell lines by running PCA on the matrix of cell lines by Mediator complex members and assigning the 
first PC score of each cell line as its “Mediator score”. This score integrates the 30 Mediator member 
knockout effect sizes into a single number reflecting the growth defect associated with Mediator loss of 
function. The Mediator score can predict the effect of knocking out arbitrary Mediator complex members 
(Figure 5g) but does so independently of protein domain-specific effects.  
 
Gene communities in the cancer cell network offer insight into cancer proliferative processes 
 
To examine the distribution of co-functionality genome-wide and nominate candidate core genes for 
cancer growth, we performed community detection to partition all genes into separate communities 
(Fortunato, 2010). Every gene was assigned to one of 2,857 separate communities, including 2,139 
singleton genes with no co-functional genes and 487 small communities with fewer than 8 genes. Because 
singleton and very small gene communities are information-poor and harbor few edges, we focused on the 
231 communities with at least 8 gene members (Figure 6a).  
 
We first enumerated the 719 COSMIC census genes in each community (Forbes et al, 2017) and found 
that the majority of gene communities (118 / 231) contained at least one census gene, illustrating the 
extreme diversity of pathways that cancers can manipulate to maximize cellular proliferation. However, 
certain gene communities possessed many more census genes than expected, including communities 
containing TP53, EGFR, KRAS, and BRAF. More than half of the clusters (117 / 231) were significantly 
enriched for at least one Gene Ontology term or KEGG pathway at a false discovery rate of 10%. 
 
The largest community we identified is densely connected (33% of all pairs connected) and encompasses 
numerous core essential processes identified by KEGG, including the spliceosome, the ribosome, the 
proteasome, cell cycle, RNA polymerase, and mismatch repair (Figure 6b). A smaller, even denser cluster 
(67% of all pairs connected) contains genes required for mitochondrial function and aerobic respiration. 
Genes lacking any pathway annotations for the most part were not enriched in any gene communities but 
were significantly dis-enriched in these core growth communities (Figure S4).  
 
Gene communities varied substantially in the breadth of their encapsulated functions. Some communities 
derived from specific cancer pathways, such as the community containing EGFR, which simultaneously 
captured signaling from related ErbB proteins and the role of cell adhesion and locomotion in EGFR-
dependent transformation (Figure 6c) (Lindsey & Langhans, 2015). Other clusters reflected very specific 
cell functions or compartments, as in the case of the peroxisome.  
 
With respect to the peroxisome community, 29 Gene Ontology terms were statistically enriched, ranging 
in size from 13 to 406 genes. Enriched gene sets primarily derived from peroxisomal transport and fatty 
acid metabolism. Although these are not conceptually similar pathways, they both relate to the core 
function of peroxisomes, which are variably essential across the cancer cell lines. In the context of cancer 
proliferation, abstracting fatty acid metabolism away from peroxisomal transport genes, as done in the 
Gene Ontology database, may ignore the reality that these processes are functionally inseparable.   
 
Another community (Figure 6d) contains the genes underlying hereditary multiple osteochondromas, a 
rare Mendelian disorder. These genes, EXT1 and EXT2, are known to act in the polymerization of the 
glycosaminoglycan heparan sulfate, a known cofactor for FGF signaling (Ornitz & Itoh, 2015). How 
EXT1 loss leads to cancer is poorly understood (Bovée, 2008); nonetheless, eight other known 
aminoglycan synthesis genes participate in the same gene community. Also present are fibroblast growth 
signaling genes FGFR1, FRS2, GRB2, NDST1 and PTPN11. One possibility is that every member of the 
aminoglycan synthesis pathway influences cancer proliferation by ultimately making heparan sulfate  
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Figure 6: Gene communities and network topology in cancer cell networks. a) Consolidation of genes 
into >200 communities using de novo community detection. COSMIC census genes frequently cluster in 
the same gene communities beyond expected by chance (in gold) but are otherwise widely dispersed 
throughout the network (in green). Nodes representing communities are sized by number of constituent 
genes. The largest community contains over 1000 core essential genes (labeled ‘Transcription & 
translation’). Select gene communities are labeled by enriched annotations and/or prominent cancer-
associated genes. b) Distribution of gene communities by mean knockout effect size of community 
members and co-functional edge density. ‘Respiration’ and ‘Transcription & translation’, from a) are both 
broadly essential and densely connected. c-d) Depictions of the EGFR and EXT1 gene communities. Size 
of the gene nodes reflects loading on the first principal component amongst community members. Gene 
symbols that are members of selected enriched gene ontology terms are labeled. 
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available to upregulate FGF pathways. If true, the number of genes that could potentially modify cancer 
proliferation via FGF signaling is much larger than currently appreciated, expanding from EXT1 and 
EXT2 to all aminoglycan synthesis genes. 
 
