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Abstract 14 
Micro-Tissue Engineered Neural Networks (Micro-TENNs) are living three-dimensional 15 
constructs designed to replicate the neuroanatomy of white matter pathways in the brain, and 16 
are being developed as implantable microtissue for axon tract reconstruction or as anatomically-17 
relevant in vitro experimental platforms. Micro-TENNs are composed of discrete neuronal 18 
aggregates connected by bundles of long-projecting axonal tracts within miniature tubular 19 
hydrogels. In order to help design and optimize micro-TENN performance, we have created a 20 
new computational model including geometric and functional properties. The model is built upon 21 
the three-dimensional diffusion equation and incorporates large-scale uni- and bi-directional 22 
growth that simulates realistic neuron morphologies. The model captures unique features of 3D 23 
axonal tract development that are not apparent in planar outgrowth, and may be insightful for 24 
how white matter pathways form during brain development. The processes of axonal outgrowth, 25 
branching, turning and aggregation/bundling from each neuron are described through functions 26 
built on concentration equations and growth time distributed across the growth segments. Once 27 
developed we conducted multiple parametric studies to explore the applicability of the method 28 
and conducted preliminary validation via comparisons to experimentally grown micro-TENNs for 29 
a range of growth conditions. Using this framework, this model can be applied to study micro-30 
TENN growth processes and functional characteristics using spiking network or compartmental 31 
network modeling. This model may be applied to improve our understanding of axonal tract 32 
development and functionality, as well as to optimize the fabrication of implantable tissue 33 
engineered brain pathways for nervous system reconstruction and/or modulation. 34 

Introduction  35 
Various neural tissue engineering tools have been created to model and study the development 36 
of neuronal networks in vitro. Among them are micro-tissue engineered neural networks (micro-37 
TENNs), which are three-dimensional (3D) living constructs comprised of long-projecting axonal 38 
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tracts and discrete neuronal populations within a microscopic, hollow hydrogel cylinder 39 
(microcolumn) filled with an extracellular matrix (ECM) [1]. Preformed clusters of neuronal cell 40 
bodies (aggregates) are housed at one or both ends of the microcolumn, with axons growing 41 
longitudinally through the hydrogel lumen (Figure 1). This segregation of long axonal tracts and 42 
neuronal cell bodies approximates the network architecture of the central nervous system by 43 
replicating the anatomy of gray matter and white matter pathways referred to as the 44 
“connectome”. Micro-TENNs may be fabricated with a range of neuronal subtypes and physical 45 
properties, yielding a controllable yet biofidelic microenvironment for studying 3D neural 46 
networks in vitro. As such, micro-TENNs are being developed in parallel as (1) self-contained, 47 
bioengineered implants to reconstruct compromised pathways in the brain, and (2) biofidelic 48 
test-beds for studying various neuronal phenomena (e.g. growth, synaptic integration, circuit 49 
development, pathological responses) [1]–[5]. Towards the former, prior work has shown that 50 
micro-TENNs are capable of survival, maintenance of architecture, neurite outgrowth, and 51 
host/implant synaptic integration out to at least 1 month following implant in adult rats [3]–[6].  52 

 53 
To advance micro-TENNs’ capabilities as an in vitro test-bed and/or to rebuild the damaged 54 
connectome, one of our design goals is to develop a computational platform that can be used to 55 
design and optimize micro-TENNs for specific performance goals. To be able to investigate 56 
neuronal growth, neurite extension, and the formation of synaptic connectivity at the distal ends, 57 
we need a simulation framework that can generate large-scale unidirectional and bidirectional 58 
axonal outgrowth with realistic neuron morphologies. The applications of this computational 59 
framework in micro-TENNs include: (i) study processes involved in outgrowth and structural 60 
integration in 3D microenvironments; (ii) aid in the design and  optimization of functional 61 
characteristics and predict performance (e.g., output for a given input); (iii) simulate detailed 62 
neuron morphologies and anatomically-relevant neuronal-axonal networks to study 63 
connectome-level functional connectivity via spiking or compartmental network modeling. 64 
Combining the anatomical simulation results and the study of functional connectivity will 65 
increase our ability to understand and predict the neurophysiological characteristics and 66 
network-level activity in the micro-TENNs.  67 
 68 
There are two major approaches to simulate neuronal development: construction algorithms and 69 
biologically-inspired growth processes [7]. Construction algorithms aim to reproduce the shape 70 
of real dendritic trees from distributions of shape parameters [8], [9]. However, this approach 71 
lacks the insight into any underlying biophysical mechanisms, such as the influences on 72 
morphological development caused by different neuronal types [10], a neuron’s intracellular 73 
environment and interaction with other neurons. Stochastic growth models, which provide a 74 
description of the growth process based on probabilistic growing events [11]–[14], is a popular 75 
approach under construction algorithms. Biologically-inspired growth processes are based on a 76 
description of the underlying biophysical mechanisms of the dendritic development [10], [15], 77 
[16]. The studies were conducted within various aspects of development, such as cell migration 78 
[17], neurite extension [18], growth cone steering [19], [20] and synapse formation [21].  79 
 80 
 81 
In this paper, we present an ad-hoc growth model built upon the diffusion principle, which 82 
incorporates the stochastic process to reproduce the shape of micro-TENNs tissue. In that 83 
sense it belongs to the construction algorithms, however it does not rely on experimentally 84 
determined shape parameters. Our approach uses the 3D diffusion equation imposed with 85 
various rules for individual neuronal growth, such as the actions of neurite extension, branching, 86 
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turning and aggregation/bundling. The concentration gradients guide the development of the 87 
axonal and dendritic neurites and describe the competition for resources between different 88 
growth tips of individual dendrites or axons. 89 

