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Abstract
Background: Advances in large scale tumor sequencing have lead to an understanding that there are combinations of
genomic and transcriptomic alterations speci�c to tumor types, shared across many patients. Unfortunately,
computational identi�cation of functionally meaningful shared alteration patterns, impacting gene/protein interaction
subnetworks, has proven to be challenging.
Findings: We introduce a novel combinatorial method, cd-CAP, for simultaneous detection of connected subnetworks of an
interaction network where genes exhibit conserved alteration patterns across tumor samples. Our method di�erentiates
distinct alteration types associated with each gene (rather than relying on binary information of a gene being altered or
not), and simultaneously detects multiple alteration pro�le conserved subnetworks.
Conclusions: In a number of The Cancer Genome Atlas (TCGA) data sets, cd-CAP identi�ed large biologically signi�cant
subnetworks with conserved alteration patterns, shared across many tumor samples.
Key words: conserved subnetwork; alterations; cancer; combinatorial optimization

Introduction

Recent large scale tumor sequencing projects such as PCAWG
(Pan Cancer Analysis of Whole Genomes) have revealed multi-
tude of somatic genomic, transcriptomic, proteomic and epige-
nomic alterations across cancer types. However, only a select
few of these alterations provide proliferative advantage to the
tumor and hence are called “driver” alterations [1]. Distin-
guishing driver alterations from functionally inconsequential
random “passenger” alterations is critical for therapeutic de-
velopment and cancer treatment.
Cancers are often driven by alterations to multiple genes

[2, 3]. Whereas genomic alterations are likely consequences
of endogenous or exogenous mutagen exposures [4], their evo-
lutionary selection depends on the functional role of the af-
fected genes [1] and their synergistic combinations. For exam-
ple, TMPRSS2-ERG gene fusion is an early driver event in almost
half of prostate cancer cases, and it often co-exists with copy-
number loss of PTEN and NKX3-1 [5, 6, 7]. Another example
is the concomitant deletion of four cancer genes - BAP1, SETD2,
PBRM1, and SMARCC1 in chromosome locus 3p21, identi�ed as a
driver event in clear cell renal cell carcinoma (ccRCC) [8], uveal
melanoma [9], and mesotheliomas [10]. These genes are in-
volved in chromatin remodeling process, and their loss further

impairs DNA damage repair pathway in tumors [9].
Alterations in two or more genes might be evolutionary co-

selected because alteration in one gene might enhance the dele-
terious e�ect of the others [11]. Such co-selected genes are of-
ten active in a functionally signi�cant subnetwork (i.e. module
or pathway) within the human gene/protein interaction net-
work and aberrations in such subnetworks are common to par-
ticular cancer types as demonstrated by recent sequencing ef-
forts (e.g. PCAWG) [12]. For instance, TMPRSS2 interacts with
ERG and PTEN (see the example above) in STRING v.10 protein-
protein interaction network; in fact all three genes co-operate
to modulate NOTCH signaling pathway in TMPRSS2-ERG posi-
tive prostate cancer progression [7]. As a result, it is desirable
to identify subsets of functionally interacting genes which are
commonly (genomically or transcriptomically) altered in spe-
ci�c tumor types.
Recently, a number of computational methods have been

developed to identify recurrent genomic (as well as transcrip-
tomic) alteration patterns across tumor samples. Some of these
methods have been designed to identify multiple gene alter-
ations simultaneously based on their co-occurrence or mutual
exclusivity relationships in a tumor cohort, either with [13] or
without [14, 15] reference to a molecular interaction network.
Other methods have been developed to identify subnetworks

Compiled on: February 1, 2019.
Draft manuscript prepared by the author.

1

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 31, 2019. ; https://doi.org/10.1101/369850doi: bioRxiv preprint 

https://doi.org/10.1101/369850


2 |

within a molecular interaction network with speci�c character-
istics, e.g. the subnetwork of a �xed size with the highest total
“weight” [16, 17] or the subnetwork seeded by a particular node
that can be derived through a di�usion process [18, 19]; nat-
urally these methods do not capture recurrent alteration pat-
terns across a cohort. A direction particularly relevant to our
paper is motivated by a number of related works [18, 20, 21, 22],
and explored by Bomersbach et al. [23], which suggests to �nd
a subnetwork of a given size k with the goal of maximizing h,
the number of samples for which at least one gene of the sub-
network is in an altered state. (A similar formulation where the
goal is tomaximize a weighted di�erence of h and k, for varying
size k, can be found in [24].) Although the above combinato-
rial problems are typically NP-hard, they became manageable
through the use of state of the art integer linear programming
(ILP) solvers or greedy heuristics, or by the use of complex pre-
processing procedures which signi�cantly reduce the problem
size.
Complementary to the ideas proposed above, there are also

several approaches to identify mutually exclusive (rather than
jointly altered) sets of genes and pathways [25, 26, 27]. These
approaches utilize the mutational heterogeneity prevalent in
cancer genomes, and are driven by the observation that mu-
tations acting on same pathway are often mutually exclusive
across tumor samples. Although, from a methodological point
of view, these approaches are very interesting, they are not
trivially extendable to the problem of identifying co-occurring
alteration patterns (involving more than two genes) conserved
across many samples.

Our Contributions

In this paper we present a novel computational method,
cd-CAP (combinatorial detection of Conserved Alteration
Patterns), for detection of subnetworks of an interaction net-
work, each with an alteration pattern conserved across a large
subset of a tumor sample cohort. The framework of cd-CAP
allows each gene to be labeled (or “colored”) with one or more
distinct alteration types (e.g. somatic mutation, copy number
alteration, or aberrant expression) with the goal of identifying
one or more subnetworks, each with a speci�c alteration (label-
ing) pattern, that is shared across many samples (Figure 1). As
such, cd-CAP solves a novel problem that has not been tackled
in the literature. In fact, the very notion of conserved subetworks
used by cd-CAP is novel: in [23, 24] the subnetworks of interest
are composed of nodes such that in each patient at least one is
altered (one way or another). In contrast, cd-CAP insists that
each node is altered in each patient, and each node preserves its
alteration type in each patient. Additionally, unlike [24] which
employ heuristics to solve a highly restrictive problem and thus
cannot guarantee optimality, cd-CAP uses a very e�cient ex-
haustive search method (a variant of the a-priori algorithm,
originally designed for association rule mining [28]) to quickly
solve a very general problem optimally.
cd-CAP o�ers two basic modes: the “single-subnetwork”