Gene network centrality adds another layer to gene function 
 
We next examined the network topology within and across gene communities. Because core growth genes 
would dominate strength or degree calculations for most genes, we quantified the centrality of every gene 
using the closeness of each gene within its prescribed community. The closeness of a gene is the 
reciprocal of the sum of the shortest distance via co-functional gene edges from that gene to every other 
gene in the network. By calculating this metric within communities, we attain a local centrality measure 
that gives insight into a diverse range of gene functions. 
 
As a measure of centrality in the cell network, closeness added information not captured by other gene 
properties such as essentiality or expression. Overall, COSMIC census genes did not differ in closeness 
compared to other genes (Wilcoxon rank-sum p > 0.05). Neither did they differ substantially in their 
average knockout growth phenotype. However, genes annotated as germline cancer genes scored much 
higher in closeness than somatic cancer genes (Figure 7a, Wilcoxon rank-sum p = 7e-9). In fact, gene 
closeness surpassed gene expression level or knockout growth phenotype in accuracy for ascertaining 
somatic from germline cancer genes (Figure 7b). Closeness was slightly greater for genes suspected to be 
subject to strong purifying selection via population genetic data (high pLI genes) (Lek et al, 2016), but 
high RNA expression level was more predictive of high pLI status than closeness (Figure S5a). We also 
observed that genes linked to unfavorable prognoses in cancer patients exhibited greater closeness in gene 
communities, but that genes linked to favorable prognoses did not (Figure 7c) (Uhlen et al, 2017). In all, 
we linked high closeness genes to oncogenes and germline cancer processes, complementing broad 
patterns of high expression and essentiality for cancer drivers. 
 
To summarize cancers by gene community activity, we again performed principal components analysis –
this time separately for each gene community (see methods) – and recorded the first PC score for each 
cell line. The first PC score reduces the dimensionality of the gene profiles from the size of the gene 
community down to a single number, which we term the community score. A potential benefit of scoring 
communities as opposed to individual genes is that the shared function of a gene community can be 
ascertained while avoiding the measurement noise or alternate signals associated with individual gene 
knockouts.  
 
We first explored how community score varied by cell lineage and confirmed that cancer cell lineages 
dependent on particular growth pathways were associated with extreme scores for the corresponding gene 
communities. For example, it was often possible to classify the lineage of glioblastoma, neuroblastoma, 
small cell lung cancer, melanoma, and pancreatic- and kidney-derived cancers by virtue of their especially 
extreme community scores (Figure S5b), a finding also reported by Kim, et al. Interestingly, we found 
that communities associated with cell lineage identity (see methods) were five times more likely to be 
enriched for COSMIC census genes than gene communities with no associations (Fisher exact test p = 4e-
6), consistent with the interpretation that cancers from different cell lineages target different central 
growth pathways to maximize growth.  
 
Diversity of cell line panel expands the scope of detectable cell signaling paradigms 
 