 90 

 91 

Methods 92 

Micro-TENN Fabrication and Experimental Measurements 93 
Micro-TENNs were generated as previously described [4]. Briefly, agarose (3% w/v) was cast in 94 
a custom-designed acrylic mold to yield microcolumns with an outer diameter of 345 or 398 µm 95 
and inner diameter of 180 µm. Microcolumns were UV-sterilized and cut to a specified length 96 
before the lumen was filled with an ECM comprised of rat tail collagen 1 (1 mg/mL) and mouse 97 
laminin (1 mg/mL) adjusted to a pH of 7.2-7.4 (Reagent Proteins, San Diego, CA). To create the 98 
neuronal aggregates, embryonic day 18 (E18) cortical neurons were isolated from rodents and 99 
dissociated. The resultant single-cell suspensions were added to custom PDMS pyramidal wells 100 
and centrifuged at 200 x g for 5 minutes to force the cells into spheroidal aggregates. Following 101 

Figure 1. Micro-TENNs as living, 3D neuronal-axonal constructs. (A) Micro-TENNs are fabricated in a three-step 
process. Neurons are isolated and forced into spherical aggregates via gentle centrifugation (top). Simultaneously, single-
channel microcolumns are cast from hydrogel to a predetermined inner and outer diameter and filled with an extracellular 
matrix (ECM) comprised of collagen and laminin (bottom). Next, ECM-filled microcolumns are seeded with either 1 aggregate 
or 2 aggregates to form either unidirectional or bidirectional micro-TENNs, respectively. Micro-TENNs are then grown in vitro. 
(B) Phase microscopy image of a unidirectional, GFP-positive micro-TENN at 5 days in vitro (DIV). (C-F) Confocal 
micrograph of same micro-TENN from (B). Axons can be seen projecting from the neuronal aggregate (D) and extending 
through the ECM-filled microcolumn (E, F). (G) Phase micrograph of a bidirectional micro-TENN at 5 DIV. The two 
aggregates have been individually transduced to express GFP (left) and mCherry (right), allowing for identification and 
monitoring of aggregate-specific processes. (H-K) Confocal micrograph of the micro-TENN from (G), showing axons 
projecting from each aggregate (I, K) and growing along each other (J). Scale bars: 100 µm. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2018. ; https://doi.org/10.1101/369843doi: bioRxiv preprint 

https://doi.org/10.1101/369843
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

24h incubation at 37˚C/5% CO2, aggregates were seeded within the microcolumns to generate 102 
unidirectional (with one aggregate) and bidirectional (with one aggregate at each end) micro-103 
TENNs. Micro-TENNs were then grown at 37˚C/5% CO2 with half-media changes every 48 104 
hours. To fluorescently label aggregates, adeno-associated virus 1 (AAV1) was sourced from 105 
the Penn Vector Core (Philadelphia, PA), packaged with the human synapsin 1 promoter and 106 
either green fluorescent protein (GFP) or the red fluorescent protein mCherry, and added to the 107 
pyramidal wells containing the aggregates (final titer: ~3x1010). Aggregates were kept at 37˚C, 108 
5% CO2 overnight before being seeded in micro-columns as described. 109 

During the design and early development of the model, unidirectional and bidirectional micro-110 
TENNs were generated with approximately 15-30E3 neurons per aggregate and lengths ranging 111 
from 2.0-9.0mm (n = 39), with growth rates analyzed as described [5]. To identify aggregate-112 
specific axons over time, a set of 3.0mm-long, bidirectional “dual-color” micro-TENNs were 113 
simultaneously generated such that one aggregate expressed green fluorescent protein (GFP) 114 
while the opposing aggregate expressed mCherry (n = 6). Finally, for quantitative validation of 115 
the growth model, 2.0mm-long, unidirectional micro-TENNs were transduced to express GFP 116 
and generated with approximately 20E3 neurons per aggregate (n = 6) or 8.0E3 neurons per 117 
aggregate (n = 6) for characterization as described below. Micro-TENNs were imaged under 118 
phase contrast microscopy (magnification: 10x) at 1, 3, 5, 8, and 10 days in vitro (DIV) using a 119 
Nikon Eclipse Ti-S microscope paired with a QIClick camera and NIS Elements BR 4.13.00 120 
(National Instruments). In addition to phase contrast microscopy, the bidirectional dual-color 121 
micro-TENNs were imaged at 1, 2, 3, 5, and 7 DIV using a Nikon A1RSI Laser Scanning 122 
confocal microscope paired with NIS Elements AR 4.50.00.  123 