mode identi�es the largest subnetwork altered the same way
in at least t samples by solving the maximum conserved subnet-
work identi�cation problem optimally; the “multi-subnetwork”
mode identi�es l subnetworks of size (at most) k (k and l are
user de�ned parameters) that collectively cover the maximum
number of nodes in all samples by solving the maximum con-
served subnetwork cover problem via ILP. In both modes, cd-CAP
runs in two steps. The �rst step computes a set of all “can-
didate” subnetworks (each with a distinct alteration pattern)
with at most k nodes, and which are shared by at least t sam-
ples. However, the two modes di�er in the second step: the
�rst returns a single largest subnetwork, and the second re-

turns l subnetworks collectively covering the maximum num-
ber of nodes from the set of candidate subnetworks.
Additionally cd-CAP provides the user the ability to add or

relax some constraints on the subnetworks it identi�es. Specif-
ically, the user can ask cd-CAP to (i) return “colorful” subnet-
works (i.e. subnetworks of nodes with at least two distinct
colors), or (ii) allow up to a δ fraction of nodes in the subnet-
work to have no alteration (as a result, not colored) in some of
the samples that share the subnetwork.
We have applied cd-CAP - with both single and multi-

subnetwork mode, with the basic setting (which only requires
that each node has the same alteration type across the sam-
ples), as well as each of the possible additional options above,
i.e., (i), (ii) - to The Cancer Genome Atlas (TCGA) breast ade-
nocarcinoma (BRCA), colorectal adenocarcinoma (COAD), and
glioblastoma multiforme (GBM) datasets. On these datasets,
which collectively include > 1000 tumor samples, cd-CAP iden-
ti�ed several connected subnetworks of interest, each exhibit-
ing speci�c gene alteration pattern across a large subset of sam-
ples.
In particular, cd-CAP results with the basic setting demon-

strated that many of the largest highly conserved subnetworks
within a tumor type solely consist of genes that have been sub-
ject to copy number gain, typically located on the same chro-
mosomal arm and thus likely a result of a single, large scale
ampli�cation. One of these subnetworks cd-CAP observed (in
about one third of the COAD samples [29]) include 9 genes in
chromosomal arm 20q, which corresponds to a known ampli�-
cation recurrent in colorectal tumors. Another copy-number
gain subnetwork cd-CAP observed in breast cancer samples
corresponds to a recurrent large scale ampli�cation in chro-
mosome 1 [30]. It is interesting to note that cd-CAP was able
to re-discover these events without speci�c training.
Several additional subnetworks identi�ed by cd-CAP solely

consist of genes that are aberrantly expressed. Further analy-
sis with option (ii) in the multi-subnetwork mode of cd-CAP
revealed subnetworks that capture signaling pathways and pro-
cesses critical for oncogenesis in a large fraction of tumors. We
have also observed that the subnetworks identi�ed through all
di�erent options of cd-CAP are associated with patients’ sur-
vival outcome and hence are clinically important.
In order to assess the statistical signi�cance of subnet-

works discovered by cd-CAP - in the single-subnetwork mode,
we introduce for the �rst time a model in which likely inter-
dependent events, in particular ampli�cation or deletion of
all genes in a single chromosome arm, are considered as a
single event. Conventional models of gene ampli�cation ei-
ther consider each gene ampli�cation independently [31] (this
is the model we implicitly assume in our combinatorial opti-
mization formulations, giving a lower bound on the true p-
value), or assumes each ampli�cation can involve more than
one gene (forming a subsequent sequence of genes) but with
the added assumption that the original gene structure is not
altered and the duplications occur in some orthogonal “dimen-
sion” [32, 33, 34]. Both models have their assumptions that
do not hold in reality but are motivated by computational con-
straints: inferring evolutionary history of a genome with arbi-
trary duplications (that convert one string to another, longer
string, by copying arbitrary substrings to arbitrary destina-
tions) is an NP-hard problem (and is di�cult to solve even
approximately) [35, 36]. By considering all copy number gain
or loss events in the same chromosomal arm as a single event,
we are, for the �rst time, able to compute an estimate that
provides an empirical upper bound to the statistical signi�-
cance (p-value) of the subnetworks discovered. (Note that this
is not a true upper bound since a duplication event may in-
volve both arms of a chromosome - but that would be very
very rare.) Through this upper bound, together with the lower
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bound above, we can sandwich the true p-value and thus the
signi�cance of our discovery.
The “Combinatorial Optimization Formulation” section be-

low describes the combinatorial optimization formulations
used by cd-CAP to solve the problem of detecting conserved
alteration patterns and all its above mentioned variants. The
“Algorithmic Details” section describes implementation details
for the two main steps of cd-CAP’s solution. The “Additional
Constraints and Parameter Options” subsection describes the
implementation details for the two variants on the constraints
imposed by cd-CAP.

Methods

Combinatorial Optimization Formulation

Consider an undirected and node-colored graph G = (V, E), rep-
resenting the human gene or protein interaction network, with
n nodes where vj ∈ V represent genes and e = (vh, vj) ∈ E rep-resent interactions among the genes/proteins. A given sam-
ple/patient Pi (among m samples in a cohort) has a speci�c
coloring of G, namely Gi = (V, E, Ci), where each node vi,j (cor-responding to node vj ∈ V) is colored with one or more possiblecolors to form the set Ci,j (i.e. Ci maps vi,j to a possibly emptysubset of colors Ci,j). Each color represents a distinct type ofalteration harbored by a gene/protein: speci�c alteration types
we consider are somatic mutation (single nucleotide alteration
or short indel), copy number gain, copy number loss or sig-
ni�cant alteration in expression (this set of alterations can
be trivially expanded to include genic structural alteration -
micro-inversion or duplication, gene fusion, alternative splic-
ing, methylation alteration, non-coding sequence alteration)
observed in a gene or its protein product. Note that Ci,j = ∅implies none of the alteration types we consider are observed
at vi,j. Also note that given a node vj, its occurrences vi,j and
vi′,j, in respective samples Pi and P′i, have at least one matchingcolor if Ci,j ∩ Ci′,j 6= ∅.The main goal of cd-CAP is to identify conserved patterns of
(i.e. identically colored) connected subnetworks across a sub-
set of colored (sample) networks Gi. Consider a connected sub-network T = (VT, ET) of the interaction network G, where eachnode vj ∈ VT is assigned a single color cj. Such a colored sub-network is said to be shared by a collection of patient networks
{Gi : i ∈ I} if the color cj assigned to each vertex vj is in the colorset Ci,j of each vi,j(i ∈ I), i.e. cj ∈ ⋂