In some cases, cell lines of a specific lineage and mutational background are required to uncover cancer-
relevant growth pathways. The gene community containing the tumor suppressors NF1 and SPRED1 
illustrates this phenomenon (Figure S5c). In the germline, one NF1 loss of function allele causes the 
Mendelian disorder Neurofibromatosis type 1 (Gutmann et al, 2017). Similarly, loss of function of  
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Figure 7: Topology and cell type specificity of cancer networks. a) Boxplot of closeness for genes 
annotated as germline cancer genes, somatic cancer genes, or both. b) ROC curve showing how centrality 
(measured by closeness in the gene community) separates germline from somatic cancer genes in the 
COSMIC gene census more accurately than either growth knockout phenotype or expression. c) Genes 
associated with unfavorable prognoses as found in the Human Protein Atlas Pathology database have 
greater closeness within gene communities, left. The same is not true for genes associated with favorable 
prognoses, right. d) NF1 gene community knockout phenotypes and the NF1 aggregate community score 
calculated from the first principal component of member genes shows that perturbation of the community 
by CRISPR knockout almost always occurs in NF1-WT glioblastoma cell lines but only rarely in other 
cancers. P < 0.05 for all within-glioma comparisons. e) KRAS community scores demonstrate that 
dependence on constitutively active (mutant) KRAS drives community organization, independent of cell 
lineage, but is uniformly present across pancreatic cancers. 
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SPRED1 causes Legius syndrome, which can be confused clinically with Neurofibromatosis type 1 (both 
genes act upstream of RAS signaling). In the panel of cell lines from Project Achilles, glioma cell lines 
consistently exhibit the largest effect sizes for community members NF1, SPRED1 and PDGFRA. Yet, 
even amongst glioma cell lines, only those that lack a pre-existing NF1 loss-of-function event exhibit 
large differences in sensitivity to gene knockout of community members (Figure 6d). The differences 
across these genes are well summarized by NF1 community scores, where glioma cell lines with intact 
NF1 consistently score above glioma cell lines with NF1 loss of function (Wilcoxon rank-sum p = 0.005).  
In the case of non-glioma cell lines, NF1 community scores rarely deviate from the mean and do not vary 
by NF1 mutation status (Wilcoxon rank-sum p > 0.05).  
 
While extreme community scores often occur in distinct cell lineages, sensitivity to perturbation of gene 
communities can often be accessed across multiple lineages. For example, the KRAS gene community is 
strongly associated with pancreatic and colorectal cancers, but also exhibits apparent activity in cell lines 
derived from other lineages. In general, it is apparent that extreme KRAS community scores indicate the 
presence of mutant, constitutively active KRAS (Figure 7e), with pancreatic and colorectal cancer very 
likely to acquire such mutations. In the Project Achilles panel, all pancreatic cancers harbor KRAS-
activating mutations, while ovarian cancers rarely do. This difference in mutational status explains the 
difference in KRAS community scores between pancreatic and ovarian cancers more accurately than cell 
lineage and stands in contrast to the NF1 gene community example where both a specific lineage and 
mutational status were required.  
 
Discussion 
 
This work demonstrates the power of unsupervised statistical techniques for correcting gene profiles 
constructed from parallel screening datasets. We show that technical confounding is pervasive across 
CRISPR knockout screens, but that highly active sgRNA libraries and extensive data preprocessing steps 
can expand the quantity and quality of interactions called from correlated gene profiles, whether or not 
interactions are mediated directly by protein-protein interactions (Figure 8). When screening for hit genes 
that modify a phenotype of interest, it is already considered best practice for sgRNA libraries to contain 
“safe-targeting” sgRNAs that target non-genic regions to correct for the toxic effects of DNA cleavage 
(Morgens et al, 2017). We provide evidence that sgRNA off-target effects can cause both false positive 
and false negative ascertaining genetic interactions, and, by exploiting a set of control genes with a very 
low prior of having an effect on the screen phenotype, we can correct these confounding signatures. In the 
future, more comprehensive sets of control sgRNAs may further improve modeling of confounding across 
genomic regions of variable copy number, sequence content and chromatin accessibility.  
 