To quantify micro-TENN growth rates over time, the longest identifiable axons were measured 124 
from phase images at each DIV using ImageJ (National Institutes of Health, MD). Lengths were 125 
measured from the leading edge of the source aggregate (identified at 1 DIV) to the neurite tip, 126 
and growth was measured until axons from the aggregate either spanned the micro-TENN 127 
length (unidirectional) or began to grow along axons from the opposing aggregate 128 
(bidirectional). Growth rates were averaged at each timepoint to obtain a growth profile for 129 
unidirectional micro-TENNs with 20E3 and 8.0E3 neurons/aggregate. The peak growth rates for 130 
each group were compared using an unpaired t-test, with p < 0.05 set as the baseline for 131 
statistical significance.  132 

To characterize axonal density with respect to cell count, phase images of unidirectional micro-133 
TENNs with either 20E3 (n = 6) or 8.0E3 (n = 6) neurons/aggregate at 5 DIV were imported into 134 
ImageJ. 10-µm long rectangular regions of interest (ROIs) spanning the inner diameter (final 135 
ROI dimensions: 180 µm x 10 µm) were taken at 50% and 75% of the micro-TENN lengths. The 136 
axon density at these two locations was quantified as the percentage of the ROI populated by 137 
axons. Densities were averaged for the 20E3 and 8.0E3 groups and compared at each location 138 
via unpaired t-test with p < 0.05 as the baseline for significance. All data presented as mean ± 139 
s.e.m. 140 

To characterize axon distribution, unidirectional micro-TENNs were fabricated and labeled with 141 
GFP (n = 5). At 10 DIV, micro-TENNs were gently drawn into a 22-gauge needle and vertically 142 
injected into a block of “brain phantom” agarose (0.6% w/v). Micro-TENNs were injected such 143 
that the aggregate was ventral with axon tracts projecting downward. Post-injection, micro-144 
TENNs were imaged on a Nikon A1RMP+ multiphoton confocal microscope paired with NIS 145 
Elements AR 4.60.00 and a 16x immersion objective. Micro-TENNs were imaged with a 960-nm 146 
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laser, with sequential 1.2µm-thick slices taken along the longitudinal axis (i.e. X-Y projections 147 
along the micro-TENN length). Post-imaging, the X-Y projections were used to generate a 3D 148 
reconstruction of the micro-TENN; cell bodies, axon bundles, and single axons were then 149 
manually identified via co-registration of the X-Y projections and 3D structure.  150 

Computational Model Development 151 
The elongation and the growth direction of the neurites in the model is guided by concentration 152 
gradients. Each tip of each neuron is a diffusion source in free space. The bifurcation of the 153 
neurites is assumed to be a stochastic process, i.e. branching is associated with a time 154 
dependent probability function at each node. This framework aims to emulate the growth and 155 
bifurcation of micro-TENN neurons, however by using simple diffusion principles, it avoids the 156 
underlying biological complexity. All of the tips of the neurite tree are assumed to participate in 157 
the extension and branching process. Furthermore, extension and branching of each node are 158 
modeled as independent processes. This has computational advantages such as improved 159 
speed and ability to parallelize on a large scale. 160 

The model uses continuous space/discrete time approach to allow freedom in the outgrowth 161 
direction and elongation. Space is bounded by the inner diameter of the hydrogel micro-column. 162 
The diameter and length of the tubular hydrogels, 180 µm and 2 mm respectively, are based on 163 
experiments previously performed by the Cullen Lab [1], [3]. In the micro-TENNs, axonal 164 
extension was measured approximately every two days; as such, the size of the fixed time 165 
interval of the model is 1% of this two-day interval (i.e. 28.8 minutes). In each time step, each 166 
individual axonal tip may (i) extend, (ii) bifurcate into two daughter branches and (iii) change 167 
growth direction. In the present implementation, the model uses fixed time steps with functions 168 
built upon the diffusion equation and concentration gradients for extension, turning, and 169 
branching. The model is developed with the condition that extension rate and turning direction 170 
depend on the concentration gradients at the terminal segment of each axon. The extension 171 
rate decreases exponentially to zero value [12] as the neurites stop growing due to the limitation 172 
of space and essential biochemical factors [14]. Branching probabilities are growing as a 173 
function of the simulation time.  174 