i∈I Ci,j for each vj ∈ VT. Notethat vi,j is said to be covered by a colored subnetwork if thatcolored subnetwork is shared by Gi (Figure 1). Intuitively, a col-ored subnetwork represents a conserved pattern or a network
motif.
In the single-subnetwork mode, cd-CAP solves the Max-

imum Conserved Subnetwork Identi�cation problem (MCSI),
a speci�c combinatorial problem to identify conserved patterns
of subnetworks. MCSI asks to �nd the largest connected col-
ored subnetwork S of the interaction network G, that occurs in
exactly t (a user speci�ed number) samples P, such that each
node in S has the same color in each sample Pi ∈ P. Note thatthis formulation is orthogonal to that used in [23] and [24],
where the goal is tomaximize the number of samples that share
a �xed size subnetwork. Unlike these formulations, MCSI ad-
mits a generalization of the a-priori algorithm, which we use
to solve it e�ciently. Note that our formulation considers dis-
tinct types of mutations (as colors) in the conserved alteration
patterns, another key improvement to alternative formulations
used in the literature [23, 24].
In the multi-subnetwork mode, on the other hand, cd-

CAP aims to simultaneously identify multiple conserved sub-
networks that are altered in a large number of samples. In

particular, it may aim to cover all nodes vi,j, in all m input
sample networks Gi, with the smallest number of subnetworks
T = (VT, ET) shared by at least one sample network. We re-fer to this combinatorial optimization problem as Minimum
Subgraph Cover Problem for (Node) Colored Interaction Net-
works (MSC-NCI). As will be shown below, cd-CAP solves a
slightly more constrained variant of this problem in the multi-
subnetwork mode.
The MSC-NCI problem, as described above, is parameter-

free. However, in a realistic multi-omics cancer dataset, the
number of genes far exceeds the number of samples repre-
sented. Under such conditions, the solution to the MSC-NCI
problem will primarily include subnetworks that are large con-
nected components that are shared by only one sample net-
work. To account for this situation, we introduce the following
parameters/constraints akin to those for the MCSI formulation:
(1) we require that the nodes in each subnetwork have their as-
signed color shared by at least t samples, (in the remainder
of the discussion, t is referred to as depth of a subnetwork);
and (2) we require that each subnetwork returned contains at
most k nodes. Note that this variant of the problem is infea-
sible for certain cohorts (consider a particular node which has
a unique color for a particular sample; clearly requirement (1)
can not be satis�ed if t > 1). Even if there is a feasible solu-
tion, the requirement that each subnetwork in T is of size at
most k makes the problem NP-hard (the reduction is from the
problem of determining whether G can be exactly partitioned
into connected subnetworks, each with k nodes [37]). As a re-
sult (3) we introduce one additional parameter, l, themaximum
number of subnetworks (each of size at most k, and which are
color-conserved in at least t samples) with the objective of cov-
ering the maximum number of nodes across all samples. We
call the problem of identifying at most l subnetworks of size
at most k, whose colors are conserved across at least t sam-
ples, so as to maximize the total number of nodes in all these
samples covered by these subnetworks, as the Maximum Con-
served Subnetwork Coverage problem (MCSC).

Algorithmic Details

In this section we describe the detailed algorithmic framework
of cd-CAP, which consists of two steps for both its single and
multi-subnetwork modes. The key insight as the basis of our
algorithm is that in all instances of interest, only a limited
number of genes are colored in comparison to the total num-
ber of nodes nm. This enables us to apply an exhaustive search
method that is designed for association rule mining [28] to
build a list of all “candidate subnetworks” exactly and e�-
ciently (e.g. in comparison to the ILP or heuristic solutions
in [23, 24]). Note that our exhaustive search method is an ex-
tension of the a-priori algorithm with the di�erence that we
require the candidate subnetworks to maintain connectivity as
they grow. As a result, we �rst compute the candidate subnet-
works (each with a distinct alteration pattern) with at most k
nodes, andwhich are shared by at least t samples in bothmodes.
In the next step, in the single-subnetwork mode, cd-CAP sim-
ply returns the largest subnetwork among the candidate sub-
networks, while in the multi-subnetwork mode it solves the
maximum coverage problem (MCSC) on the set of candidate
subnetworks via the ILP formulation below.
First step of cd-CAP: Generating candidate subnetworks. We gener-
ate the complete list of candidate subnetworks with minimum
depth t by the use of anti-monotone property [38]: if any sub-
network S has depth < t, then the depth of all of its supergraphs
S′ ⊃ S must be < t. This makes it possible to grow the set S
of valid subnetworks comprehensively but without repetition
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(described as “optimal order of enumeration” in [39]) through
the following breadth-�rst network growth strategy.
(1) For every colored node vi,j and each of its colors c`, wecreate a candidate subnetwork of size 1 (i.e. with single node)

containing the node with color c`. All samples in which thenode is colored c` trivially share this subnetwork.
(2) We inductively consider all candidate subnetworks of

size s with the goal of growing them to subnetworks of size
s + 1 as follows. For a given subnetwork T of size s, consider
each neighboring node u. For each possible color c′` of u, wecreate a new candidate subnetwork of size s + 1 by extending
T with u - with color c′`. We maintain this subnetwork for thenext inductive step only if the number of samples sharing this
new subnetwork is at least t; otherwise, we discard it.
Once the procedure terminates, the single-subnetwork

mode simply returns all subnetworks constructed in the �nal
iteration (of size s). The multi-subnetwork mode requires ad-
ditional processing as will be described below. Note, however,
that during the extension of T above, if the new node u does not
reduce the number of samples sharing it, T becomes redundant
and is not considered in the ILP formulation
Second step of cd-CAP: Solving MCSC for multi-subnetwork mode.
Given the universe U = {vi,j | Ci,j 6= ∅ , i = 1, · · · ,m; j =
1, · · · ,n}, containing all the colored nodes in all the
sample networks, and the collection of all subnetworks
S = {Ti | Ti is shared by ≥ t samples & contains ≤ k nodes}, ourgoal is to identify up to l subnetworks from the set S which col-
lectively contain the maximum possible number of elements of
the universe U.
After the list of all candidate subnetworks S is constructed