Although some biological pathways can be readily detected using a relatively small number of genetic 
screens for cancer growth, a comprehensive mapping of cell networks will require much more diverse 
panels of screens. In multiple cases, we found cancer pathways that were active only in specific cell 
lineages or mutational backgrounds. Amongst screens currently available, inhibitory relationships among 
genes are only rarely detected. Finally, gene knockouts that lack a growth phenotype in the available cell 
lines cannot be incorporated into cell networks at all. These findings argue for collecting screen data for 
samples of cells with diverse mutational and cell lineage backgrounds and across diverse screening 
conditions, including activating (CRISPRa) screens that might improve detection of antagonistic gene 
pairs. Parallel screens in the same cell lines for cancer phenotypes other than growth, such as invasiveness 
or cell size, would complement existing data on proliferation, but screening other phenotypes, such as 
phagocytosis or sensitivity to oxidative stress, offers a way to improve the richness of sparse gene 
profiles. As more screening data become available that differ by screening phenotype, lab, manner of 
perturbation (CRISPRi/a, base editing, inducible systems), and sgRNA library, quality control for parallel 
screening techniques will become increasingly critical. 
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Figure 8: Co-functional gene relationships. Co-functionality learned from correlations between 
corrected gene essentiality profiles broadly extends to gene-gene relationships from physical interactions 
like ligand-receptor interactions, co-complex formation, or post-translational modification to conceptual 
relationships like gene regulation and shared metabolic pathways. 
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Maps of cancer cell networks drawn using co-functional interactions are assuredly detailed, but parallel 
screening approaches come with distinct limitations. First, the co-functional interactions we report 
obscure the distinction between direct and indirect interactions as well as the directionality of information 
flow in signaling processes. De novo methods to call gene communities might cluster genes into a smaller 
set of modules, but the manner by which genes in the same module work together remains difficult to 
infer. One open question specific to the field of parallel screening is whether interactions identified by 
double knockout screens, particularly synthetic interactions, can be predicted from co-functional 
interactions identified in data collected from other cell lines. Also unknown is the extent to which gene 
communities learned from one phenotype are the same communities underlying other phenotypes. Yet, 
information theoretic models and orthogonal genome-wide profiling data (RNA-seq, ATAC-seq) promise 
to expand what can be learned from genome-wide perturbation data. In spite of their limitations, genome-
wide perturbations remain a powerful tool for comprehensively unpacking the logic of cell networks. 
 
Materials and Methods 
 
Calling co-functional interactions from CRISPR screening data 
 
Project Achilles gene level effect sizes, the list of 217 highly expressed genes from Hart, et al., and 
sgRNA sequences were downloaded from Meyers et al.’s data depository 
(https://figshare.com/articles/_/5520160) for further processing.  
 
To correct cell line-specific Cas9 toxicity, nonspecific cell line signatures were generated from olfactory 
receptor gene essentiality profiles. The HGNC olfactory receptor gene list was downloaded from the 
HGNC website (https://www.genenames.org/cgi-bin/genefamilies/set/141). The full list of olfactory 
receptor gene symbols was intersected with gene symbols present in the gene level statistics. Some 
sgRNA sequences were not unique amongst olfactory receptors; in these cases, one olfactory receptor was 
selected at random and any olfactory receptors with duplicate sgRNA were discarded. The resulting 
matrix of 250 olfactory receptors by 342 cell lines was transposed and subjected to PCA using the prcomp 
function in R. The same procedure was applied to 100 permutations of the same matrix by shuffling effect 
sizes within columns (cell lines). For the first four PCs, the proportion of variance explained per PC for 
the true matrix exceeded that of all permutations and were deemed signatures of nonspecific toxicity. 
 
Gene essentiality profiles were projected onto the principal components identified as nonspecific and 
converted back to the original dimension via matrix multiplication, and the difference of matrices was 
taken as a set of corrected gene essentiality profiles.  
 
In contrast to the original, frequently positively correlated gene essentiality profiles, correlations among 
corrected gene essentiality profiles for olfactory receptors resembled a normal distribution centered at 
zero. A null distribution was created with mean 0 and standard deviation equal to the square root of the 
mean squared effect size (Figure 2d). P-values were assigned to all human gene pairs using this normal 
distribution via the pnorm function in R, and hits at a 10% FDR were identified as co-functional 
interactions.  
 