 175 

Modeling Setup: Diffusion Equation and Concentration Gradient 176 
Many stochastic models of neuronal activity are based on the theory of diffusion processes [22]. 177 
Several models have been developed to describe the growth of single neurons using the theory 178 
of one-dimensional stochastic diffusion [23]–[27].  179 

In our bidirectional growth model, the tips of the neurons are diffusion sources in free space, 180 
assuming a constant isotropic diffusion coefficient. The governing equation is: 181 

𝐷∇#𝐶 = &'
&(

 ,           (1) 182 

where 𝐷	is the diffusion coefficient (𝑚𝑚,/𝑠), 𝐶 is the concentration	(𝑚𝑜𝑙/𝑚𝑚,), and 𝑡 is time 183 
(s). In Cartesian coordinates the partial differential equation becomes:  184 

𝐷 3	&
4'

&54
+ &4'

&74
+ &4'

&84
9 = &'

&(
          (2) 185 
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with boundary conditions: 186 
 187 
𝐶|;,=,>→@ = 0           (3) 188 
 189 
&'
&;
|;→@ = 0,			 &'

&=
|=→@ = 0,				 &'

&>
|>→@ = 0        (4) 190 

∫ ∫ ∫ 𝐶(𝑥, 𝑦, 𝑧, 𝑡)@
F@ 𝑑𝑥𝑟 𝑑𝑦 𝑑𝑧@

F@
@
F@ = 𝑀       (5) 191 

𝑀 is the initial amount of matter	(𝑚𝑜𝑙). Without loss of generalization, we can choose 𝑀 = 1 for 192 
convenience. The initial condition for a point source (𝑋L, 𝑌L, 𝑍L) inside the shell is: 193 

𝐶(𝑡 = 0) = 𝛿(𝑋 − 𝑋L)𝛿(𝑌 − 𝑌L)𝛿(𝑍 − 𝑍L),       (6) 194 

where 𝛿(𝑋) is Dirac’s delta function.   195 

Thus, the general solution of the diffusion equation becomes: 196 

𝐶(𝑥, 𝑦, 𝑧, 𝑡) = Q R

(ST(U)
V
4
W Q	𝑒FY

Z4

[\]^
_4

[\]^
`4

[\]aW      (7) 197 

Direction of Neurite Outgrowth 198 
The outgrowth of neurites is a complex process that is far from fully understood. In actual 199 
biological processes, the outgrowth direction of neurites depends on many intracellular and 200 
extracellular cues, which may cause large fluctuations in outgrowth directions [28], [29].  201 

Our model is a Markov process: it assumes that the new outgrowth direction depends on the 202 
previous outgrowth direction and on the concentration gradients of the growth tips. For each 203 
growth tip, the concentration gradients are normalized to preserve the Markovian nature of the 204 
model.  205 

The outgrowth direction is:  206 

𝐷# = 𝐷R + 𝑆R𝛻𝐶 + 𝑆#𝐸R,          (8) 207 

where 𝑆R is the sensitivity to concentration gradients, 𝑆# is the sensitivity to the direction 208 
perturbation, 𝐷R	is the previous direction vector, 𝛻𝐶 is the normalized concentration gradient, 209 
and 𝐸R is the stochastic direction perturbation term.   210 

Besides the gradients, a stochastic term 𝐸R in Equation 8 is introduced to cause small 211 
fluctuations in the growth direction. Controlling this term in the simulation allows the control of 212 
the magnitude of deviation of the growth direction. Therefore, the component in the axial 213 
direction of the cylindrical tube has the largest value, while the components in the radial 214 
direction are relatively small. 215 

 216 
Rate of Neurite Extension 217 
The rate of extension of a neurite may vary considerably and is determined both by the external 218 
environment and by the internal state of the neurite [30]–[36]. In general, the extension rate 219 
decreases gradually with increasing distance from the soma [16]. In our model, the description 220 
of neurite extension rate follows the trend of experimental growth rate measured in 221 
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unidirectional micro-TENNs. In each time step, the elongation of a single neurite is represented 222 
by the function, 223 

𝐿 = 𝐴𝑡# 3𝑣Lhijk𝛻𝐶 + 𝑣L𝐸#9 2
F]m	         (9) 224 

𝑣Lhijk is the growth rate related to the gradients.	𝑣L is the base extension rate and 𝐸#	is random 225 
process to cause fluctuation in 𝑣L. 𝑡 is the simulation time, τ controls decreasing speed of the 226 
extension rate and A is a scaling factor.   227 

 228 
Growth Tip Position  229 
The coordinates at the next step of a growth tip are determined by the coordinates from the 230 
previous step, the outgrowth direction, and the extension rate. The new position in each time 231 
interval is given by 232 