(as described in the previous subsection), we represent the
MCSC problem with the integer linear program below and
solve it using IBM ILOG CPLEX or Gurobi. A binary variable
C[i, j] corresponds to whether colored node vi,j was coveredby at least one chosen subnetwork, and binary variable X[i]
corresponds to whether colored candidate subnetwork Ti wasone of the chosen. Similarly Si,j represents the set of all sub-networks of S which contain node vi,j properly colored in them.
Maximize ∑

vi,j∈U
C[i, j]

s.t. ∑
Tp∈Si,j

X[p] ≥ C[i, j] (∀vi,j ∈ U)

∑
Ti∈S

X[i] ≤ l

Additional Constraints and Parameter Options

In addition to the exactly-conserved colored subnetworks ob-
tained through the general MCSI or MCSC formulation as de-
scribed above, cd-CAP o�ers the user to add or relax con-
straints through new parameters, in both single and multi-
subnetwork mode.
(i) “Colorful”Conserved Subnetworks. In some of the datasets that
we analyzed, certain variant types (i.e. colors) were dominant
in the input to an extent that all subnetworks identi�ed by our
method had all nodes colored identically. By insisting that the
identi�ed subnetworks are colorful, it is possible to, e.g., cap-
ture conserved genomic alterations and their impact on their
interaction partners (form of expression alterations). For this
purpose we introduce the notion of a colorful subnetwork, T, as
a subnetwork that has at least two distinct colors represented
in the coloring of its nodes, i.e. c`, ch ∈ ⋃

vj∈T cj (c` 6= ch). In
order to identify colorful subnetworks instead of arbitrary sub-

networks, we update the �rst step of cd-CAP so that it speci�-
cally keeps track of colorful subnetworks (rather than all sub-
networks) in each iteration; this is because any colorful net-
work must contain a connected colorful subnetwork.
(ii) Subnetworks Conserved within error rate δ. In order to reduce
the sensitivity of cd-CAP to noise (that emerges during the as-
signment of variant types to genes - due to limited precision of
sequence or statistical analysis methods) in the input data, we
provide the user the option to allow errors in identifying con-
served subnetworks. For that, cd-CAP provides the user the
option to specify an error rate δ that represents the fraction
of nodes in a subnetwork T that can have no assigned color in
any sample that shares T. We implemented this by updating
the �rst step of cd-CAP so that it expands the set of samples
that share each candidate subnetwork T to every other sample
where T occurs with ≤ δ|T| color omissions.

Assessing the Statistical and Biological Signi�cance of
the Networks Identi�ed by cd-CAP

Statistical signi�cance of subnetworks identi�ed by cd-CAP. It is
possible to assess the statistical signi�cance of the subnet-
works identi�ed by cd-CAP by applying the conventional per-
mutation test [13, 23, 27] on the color assignments of nodes -
under the assumption that each gene is altered independently:
let Ci,j represent the set of colors assigned to a node vi,j and let
Ci = {(vi,j, Ci,j)}, represent the entire set of color assignmentsto nodes vi,j in network Gi. We can obtain a random permu-
tation of the color assignment C′i, by independently shu�ingeach color c ∈ ∪jCi,j across the nodes of Gi, which results in anassignment of a new color set C′i,j to each node vi,j, under theconstraint that the total number of nodes with each color c is
preserved. For a subnetwork T = (VT, ET) of size k covering tsamples returned by cd-CAP in the single-subnetwork mode,
we can carry out a permutation test as follows. First we gener-
ate a permuted color assignment (as described above) for each
sample. Then we run cd-CAP in the single-subnetwork mode
(possibly with the option (i) or (ii) as described in the previ-
ous section) and identify the largest subnetwork which covers
at least t samples. We repeat this su�ciently many (by de-
fault 1000) times to compute P1,T, the number of times we endup with a subnetwork of size at least k in t or more samples,
normalized by the number of attempts. We can use P1,T as anempirical p-value for subnetwork T of size k.
P1,T forms an empirical lower bound for the p-value of Trather than an accurate estimate since it ignores the inter-

dependencies among gene alteration events (i.e. node colors).
In particular, whole chromosome or chromosome arm level
copy number ampli�cations/deletions are commonly observed
in cancer - such events must be re�ected in the permutation
test we employ. To address this issue, we apply the follow-
ing procedure to compute P2,T as an empirical upper-bound forthe p-value of T, under the assumption that copy number alter-
ations take place in whole chromosome arms. For a given color
E, corresponding to either copy number gain or loss events, let
Ni,E denote the number of nodes with color E in Gi. For eachchromosomal arm A, consider the set of nodes Vi,A that have
been assigned at least one color in Gi. Now we can reassign
colors to vertices such that (1) colors E corresponding to copy
number gain or loss are assigned to all genes in a chromosome
arm simultaneously; speci�cally the set of nodes Vi,A in a chro-mosome arm A are all assigned the same color E independently
with probability NE∑

j |Ci,j| (which guarantees that the expectednumber of nodes with color E in Gi is preserved); (2) the re-maining colors (not related to copy number gain or loss) are
assigned randomly to those nodes without a color assignment
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thus far (as described in the computation for P1,T). This processprovides a new randomly permuted color assignment C′′i whichwe use to obtain an empirical upper bound on the p-value of
a subnetwork T discovered by cd-CAP. For that perform this
process simultaneously in all Gi and check whether the largestsubnetwork shared by at least t samples exceeds the size of
a subnetwork T (identi�ed on the input dataset by cd-CAP).
We repeat this process su�ciently many times and record the
number of times the largest subnetwork obtained indeed ex-
ceeds the size of T; that value normalized by the number of
times the process is executed is the value P2,T, the empiricalupper bound on the p-value of T. The true p-value of T must
be in the range [P1,T, P2,T] (provided that chromosome armsform the largest units of alteration).
Pathway enrichment analysis. We tested the set of genes in the
subnetworks obtained by cd-CAP for enrichment against gene
sets corresponding to pathways present in the Molecular Signa-
ture Database (MSigDB) v6.0 [40]. A hypergeometric test based
gene set enrichment analysis [40] was used for this purpose. A
false discovery rate (FDR) ≤ 0.01 was used as a threshold for
identifying signi�cantly enriched pathways.
Association between cd-CAP identi�ed sub-networks and patients’
survival outcome. In order to assess the association between
each cd-CAP identi�ed subnetwork T with patients’ survival
outcome, we used a risk-score based on the (weighted) aggre-
gate expression of all genes in the subnetwork T. The risk-
score (S) of a patient is de�ned as the sum of the normalized
gene-expression values in the subnetwork, each weighted by
the estimated univariate Cox proportional-hazard regression
coe�cient [41], i.e., S = ∑k