Using the same correlation cutoff for gene essentiality profiles, co-essential gene hits were compared to 
co-functional genes within three sets of genes: Gene Ontology ‘spliceosomal complex assembly’ genes (a 
category with surprisingly few correlated gene essentiality profiles), Gene Ontology ‘peroxisomal 
transport’ genes (a well circumscribed set of co-essential genes) and olfactory receptor genes with co-
functional degree of 15 or greater. In general, the number of co-functional interactions, or degree, varied 
considerably across all genes. Highly expressed essential genes were confirmed as being greatly enriched 
among genes with very high degree (Figure 2e). 
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Predicting shared lineage and primary disease from cell line signatures  
 
Cell line profiles were taken from the transpose of the corrected gene essentiality profile matrix and pairs 
of cell lines were labeled as deriving or not deriving from the same cell lineage. This created 342 choose 
2 observations of 0 (different lineage) and 1 (same lineage). The same was done for primary disease. 
ROC plots and AUC values on using correlation between cell line profiles to detect lineage or primary 
disease identity were calculated using the ROCR R package. The higher the accuracy, the better gene 
profiles are able to expose differences across cell types in biological pathway dependence. 
 
TP53 and BRAF co-functionality heatmaps 
 
Germline-filtered mutation data, including for TP53 and BRAF, and drug sensitivity data was 
downloaded from the CCLE portal (https://portals.broadinstitute.org/ccle/data). For TP53, all cell lines 
with a protein-coding or splice mutation were labeled loss of function mutants. For BRAF, cell lines with 
a V600E protein change were labeled V600E lines. Binarized drug sensitivity to either Nutlin-3 or 
PLX4720 followed from k-means clustering on the Amax values with k set to 2 to separate two groups of 
resistant and sensitive.  
 
The top 9 genes co-functional to either TP53 or BRAF were visualized in the heatmap using the R 
package ComplexHeatmap. Corrected gene essentiality profiles (rows) were divided by their 
corresponding standard deviation to normalize the heat scale. The distance metric for genes (rows) was 
magnitude of Pearson correlation. For cell lines (columns), signed Pearson correlation was used. 
Accompanying scatterplots show the unnormalized gene knockout effect sizes with a linear fit trend line. 
 
Drug-gene network and associations 
 
The reported Amax values were used as measures of drug efficacy for all cell lines. Drug phenotypes 
were then correlated with gene knockout effect sizes for all drugs across all genes. For network 
visualization (Figure 4d), the four genes with the largest magnitude correlation in either direction were 
selected. For all drug-gene associations (Figure 4e), hits were called for correlation p-values meeting a 
10% FDR cutoff. Amongst these, a positive correlation between a gene and a drug denotes that cell line 
growth impairment after gene knockout is associated with greater growth impairment upon drug 
treatment. This is expected when the same oncogenic pathway is targeted by the drug as by then gene 
knockout. A negative correlation denotes that cell line growth following gene knockout is associated with 
greater growth impairment upon drug treatment. This is expected for tumor suppressor-drug pairs wherein 
the pathway the drug inhibits is negatively regulated by the tumor suppressor, as with Nutlin-3 and TP53. 
Only genes with at least one drug-gene association were visualized. 
 
Gene set enrichment comparisons 
 
Curated gene sets derived from Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes were 
downloaded from the MSigDB website, version 6.1 (https://software.broadinstitute.org/gsea/msigdb/). All 
pairs of human genes were assessed for co-annotation by any ontology term. Aggregate enrichment of 
functional genes for these co-annotated gene pairs (Figure 5a) was calculated as  
 
log2( (efc / ec) / (ef / e) ) 
 
Where efc is the number of gene pairs that are both co-functional and co-annotated, ec is the number of 
gene pairs that are co-annotated, ef is the number of gene pairs that are co-functional, and e is the number 
of total gene pairs. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/369751doi: bioRxiv preprint 

https://doi.org/10.1101/369751
http://creativecommons.org/licenses/by/4.0/


	 21 

 
Several gene sets consist primarily of essential genes with large numbers of co-functional gene edges. 
Under these conditions, it is possible for a small number of genes or pathways with a large enrichment of 
co-functional gene edges to underlie a genome-wide enrichment, even if most pathways contain few or no 
co-functional genes. To estimate the number of gene sets contributing to the aggregate enrichment, we 
first filtered out gene sets with under 5 co-functional gene edges. These low-signal, sparsely connected 
gene sets are in some cases statistically enriched but would have limited use in interpreting or modeling 
of genome-wide networks. The remaining gene sets spanned slightly under half of GO biological process 
and molecular function gene sets and approximately 70% of GO cellular component and KEGG pathway 
sets.  
 