𝑃# = 𝑃R + 𝐷#𝐿            (10) 233 

where 𝑃R is the current tip position. However, this tip migration position cannot be accepted until 234 
it satisfies the coordinate restrictions of radial constraint and overlap avoidance. 235 

   236 
Branching Probability, Rate of Branching, and Growth Rate After Branching  237 

Neurite branching patterns are complex and show a large degree of variation in their shapes . 238 
Random branching on the segment indeed results in large and characteristic variations in the 239 
structures of the tree. As previous research has highlighted [12], [37], branching is assumed to 240 
occur exclusively at terminal nodes. Our model describes branching as a stochastic process. 241 
For each time step, for each of the terminal nodes in the growing tree, a branching probability 𝑝q 242 
to form two new daughter nodes in a given time interval is assigned.     243 

The probability of a branching event at each given terminal node 𝑗 is given by:  244 

𝑝q = Q1 − 𝑒
F
]s]tu
mu W𝑃𝑏           (11) 245 

The time-dependent branching probability 𝑝q of a given terminal node	𝑗 is dependent on several 246 
terms: the steady state branching probability	𝑃𝑏(	𝑃𝑏|( =∞), simulation time 𝑡, the branching 247 
time step 𝑡wx, and a branching time constant 𝜏x. The equation assumes that the branching 248 
probability of terminal nodes per time step remains constant for all tips. Branching probabilities 249 
are growing with the total simulation time. Such a function was necessary to match the shape of 250 
increasing number of dendritic terminal nodes during outgrowth of the micro-TENNs. The 251 
stochastic process of branching is also restricted by another random value 𝐸,; branching could 252 
only occur when both 𝑝q and 𝐸, are greater than a certain value 𝐵.  The value of 𝐵 can be 253 
determined by the branching probability from experimental data. When a branching event takes 254 
place, two daughter terminal nodes are instantaneously added to the end of the existing 255 
terminal segment [38], which then becomes an intermediate segment.  256 

The growth rate of the generated trees is closely related with segment outgrowth direction and 257 
extension. We only consider the extension distance in the axis direction as the growth distance. 258 
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Thus, the growth rate is determined by the difference between the 𝑧	components of the nodes. 259 
In the model, we force the growth cones to extend preferentially in the axis direction and the 260 
turning is relatively small. Therefore, the segment extension rate is the strongest factor to 261 
determine the growth rate. An estimate of 𝑣L, and	𝜏 is obtained from the experimental growth 262 
rate. The optimization of the elongation parameters involves a comparison of the experimental 263 
and model segment extension rate.  264 
 265 
With the current implementation, the branching probability increases with simulation time. The 266 
steady-state branching probability 𝑃𝑏 and time constant 𝜏x	are supposed to be extracted from 267 
experimental images. By controlling the values the values of 𝑃𝑏 and 𝜏x, we have control over 268 
the morphology of the simulated neurites, since 𝑃𝑏 controls the branching density and 𝜏x,  269 
controls how early in the process branching begins. In the extreme case of 𝑃𝑏 = 0, we can 270 
generate a morphology with no branching. 271 

Radial Constraint 272 
Experimentally, micro-TENNs were grown within miniature tubular hydrogels. In the simulation, 273 
the outgrowth process is also restricted within the tubular space (in this particular case, 180 274 
micrometers in diameter [1], [3]), however the model allows different simulation radii to be 275 
employed. At each time step, the radial components of all the terminal nodes are tracked. If a 276 
radial component of a given node does not satisfy the tubular constraint, the node will be re-277 
oriented to stick on the tubular wall.   278 

Overlap Avoidance 279 
The branches and extensions of neighboring neurites often target a shared or adjacent position. 280 
All the neurites are competing for space and avoiding overlap. Space competing is achieved by 281 
the concentration gradients. Overlapping is avoided by checking the distance from the new 282 
position to the surrounding existing segment tips. The model re-orients the growth direction 283 
when the extend position is sufficiently close to others.  284 

Bundling and Helicity 285 
The model accommodates fiber bundling. This is achieved through an attraction term	𝐴, i.e. the 286 
new position in each time interval becomes: 287 

 𝐷# = 𝐷R + 𝑆R𝛻𝐶 + 𝑆#𝐸R + 𝑆,𝐴,                                                                                                   (12) 288 

where 𝑆, is a sensitivity to attraction (values between zero and one)  that controls the bundle 289 
formation. In order to construct the attraction term 𝐴, we introduce an attraction radius of 290 
influence (𝑅𝐼). Every tip that falls within the 𝑅𝐼 is attracted to the centroids of all the tips that are 291 
within the 𝑅𝐼. Larger values of 𝑅𝐼 lead to the formation of fewer bundles and vice versa. Thus, 292 
selection of different values of 𝑅𝐼 allows different morphologies with a different number of 293 
bundles. The model naturally provides an additional feature: tips belonging to a given bundle 294 
that fall outside of the 𝑅𝐼 at a given time step can form their own bundle, effectively allowing for 295 
a bundle to split. Such an effect is observed experimentally. 296 