i βixij. Here i and j represent agene and a patient respectively, βi is the coe�cient of Cox re-gression for gene i, xij is the normalized gene-expression ofgene i in patient j, and k is the number of genes in the sub-
network. The normalized gene-expression values were �tted
against overall survival time with living status as the censored
event using univariate Cox proportional-hazard regression (ex-
act method). Based on the risk-score values, patients were
strati�ed into two groups: low-risk group (patients with S <
mean of S), and high-risk group (patients with S ≥ mean of
S). Note that only those patients that are covered by the sub-
network are considered for the analysis above. In fact, with
respect to survival outcomes, the set of patients covered by a
subnetwork identi�ed by cd-CAP would not necessarily di�er
from those that are not, since the latter set is likely to be highly
heterogeneous with respect to cancer subtypes.

Results

Datasets and data processing

TCGA tumor variant data. We obtained somatic mutation, copy
number aberration and RNA-seq based gene-expression data
from three distinct cancer types - glioblastoma multiforme
(GBM) [42], breast adenocarcinoma (BRCA) [43], and colon
adenocarcinoma (COAD) [29] from The Cancer Genome Atlas
(TCGA) datasets (detailed information can be found in Sup-
plementary Section 1). In addition, we distinguish four com-
monly observed molecular subtypes (i.e. Luminal A, Luminal B,
Triple-negative/basal-like and HER2-enriched) from the BRCA
cohort. For each sample, we obtained the list of genes which
harbor somatic mutations, copy number aberrations, or are ex-
pression outliers as per below.
Somatic Mutations. All non-silent variant calls that were iden-
ti�ed by at least one tool among MUSE, MuTect2, Somatic-
Sniper and VarScan2 were considered.

Copy Number Aberrations. CNA segmented data from NCI-
GDC were further processed using Nexus Copy Number Discov-
ery Edition Version 9.0 (BioDiscovery, Inc., El Segundo, CA)
to identify aberrant regions in the genome. We restricted our
analysis to the most con�dent CNA calls selecting only those
genes with high copy gain or homozygous copy loss.
Expression outliers. We used HTSeq-FPKM-UQ normalized
RNA-seq expression data to which we applied the generalized
extreme studentized deviate (GESD) test [44]. In particular, we
used GESD test to compare the transcriptome pro�le of each tu-
mor sample (one at a time) with that from a number of avail-
able normal samples. For each gene, if the tumor sample was
identi�ed as the most extremely deviated sample (using crit-
ical value α = 0.1), the corresponding gene was marked as
an expression-outlier for that tumor sample. This procedure
was repeated for every tumor sample. Finally, comparing the
tumor expression pro�le of these outlier genes to the normal
samples, their up or down regulation expression patterns were
determined.
Interaction networks. We used the following human protein-
interaction networks in the identi�cation of the most signi�-
cant subnetworks speci�c to the cancer types mentioned above.
(1) STRING version 10 [45] protein-interaction network which
contains high con�dence functional protein-protein interac-
tions (PPI). Self-loops and interactions with missing HGNC
symbols were discarded and interaction scores were normal-
ized (divided by 1000) to obtain a reliability score in the range
[0, 1]. Only high con�dence interactions with combined score
of 0.9 or greater were selected. (2) STRING network with only
experimentally veri�ed edges. (3) Human Protein Reference
Database (HPRD) version 9 [46]. (4) REACTOME version 2015
[47].

Maximal Colored Subnetworks Across Cancer Types

We used cd-CAP to solve the maximum conserved subnetwork
identi�cation (MCSI) problem exactly on each of the protein-
interaction networks we considered on all cancer types - for
every feasible value of network depth. As can be easily ob-
served, the depth and the size of the identi�ed subnetwork are
inversely related. We say that a network depth value is feasible
if (i) the depth is at least 10% of the cohort size, (ii) the maxi-
mum network size for that depth is at least 3, (iii) the number
of “candidate” subnetworks are at most 2millions per iteration
when running cd-CAP for that depth.
The number of maximal solutions of cd-CAP as a function

of feasible network depth for each cancer type (COAD, GBM,
BRCA Luminal A, and BRCA Luminal B) is shown in Figure 2A-
D on STRING v10 PPI network with high con�dence edges (see
Supplementary Figure 2-5 for the results on alternative PPI
networks). In general, for a �xed network size, the number of
distinct networks of that size decreases as the network depth
increases. One can observe that the end of “valleys” in the
colored plots in Figure 2A-D correspond to the largest depth
that can be obtained for a given subnetwork size.
In the remainder of the paper we focus only on the single

colored subnetwork of each given size that has the maximum
possible depth (corresponding to the end of “valleys” in the
plots). (If for a given subnetwork size and the corresponding
maximal depth, cd-CAP returns more than 1 subnetwork, they
are ignored.)
Many of the subnetworks we focused on, especially those

with large depth, only consisted of expression outlier genes
(typically all upregulated or all downregulated) (Figure 2A-D)
- across all four cancer types. In Luminal A data set for exam-
ple, cd-CAP identi�ed a subnetwork of eight downregulated
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genes with a network depth 90 (Figure 2E) - consisting of
genes EGFR, PRKCA, SPRY2, and NRG2, known to be involved
in EGFR/ERBB2/ERBB4 signaling pathways (Figure 2F). EGFR
is an important driver gene involved in progression of breast
tumors to advanced forms [48] and its altered expression is ob-
served in a number of breast cancer cases [30]. The subnetwork
also included MET, another well-known oncogene [49], and is
enriched for members of the Ras signaling pathway, which is
also known for its role in oncogenesis and mediating cancer
phenotypes such as over-proliferation [50].
cd-CAP additionally identi�ed some (uni-colored) copy-