Genes in the dataset were then placed into one of 100 bins based on their degree in the co-functional gene 
network. For each gene set, new, random gene sets were constructed such that each gene was replaced by 
a random gene from the same degree bin. The number of edges in the corresponding random subgraphs of 
the genome-wide network were calculated to serve as an empirical null distribution. If the random gene 
sets never reached the number of edges seen in a true gene set, a p-value of 0.5 / (# permutations) was 
assigned to the gene set. Significantly enriched gene sets were called at a false discovery rate of 5%. We 
found that over 75% of the remaining GO biological process and molecular function terms exhibited more 
edges than expected, and more than 90% of the remaining GO cellular component and KEGG pathways.  
 
Genetic interaction and protein complex comparisons 
 
Protein-protein and genetic interaction data was downloaded from the STRING v10.5 website (detailed 
and action files, https://string-db.org/cgi/download.pl). Distances between gene pairs were calculated 
using the distances function from the igraph R package. The rate at which co-functional interactions were 
called per path length was calculated as (# co-functional interactions) divided by (# total gene pairs). 
 
CORUM core complexes were downloaded from the CORUM website (http://mips.helmholtz-
muenchen.de/corum/#download). A dataset of protein complex edges was created by enumerating all 
pairs of genes that were members of the same human protein complex. Across all such edges, 50.1% were 
called as co-functional. The expected binomial distribution per complex (Figure 5d,e) was calculated 
using the dbinom function in R, and 90% confidence intervals were calculated using qbinom. 
 
To calculate Mediator gene loadings and cell line PC scores, PCA was performed on the corrected gene 
essentiality profiles of Mediator complex members across 342 cell lines with the prcomp function in R. 
With genes as features, the mean effect size of each gene was subtracted to estimate the covariance across 
genes. All loadings for the first principal component were positive, meaning all Mediator complex 
members covaried in the same direction, and the magnitude of the loading was taken as the relative 
weight for estimating the function of the entire complex. 
 
Community-centric analysis of the cancer cell network 
 
Co-functional gene edges were analyzed using the igraph package in R. Distances between two genes a 
and b were weighted by 1 – abs(cor(gene a, gene b)) and the edge width was scaled to abs(cor(gene a, 
gene b)). Communities were called using the cluster_infomap function. The edge density of each 
community was calculated by constructing a subgraph from the community members and calling the 
edge_density function. In order to prevent core essential genes from influencing measures of centrality, 
closeness was calculated for each gene locally by calling the closeness function on the community 
subgraphs. The gene community network plot (Figure 6a) was visualized by creating a new graph of 
communities as nodes. Node area was made proportional to the number of genes in the community by 
scaling the size parameter to the square root of the number of genes. For gene communities with greater 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2018. ; https://doi.org/10.1101/369751doi: bioRxiv preprint 

https://doi.org/10.1101/369751
http://creativecommons.org/licenses/by/4.0/


	22 

than 100 genes, the community was discarded if more than 50% of the community’s genes laid on the 
same chromosome. Edges were drawn between communities if the edge frequency between them 
surpassed the genome-wide average of 0.65% with width scaled to edge frequency.   
 
Communities were annotated both by the number of members that were COSMIC cancer census genes 
(https://cancer.sanger.ac.uk/census) and enrichment in KEGG and Gene Ontology gene sets as determined 
by the ClusterProfiler R package. Enrichment of COSMIC census genes was determined by binomial test 
with probability of success equal to the total number of COSMIC census genes divided by the number of 
genes in the network and a false discovery rate cut-off of 10%. Enrichment of uncharacterized genes in 
gene clusters was determined similarly (Figure S4), where an uncharacterized gene was defined as any 
gene lacking a Gene Ontology biological process annotation. To understand which biological processes 
were sparsely connected and poorly represented (Figure S3a), communities with fewer than 8 members 
were analyzed using gene set enrichment.  
 