Helicity is another feature that was introduced to the model aiming to reproduce observed 297 
experimental micro-TENN morphologies. Very often, single axons and axonal bundles once 298 
reaching the inner wall of the micro-column, form a helix. Our model allows control over both the 299 
slope of the helix formed by an axon (or axonal bundle), as well as its helicity (handedness). 300 
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Parameter Optimization 301 
Finding a best fit of the model-generated neuronal morphologies with an experimental data set 302 
requires an iterative comparison of experimental and model shape properties. In the search 303 
strategy, some parameters in the model are directly related to properties of the experimental 304 
data or images. For instance, the parameters 𝑣Lhijk, 𝑣L, and 𝜏 predict the growth rate in axis 305 
direction. The branching process governed by parameters	𝜏x, 𝑃 and 𝐵 fully determine the 306 
topological structure of the generated trees. These parameters are directly related to segment 307 
branching rate.  The time step is selected to be ∆𝑡 = 0.02	days. Since 𝑣L is extracted from the 308 
experimental data, the selection of the value of the diffusion coefficient 𝐷 is guided by the 309 
restriction: 310 
𝐷 ≤ R

#
��4

∆(
,           (13) 311 

where 𝐿L = 𝐿(𝑡 = 0) is the initial extension.  312 

Finally, the simulations were carried out on a laptop (Windows 10 Enterprise 64, Intel i7-313 
7700HQ CPU @ 2.80GHz, 2801 Mhz, 4 Cores, 16GB DDR3 RAM). All code with is freely 314 
available at: https://github.com/PSUCompBio/GrowthModel. 315 

Results 316 

Examples of Micro-TENNs Morphologies 317 
Variation of model parameters like sensitivity to attraction 𝑆, and radius of influence 𝑅𝐼 allows 318 
us to generate different morphologies. 𝑆, takes continuous values between zero and one, with 319 
𝑆, = 0 corresponding to no bundle formation and 𝑆, = 1 corresponding to tight bundle 320 
formation. 𝑅𝐼 controls the number of bundles formed. Figures 2, 3 and 4 demonstrate various 321 
unidirectional and bidirectional morphologies for different values of 𝑅𝐼 and 𝑆, for micro-TENNs 322 
seeded with 3000, 6500 and 10000 cells. 323 

 324 
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 327 

  328 

Figure 2. Example of unidirectional model-generated micro-TENN morphologies: (A) Twelve morphologies for 
micro-TENNs of length L=2000	𝜇𝑚 and radius R=180	𝜇𝑚, number of seeded cells 3000, 6500 and 10000, and 
RI=70, 80, 90 and 100	𝜇𝑚, respectively. 𝑆,=1 causes tight bundle formation. (B)  𝑆,=0 guarantees no bundle 
formation. 
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                                                                         330 

 331 

                                                 332 

  333 

  334 

 335 

  336 

Figure 3. Example of unidirectional model-generated micro-TENNs: Micro-TENNs of length =2000	𝜇𝑚 and radius 
R=180	𝜇𝑚, number of seeded cells 3000, 6500 and 10000, and RI= 90	𝜇𝑚. Here 𝑆,=0.75, bundles are not compact.

 
Figure 4. Example of bidirectional model-generated micro-TENNs: Analogously to the unidirectional case, 
the model can generate bidirectional morphologies. The micro-TENNs have length L=2000	𝜇𝑚 and radius 
R=180	𝜇𝑚, the number of seeded cells is 3000. Here 𝑆,=1 and RI= 90	𝜇𝑚 shows bidirectional axonal bundle 
formation (left), in the case 𝑆,=0 no bundles are formed (right). Neuronal cell bodies (aggregate) are labeled on 
each end but are hidden for clarity. 
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Experimental Validation of Axonal Growth Rate 337 
The model simulated the growth processes for unidirectional and bidirectional micro-TENNs 338 
when grown to 2000	𝜇𝑚 . Figure 5 shows images of unidirectional micro-TENNs of 339 
approximately 8000 and 2000 neurons, as well as measured and computed growth rate. The 340 
optimized parameters, 𝑣L = 15, 𝑣Lhijk = 0.008 and 𝐸#	is a random uniform value between 0.8 341 
and 1, provided an excellent fit with the experimental data. The result show that extension rate 342 
first increases, then decreases slowly with increasing distance from the soma. This is the trend 343 
for both the unidirectional and bidirectional growth rates.   344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 