number gain networks, typically with lower depth: a promi-
nent example is in the COAD dataset with depth 163 (out of 463
patients in the cohort). This network forms the core of larger
(maximal) subnetworks cd-CAP identi�es for lower depth val-
ues; it corresponds to a copy number gain of the chromosomal
arm 20q - a well known copy number aberration pattern highly
speci�c to colorectal adenocarcinoma tumors [29]. Another
subnetwork cd-CAP identi�ed in 15% of the 422 BRCA Luminal-
A samples corresponds to a copy number gain on chromosome
1 which is again a known aberration associated with breast can-
cer [30].
Note that cd-CAP also identi�ed several multi-colored sub-

networks. The bene�ts of cd-CAP’s ability to identify multi-
colored subnetworks is demonstrated in Supplementary Figure
1, which summarizes the results of a comparison between cd-
CAP and a limited version of cd-CAP that does not di�erenti-
ate mutation types. The �gure shows that, especially in COAD
and GBM, the survival outcomes of samples that include the
cd-CAP identi�ed subnetworks di�er signi�cantly from those
sameples that do not include such subnetworks. In the BRCA
data set, since all subnetworks of interest involve di�erentially
expressed genes, the di�erence between survival outcomes is
insigni�cant.
A complete list of subnetworks of focus (from STRING v10

with high con�dence edges), across all cancer data sets, is pro-
vided in the Supplementary Table 2. For each of these sub-
networks, and for each patient covered by a particular sub-
network, we calculated a risk-score de�ned as a linear combi-
nation of the normalized gene-expression values of the genes
in the subnetwork weighted by their estimated univariate Cox
proportional-hazard regression coe�cients (see Methods sec-
tion for details). Based on the risk-score values, the patients
covered by the subnetwork were strati�ed into two risk groups
(high risk and low risk group).
The expression outlier subnetwork we mentioned above for

the Luminal A dataset was the most signi�cant among all sub-
networks identi�ed in this dataset (Figure 2G). The patients in
the high-risk group have poor overall survival outcome sug-
gesting clinical importance of the identi�ed subnetwork by cd-
CAP.
Another copy-number gain subnetwork shared among 163

patients in the COAD dataset (Figure 2H) was comprised of
genes from chromosome locus 20q13 - likely indicating a single
chromosomal ampli�cation event. Intriguingly, these genes
form a linear structure on the protein interaction network.
Among them is a group of functionally related genes consist-
ing of transcription factors and their regulators (genes CEBPB,
NCOA’s, UBE2’s), which are known to be involved in the intracel-
lular receptor signaling pathway (Figure 2I). CEBPB and UBE2’s
are also involved in the regulation of cell cycle [51]. At the other
end of the linear subnetwork, there are MMP9 and SDC4, estab-
lished mediators of cancer invasion and apoptosis [52, 53]. We
also con�rmed that these genes are highly predictive of the pa-
tients’ survival outcome (Figure 2J). All these results seem to
support that cd-CAP identi�ed subnetworks are functionally
important with potential clinical relevance.

Maximal Colorful Subnetworks Across Cancer Types

We used cd-CAP to solve the maximum conserved colored sub-
network identi�cation problem - with at least two distinct
colors (see Section “Additional Constraints and Parameter Op-
tions” for details), in each of the four protein-interaction net-
works we considered and on each cancer type. Again, cd-CAP
was run with every feasible value (as de�ned above) of net-
work depth. The number of maximal solutions of cd-CAP as
a function of network depth for each cancer type (COAD, GBM,
BRCA Luminal A, and BRCA Luminal B) is shown in Figure 3A-
D on STRING v10 PPI network with high con�dence edges (see
Supplementary Figure 2-4 for the results on alternative PPI
networks). Note that we pay special attention to subnetworks
with at least one sequence altered gene (i.e. a gene that is so-
matically mutated or copy number altered) since the sequence
alteration(s) may explain expression-level changes in the re-
maining genes of the subnetwork (Figure 3E provides such an
example).
One such COAD subnetwork is composed of several overex-

pressed genes and one copy number gain gene - covering 108
patients (Figure 3E). This subnetwork is mainly enriched for
genes involved in ribosome biogenesis (Figure 3G). Cancer has
been long known to have an increased demand on ribosome
biogenesis [54], and increased ribosome generation has been
reported to contribute to cancer development [55]. The bio-
logical relevance of this subnetwork is also supported by sur-
vival analysis, which shows a strong di�erentiation between
the high-risk and low-risk groups - see Figure 3F.
Another subnetwork we observed in 58 BRCA Luminal A

samples consists of four copy number gain genes, an overex-
pressed gene, and two underexpressed genes, including EGFR
(Figure 3H). All copy-number gain genes and the overex-
pressed gene are located in chromosome 1q, commonly re-
ported in breast cancer [30]. The subnetwork involves an inter-
esting combination of the down-regulation of the cancer gene
EGFR and the ampli�cation of a group of genes involved in T-
cell receptor signaling (PTPRC, CD247, and ARPC5; see Figure 3I).
Thus we may surmise that the covered population of patients
potentially have relatively low cancer proliferation index with
higher anti-tumor immune response, which can be highly rel-
evant indicators with respect to clinical outcome. Indeed, this
subnetwork is signi�cantly associated with patients’ survival
(Figure 3J).