The importance of the local closeness measure was first evaluated using the Human Protein Atlas 
pathology data (https://www.proteinatlas.org/about/download). For both favorable and unfavorable 
prognoses, genes were divided into four tiers: prognostic for 0, 1, 2, or 3+ cancer types. The Wilcoxon 
rank sums test was used to compare local closeness across tiers (Figure 7c). Prediction of germline How 
probability of loss-of-function intolerance (pLI) scores varied by closeness was also tested 
(http://exac.broadinstitute.org/downloads , file 
“fordist_cleaned_exac_r03_march16_z_pli_rec_null_data.txt”), but was weakly predictive compared to 
gene expression (Figure S4a). 
 
Gene community scores 
 
Gene communities were processed by performing PCA on the transpose of the corrected gene essentiality 
profile matrix and recording the first principal component, as performed on the Mediator complex. Cell 
lines were scored by their first principal component score. Cell lines with large scores are interpreted as 
the drivers of the gene community. To examine cancer lineage and mutation status contributions to the 
NF1 gene community (Figure 7d), community scores were aggregated by whether the cell lineage was 
glioma and whether the cell line possessed a non-silent mutation in NF1. To examine cancer lineage and 
mutation status contribution to the KRAS gene community (Figure 7e), community scores were 
aggregated by every lineage with more than 5 samples and whether the cell line possessed a missense 
mutation in KRAS. Significance of cell lineage contributions across all communities (Figure S5b) was 
determined by permuting cell lineage labels and calculating mean community scores per cell lineage to 
generate a null distribution. Cell lineages that had more extreme scores than expected were called at a 1% 
FDR cutoff. The gene communities with the thirty most significant associations were visualized. 
 
Co-functional interaction examples 
 
The chromosome idiogram in the gene regulation example was downloaded from the Human Genome 
Idiogram Vector Art library (https://github.com/RCollins13/HumanIdiogramLibrary). The chromosome 
17 idiogram ai file was chosen for illustration. 
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Supplemental figures 

 
Figure S1: Characterization of the correction for gene essentiality profiles. a) PCA on olfactory 
receptors identifies 4 significant principal components by permutation. 68% of the variation is explained 
by the first principal component. b) The rate of calling co-functional gene pairs varies by chromosome 
and physical distance. c) Area under the receiver operating characteristic (ROC) curve for detecting two 
samples of the same primary disease. d) The empirical distributions of cell line profile pairwise 
correlations before and after regressing the four principal components from a) differ in mean.  
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Figure S2: Drug-gene network. Drugs and their most correlated genes by corrected gene essentiality 
profiles. Correlations between gene profiles and drug profiles across cell lines creates biologically 
meaningful clusters for drug targets such as ErbB family members and MAPK pathways. 
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Figure S3: Properties of the co-functional gene network with respect to gene annotation databases. 
a) Enrichment of disconnected genes in the network across Gene Ontology Biological Process gene sets 
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highlights terms specifying tissue differentiation and development. b) Co-functionality rates binned by 
both STRING interaction type and confidence level. “xferred” (transferred) reflects associations mapped 
from non-human organisms. c) Co-functionality rates for genetic interactions annotated with a detailed 
interaction type in STRING, as in a). d) Percent of co-functional gene edges that derived from negatively 
correlated corrected gene essentiality profiles, binned as in c). e) Density of pairs of genes participating in 
CORUM core complexes by mean knockout phenotype of each gene. Gene pairs that are not called as co-
functional are on the left, validated gene pairs are on the right. Gene pairs with no growth deficit upon 
knockout are generally not called as co-functional.   
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Figure S4: Uncharacterized genes in the cancer cell network. Volcano plot of uncharacterized gene 
enrichment in gene communities. Gold nodes are gene communities containing more COSMIC cancer 
census genes than expected by random assortment. Green nodes are gene communities containing at least 
one COSMIC cancer census gene.   
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Figure S5: Variation in topology and cell type specificity of gene communities. a) ROC curve 
showing that loss of function-intolerant (high pLI) genes are distinguished by high expression and only 
weakly by growth knockout phenotype and network topology. b) Community scores calculated de novo 
from the co-functionality network often describe cell-type specific cancer regulation, especially true for 
gene communities enriched for COSMIC census genes (in gold). c) Full depiction of the NF1 gene 
community. Size of the gene nodes reflects loading on the first principal component amongst community 
members. 
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