Figure 5. Validation of simulated growth rates in vitro.  (A) Phase images of a unidirectional micro-TENN with 
approximately 8,000 neurons at 1, 3, and 5 DIV. (B) Phase images of a unidirectional micro-TENN with approximately 20,000 
neurons at 1, 3, and 5 DIV. Both micro-TENN groups exhibited rapid axonal growth over the first few DIV. Scale bars: 100 
µm. (C) Growth rates from both micro-TENN groups at 1, 3, and 5 DIV. Micro-TENNs with ~20,000 neurons/aggregate 
exhibited qualitatively faster growth rates than those with ~8,000 neurons/aggregate, although there were no statistically 
significant differences in growth rates. (D) Axon density at 5 DIV across the two groups at 50% and 75% along the micro-
TENN length (as illustrated in (B)), quantified as the percentage of the microcolumn channel occupied by axons. Micro-
TENNs with ~20,000 neurons/aggregate showed higher axon densities than those with ~8,000 neurons/aggregate, although 
this was only significant at 50% along the micro-TENN length (*** = p < 0.001). (E) Experimental versus model growth rate for 
unidirectional micro-TENN with 8,000 neurons. (F) Experimental versus model growth rate for unidirectional micro-TENN with 
20,000 neurons. 
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Figure 6A shows a 3D reconstruction of a unidirectional micro-TENN at 10 DIV. Four 369 
corresponding slices were extracted for cross-sectional comparison to the computed results. 370 
Figure 6 B-E show each slice and provide arrows to distinguish between neuronal cell bodies, 371 
axon bundles, and single axons. In order to compare morphologies, we use two model 372 
generated X-Y projections along the Z-axis (Figure 7) that resulted from a micro-TENN 373 
simulation (inner radius 180 𝜇𝑚, length of 2mm, the number of seeded cells is 20,000). The 374 
model generates realistic morphology with single axons and axon bundles along the inner wall 375 
comparable to the experimentally reconstructed morphology in Figure 7. 376 

 377 

 378 

 379 

 380 

 381 

 382 

 383 

 384 

 385 

 386 

Figure 6. (A) 3D reconstruction of a unidirectional, GFP-positive micro-TENN at 10 DIV. (B-E) X-Y projections of the 
micro-TENN from (A) at the sections outlined in red. Orientation of the z-axis (positive) is into the page. Neuronal cell 
bodies (arrows) can be seen near the aggregate region in (B), from which axonal bundles (triangles) project and split into 
individual axons (caret). Scale bars: 200 µm (A); 50 µm (B). 
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 388 

 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

           397 

 398 

The computational algorithm, employed by our model is scalable as demonstrated on Figure 8, 399 
which shows the simulation runtime as a function of simulated number of cells (100, 1000 and 400 
10000).  401 

 402 

 403 

 404 

 405 

Figure 7. Model generated morphology of a unidirectional micro-TENN with inner diameter of 180 µm, length of 2mm and   
approximately 20,000 neurons.  (A) X-Y projection at Z= 910 µm, model (B) X-Y projection at Z=1380 µm, model.      

Figure 8. Scaling and computational speed. Simulations were performed for 100, 1000 and 10000 cells for the 
unidirectional micro-TENN with diameter 180 𝜇𝑚 and length 2mm. The simulation runtime was 1.99 s, 28.93 s 
and 1500.45 s, respectively. 
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Discussion 406 
As a neural network model, micro-TENNs permit systematic interrogation of different 407 
contributors to neuronal growth and development in a three-dimensional, anatomically-relevant 408 
environment. Indeed, by providing precise control of the neuronal subtypes within the 409 
engineered aggregates, the extracellular matrix and milieu, as well as the potential presence of 410 
supporting glial cells, the micro-TENNs provide an ideal platform for the evaluation of interplay 411 
between intrinsic and extrinsic mechanisms of neuronal growth and neurite extension. For 412 
instance, the 3D biomaterial columnar encasement provides an unprecedented engineered 413 
environment to study the multi-faceted and often synergistic contributions of haptotactic 414 
[mediated by ECM (e.g., laminin, collagen) and cell-surface ligands (e.g., cadherins, L1)], 415 
chemotactic [mediated by growth factor gradients (e.g., nerve growth factor, glial derived 416 
neurotrophic factor) that can be attractive or repulsive], and mechanotactic [dictated by 417 
substrate geometry (e.g., curvature) and mechanical properties (e.g., stiffness)] on axonal 418 
outgrowth and pathfinding [39], [40]. To date, micro-TENNs have been generated with lengths 419 
ranging from 1-30 mm, and inner diameters as small as 160µm [4]. Moreover, the introduction of 420 
“actuator proteins” such as channelrhodopsin-2 (a light-sensitive ion channel for optically-421 
induced neuronal stimulation) and/or activity markers such as the fluorescent calcium reporter 422 
GCaMP also provide a range of techniques to both modulate and monitor neuronal activity 423 
within the micro-TENN over time [5]. This controllability makes micro-TENNs an ideal testbed 424 
for eliciting and studying different neuronal phenomena under a range of experimental 425 
conditions, all within a three-dimensional architecture more similar to the native brain than 426 
traditional 2D cultures or randomly organized 3D cultures.  427 
 428 