Multiple-Subnetwork Analysis Across Cancer Types

We next sought to detect up to 5 subnetworks per cancer type
that collectively cover maximum possible number of colored
nodes by solving the MCSC problem on STRING v10.5 network
(with experimentally validated edges). The subnetwork exten-
sion error rate was set to 20%, and we restricted the search
space to subnetworks which do not consist only of expression
outlier nodes, in order to obtain what we believe to be more bi-
ologically interesting results. The network depth t was chosen
for each dataset in a way that made it possible to construct all
candidate subnetworks of maximum possible size while keep-
ing the total number of candidate subnetworks below 2 × 106,
making the problem solvable in reasonable amount of time. We
set t to 69 (15% of the patients), 62 (10% of the patients), and
110 (10% of the patients) respectively for COAD, GBM, and BRCA
datasets. Supplementary Table 1 shows the size, per sample
depth, and the coloring of the nodes in the resulting subnet-
works.
We note that the subnetworks identi�ed in the GBM dataset

had the lowest depth (10-15% of the samples). COAD and BRCA
datasets on the other hand have much larger depth (respec-
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tively 30-48% and 15-32% of the samples). Smaller subnet-
works of the GBM dataset solely consist of copy number gain
genes on chromosome 7q, a known ampli�cation in GBM [56].
The two large subnetworks each contain a single gene with
copy number gain (SEC61G and EGFR, respectively) accompa-
nied by several of overexpressed genes. BRCA dataset exhibits
a similar pattern: each of the four large subnetworks contain a
single copy number gain gene from chromosome 8q, (NSMCE2
in one and MYC in the remaining three subnetworks). Subnet-
works detected in COAD dataset were much more colorful and
recurrently conserved in a larger fraction of samples than those
in the other datasets. All genes with copy number gain are lo-
cated in chromosome 20q.
We identi�ed a subnetwork with 15 nodes (11 genes with

copy number gain, 1 overexpressed and 3 underexpressed
genes) in 149 COAD patients (Figure 4A). All 11 copy number
gain genes belong to chromosome 20q. IL6R, PLCG1, PTPN1,
and HCK are involved in cytokine/interferon signaling to ac-
tivate immune cells to counter proliferating tumor cells [57]
(Figure 4B). UBE2I, AURKA, and MAPRE1 are involved in cell cy-
cle processes. This subnetwork was found to be associated with
patients’ survival outcome (Figure 4C).
We identi�ed another subnetwork with 15 nodes (14 over-

expressed and 1 copy number gain genes) in 313 breast cancer
patients (Figure 4D). Genes in this subnetwork are involved
in cell cycle processes (Figure 4E). In particular the cell cy-
cle checkpoint processes were dysregulated - which is known
to drive tumor initiation processes [58]. The subnetwork was
found to be associated with patients’ survival outcome (Figure
4F) demonstrating its clinical relevance.

Empirical P-Value Estimates Con�rm the Signi�cance
of cd-CAP Identi�ed Networks

To evaluate the signi�cance of cd-CAP’s �ndings, we per-
formed the permutation test described earlier 1000 times on
each cancer type for each possible setting of subnetwork con-
straints. Supplementary Table 2-3 and Figure 6 demonstrate
the distribution of the empirical p-value upper bound esti-
mates with STRING 10 (high con�dence edges) PPI network,
while the lower bound results look similar to what is pre-
sented in the �gure and thus are omitted. In the permutation
tests all cd-CAP identi�ed subnetworks (without additional
constraints) of size 2-5 were composed solely of expression
altered genes; in contrast there are several larger CNV rich sub-
networks observed in the TCGA COAD data set and others, fur-
ther con�rming the signi�cance of our �ndings. Colorful sub-
networks presented in Figure 3 are even less likely to occur at
random (we therefore omit empirical p-value estimates for the
networks in Figure 3).

Discussion

In this paper we introduce a novel combinatorial framework
and an associated tool named cd-CAP which can identify
(one or more) subnetworks of an interaction network where
genes exhibit conserved alteration patterns across many tu-
mor samples. Compared with the state-of-the-art methods
(e.g.[22, 24]), cd-CAP di�erentiates alteration types associated
with each gene (rather than relying on binary information of a
gene being altered or not), and simultaneously detects multiple
alteration type conserved subnetworks.
cd-CAP provides the user with two major options. (a) In

single-subnetwork mode, it computes the largest colored sub-
network that appears in at least t samples. This option ex-
hibits signi�cant speed advantage over available ILP-based ap-

proaches; its a-priori based algorithmic formulation allows
�exible integration of special constraints (on maximal subnet-
works) – not only simplifying complicated ILP constraints, but
also further reducing the number of candidate subnetworks
in iteration steps (a good example for this is the “colorful
conserved subnetworks” as introduced in Section “Additional
Constraints and Parameter Options”). However, the identi�ed
subnetworks are required to be conserved, i.e., each node only
admits one alteration type among the samples sharing it (al-
though we have relaxed constraints that allow each sample to
have a few nodes without any alterations, i.e. colors). In the
future, we may be able to extend the de�nition of a network
to include nodes with color mismatches (for example, accord-
ing to the de�nition in [21]) or [22] with a modi�cation to
cd-CAP’s candidate subnetwork generation algorithm. (b) In
multi-subnetwork mode, it solves the maximum conserved sub-
network cover (MCSC) problem to cover the maximum number
of nodes in all samples with at most l colored subnetworks (l is
user de�ned) via ILP. In the future we aim to re�ne the MCSC
formulation with reduced number of parameters and hope to
develop exact or approximate solutions.
Subnetworks identi�ed by cd-CAP in COAD, GBM and BRCA

datasets from TCGA are typically enriched with genes harbor-
ing gene-expression alterations or copy-number gain. No-
tably, we observed that genes in subnetworks with copy-
number ampli�cation are universally located in the same chro-
mosomal locus. Many of these genes have known interactions
and are functionally similar, demonstrating the ability of cd-
CAP in capturing functionally active subnetworks, conserved
across a large number of tumor samples. These subnetworks
seem to overlap with pathways critical for oncogenesis. In
the datasets analyzed, we observed cell cycle, apoptosis, RNA
processing, and immune system processes that are known to
be dysregulated in a large fraction of tumors. cd-CAP also
captured subnetworks relevant to EGFR/ERBB2 signaling path-
ways, which have distinct expression patterns in speci�c sub-
types of breast cancer [30, 59]. Survival analysis of cd-CAP
identi�ed subnetworks also con�rmed their substantial clini-
cal relevance. In the future, it may be possible to use tissue-
speci�c interaction data (such as [60] or [61]) to capture sub-
networks with gene interactions that are more relevant to a
speci�c cancer and tissue type.