The existing models have been applied to study neuronal development in vivo, generally in the 429 
presence of molecular cues and under no specific geometric restrictions. Of note, those 430 
conditions differ from the growth conditions of micro-TENNs, in which gradients of external 431 
molecular cues are missing, the matrix is not neural tissue, and the growth space is a narrow 432 
tubular environment. Moreover, most of the existing models include complex growth 433 
mechanisms, leading to large computational cost. To compliment these previous efforts, there is 434 
a need for a computationally inexpensive model (due to the large population of neurons) that is 435 
capable of capturing the morphology of axonal growth within geometrical restrictions, including 436 
such important behaviors as neurite branching and axonal bundle formation/fasciculation. 437 
 438 

Here we present a fast/computationally inexpensive ad-hoc stochastic process-based simulation 439 
framework for the generation of large-scale unidirectional and bidirectional neuronal networks 440 
with realistic neuronal-axonal morphologies. These simulations faithfully reproduce the shape of 441 
micro-TENNs, which are engineered microtissue networks formed by simultaneous axonal 442 
outgrowth of many neurons in a constrained (i.e. encapsulated) space. 443 

The main advantage of the model is its conceptual simplicity. It is built on basic principles, yet it 444 
can generate various complex morphologies observed experimentally. Another major advantage 445 
is the computational speed. The solution of the diffusion equation for each tip is explicit and 446 
analytic, thus removing the necessity for a numerical solution for the concentration and the 447 
concentration gradients. This makes the model fast and computationally cheap, particularly for a 448 
large number of growing neurons. Also, each growth tip represents a separate process, allowing 449 
for parallelization and additional speed up of computational. 450 
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A limitation to the model is the introduction of parameters that cannot be extracted directly from 451 
experimental data. This can be due to the data resolution or simply to an inability of reliably 452 
quantifying certain experimental aspects. The parameter space they form has to be scanned for 453 
values that allow realistic neuronal morphologies.  Another limitation of the model is the lack of 454 
chemical cues in the unidirectional case. While the model allows for additional 455 
attraction/repulsion and guidance terms to be introduced, employing direct extrapolation from in 456 
vivo growth models would be challenging. 457 

The model is designed to capture some basic biological principles of neuronal development and 458 
axonal outgrowth in vitro: the competition for space and resources between growth tips, 459 
formation of bundles, chirality, the dependence of branching probability on the growth time, and 460 
the deceleration of the growth rate over time. The growth rate values in our model successfully 461 
reproduce the experimental data. Further development of the model could introduce additional 462 
guidance and attraction/repulsion molecular cues once such experimental information is 463 
available, thereby systematically adding complexity and the ability to capture synergistic and/or 464 
competing features of intrinsic and extrinsic growth parameters. 465 

Future Work 466 
One major objective of building the Bidirectional Growth Model is to generate simulations of 467 
detailed neuron growth patterns to ultimately enable the study of functional connectivity that our 468 
research group has begun [41]. The neuronal growth patterns will be used to serve as the input 469 
of a spiking model to study the firing patterns within micro-TENNs and, following implantation, at 470 
the distal ends of micro-TENNs upon integration with the host brain neurons. In the output of the 471 
growth model, the framework can be used to extract detailed connectivity information.  472 
 473 
The neuronal growth patterns provide the information for searching locations of synaptic 474 
connections and help to establish the spiking network simulation. In biological neuronal 475 
networks, synapses form where tissues are in sufficiently close proximity. According to 476 
experimental design, synapses occur close to the aggregate, which are in the 100 𝜇𝑚 range 477 
from each end. Synaptic connectivity is estimated based on Euclidian distance (proximity 478 
criterion of 0.5 𝜇𝑚). Figures 9A/2B gives an example of the locations of these synaptic sites. 479 
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 480 

 481 

 482 

Conclusion  483 
The neuronal and axonal growth structures obtained through this model provide a complete 484 
growth and connectivity pattern within a custom micro-tissue neural network. The model 485 
reproduces both the micro-TENN architecture and the axonal growth rate and distribution. This 486 
framework will enable further assessment of structural and functional connectivity, for instance 487 
an analysis of synaptic integration that happens close to the aggregate or even outside the 488 
micro-column. The extracted information of synaptic connectivity close to the aggregate and the 489 
synapse at distal end of micro-TENNs will be the a topic of a future functional connectivity study. 490 
We intend to build on this model in order to better understand the spiking network properties of 491 
micro-TENNs as so-called “living electrodes” for neuromodulation as well as anatomically-492 
inspired constructs for white matter pathway reconstruction.. 493 
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