Availability of source code and requirements

• Project name: cd-CAP
• Project home page: https://github.com/ehodzic/cd-CAP
• Operating system(s): Platform independent
• Programming language: C++
• Other requirements: make (version 3.81 or higher), g++
(GCC version 4.1.2 or higher), and IBM ILOG CPLEX Opti-
mization Studio

• License: MIT License
• SciCrunch RRID: SCR_016843
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Figure 1. Schematic Overview of our framework. Multi-omics alteration pro�les of a cohort of tumor samples are identi�ed using appropriate bioinformatics tools.
The alteration information is combined with gene-level information in the form of a sample-gene alteration matrix. Each alteration type is assigned a distinct
color. Using a (signaling) interaction network, cd-CAP identi�es subnetworks with conserved alteration patterns.
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Figure 2. Conserved colored subnetworks. (A-D) Number of maximal solutions and the size of the conserved colored subnetwork obtained using the MCSI
formulation, as a function of network depth t, in each of four cancer types analyzed, on STRING v10 (with high con�dence edges) PPI network . The horizontal axis
denotes the depth (number of patients) of the network. For the blue plot, the vertical axis denotes the maximum possible network size (in terms of the number
of nodes) and thus it is strictly non-increasing by de�nition. For the plots with di�erent colors, the vertical axis denotes the number of distinct networks with
network size equal to that indicated by the blue plot. As can be seen, the red plots depict networks where all nodes have a copy number gain, the yellow plots depict
networks where all nodes are expression outliers and purple plots depict colorful networks (with at least two distinct colors). A total of 41 subnetworks across all
cancer types (10 COAD, 4 GBM, 11 Luminal A and 16 Luminal B) correspond to the end of “valleys” in the color plots - and were further analyzed. Two of the most
interesting ones are provided here - both of which are uni-colored. The number in parenthesis next to each node represents the univariate Cox proportional-hazard
regression coe�cient estimated for each gene, used as its weight in the risk-score calculation to stratify patients into two distinct risk groups. (See Methods
section for details).
(E-G) One of the 11 maximal colored subnetworks identi�ed in BRCA Luminal A dataset: it consists solely of downregulated expression outlier genes and has depth
90 (patients). (E) The colored subnetwork (with 8 nodes) topology. (F) Pathways dysregulated by alterations harboured by the genes in the subnetwork - these
genes are involved in EGFR, ERBB2, and FGFR signaling pathways. (G) Kaplan-Meier plot showing the signi�cant association of the subnetwork, with patients’
clinical outcome. Patients “covered” by the subnetwork were strati�ed into two groups, namely High Risk (8 patients) vs Low Risk (82 patients), based on their
gene expression levels. (See Methods for details.)
(H-J) One of the 10 maximal colored subnetworks identi�ed in COAD dataset - it consists solely of copy number ampli�ed genes and has a depth of 163 (patients).
Genes in this subnetwork belong to the same chromosomal locus 20q13. (H) The colored subnetwork (with 9 nodes) topology. (I) Pathways dysregulated by the
alterations harboured by the genes in the subnetwork - these genes are involved in signal transduction and apoptotic process. (J) Kaplan-Meier plot showing the
signi�cant association of the subnetwork with patients’ clinical outcome (73 High Risk vs 83 Low Risk patients).
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Figure 3. Colorful maximal subnetworks.
(A-D) Number of maximal solutions and the size of the conserved colorful subnetwork obtained using the MCSI formulation, as a function of network depth t,
in each of cancer types analyzed on the STRING v10 (high con�dence edges) PPI network. The horizontal axis denotes the depth (number of patients) of the
network. For the blue plot, the vertical axis denotes the maximum possible network size (in terms of the number of nodes) and thus it is strictly non-increasing by
de�nition. For the plots with di�erent colors, the vertical axis denotes the number of distinct networks with network size equal to that indicated by the blue plot.
As can be seen, the purple plots depict colorful subnetworks and the green plots depict networks that include one to two nodes which are not expression outliers.
A similar analysis was performed on the STRING v10 (experimentally validated edges), REACTOME and HPRD PPI networks. A total of 104 colorful subnetworks
corresponding to the end of “valleys” of the plots were identi�ed across the 4 cancer types in all the above PPI networks. Two of the most interesting ones are
provided here. The number in parenthesis next to each node represents the univariate Cox proportional-hazard regression coe�cient estimated for that gene,
used as its weight in the risk-score calculation to stratify the patients into two distinct risk groups. (See Methods section for details).
(E-G) One of the maximal colorful subnetworks identi�ed in the COAD dataset, consisting of at most 2 non-expression outlier (for this case copynumber gain) genes,
with depth 108 (patients). (E) The colored subnetwork (with 9 nodes) topology - obtained from STRING v10 (with experimentally validated edges) PPI network.
(F) Pathways dysregulated by alterations harboured by the genes in the subnetwork - these genes are involved in Ribosome biogenesis and RNA processing. (G)
Kaplan-Meier plot showing the signi�cant association of the subnetwork, with patients’ clinical outcome (59 High Risk vs 47 Low Risk patients).
(H-J) One of the maximal colorful subnetworks identi�ed in the Luminal A dataset with no color restrictions, with depth of 58 (patients). (H) The colored
subnetwork (with 8 nodes) topology - obtained in the REACTOME PPI network. (I) Pathways dysregulated by the alterations harboured by the genes in the
subnetwork. (J) Kaplan-Meier plot showing the signi�cant association of the subnetwork with patients’ clinical outcome (30 High Risk vs 30 Low Risk patients).
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Figure 4. Multiple Subnetwork Analysis. Two of the largest subnetworks identi�ed across the COAD, GBM and BRCA data sets (5 networks were identi�ed per
cancer type) through the MCSC formulation of cd-CAP on STRING v10.5 (with experimentally validated edges) PPI network. The number in parenthesis next to
each node represents the univariate Cox proportional-hazard regression coe�cient estimated for that gene, used as its weight in the risk-score calculation to
stratify the patients into two distinct risk groups. (See Methods section for details).
(A-C) The largest of the 5 COAD subnetworks with a network depth of 149 (patients). (A) The subnetwork topology (with 15 nodes).
(B) Pathways dysregulated by alterations harboured by the genes in the subnetwork. (C) Kaplan-Meier plot showing the signi�cant association of the subnetwork,
with patients’ clinical outcome (69 High Risk vs 78 Low Risk patients).
(D-F) The largest of the 5 BRCA subnetworks with a network depth of 313 (patients). (D) The subnetwork topology (with 15 nodes). (E) Pathways dysregulated
by the alterations harboured by the genes in the subnetwork. (F) Kaplan-Meier plot showing the signi�cant association of the subnetwork with patients’ clinical
outcome (33 High Risk vs 278 Low Risk patients).
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