The genome of the jellyfish Clytia hemisphaerica and the evolution of the cnidarian life-cycle

Lucas Leclère ${ }^{\mathbf{1}}$, Coralie Horin¹, Sandra Chevalier¹, Pascal Lapébie ${ }^{1 \#}$, Philippe Dru¹, Sophie Peron ${ }^{1}$, Muriel Jager ${ }^{\mathbf{2}}$, Thomas Condamine ${ }^{\mathbf{2}}$, Karen Pottin, ${ }^{\mathbf{2}}$, Séverine Romano¹, Julia Steger¹\#, Chiara Sinigaglia", Carine Barreau¹, Gonzalo Quiroga Artigas¹\#, Antonella Ruggieroi\#, Cécile Fourrage ${ }^{1 \#}$, Johanna E. M. Kraus ${ }^{\text {n }}$, Julie Poulain³, Jean- Marc Aury ${ }^{4}$, Patrick Wincker³, Eric Quéinnec ${ }^{2}$, Ulrich Technau5 ${ }^{5}$, Michaël Manuel ${ }^{2}$, Tsuyoshi Momose ${ }^{\mathbf{1}}$, Evelyn Houliston ${ }^{\mathbf{1}}$ and Richard R. Copley ${ }^{\mathbf{1}}$.

1. Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer (LBDV), 06230 Villefranche-sur-mer, France.
2. Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Evolution ParisSeine (UMR7138), Case 05, 7 Quai St Bernard, 75005, Paris, France.
3. Commissariat à I'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, 19 CNRS UMR 8030, Université d'Evry, France
4. Commissariat à I'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, 13 F-91057 Evry, France
5. Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna A-1090, Austria.
\#Current addresses:
P.L. Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Marseille, France; J.S.: Department for Molecular Evolution and Development, Centre of Organismal Systems Biology, University of Vienna, Vienna A-1090, Austria; C.S. Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, CNRS UMR 5242 - INRA USC 1370, 69364 Lyon cedex 07, France; G.Q.A.:The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA; A.R. Centre de Recherche de Biologie cellulaire de Montpellier (CRBM), CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France; C.F. Service de Génétique UMR 781, Hôpital Necker - APHP, Paris, France; J.E.M.K. Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006 Bergen, Norway.

Jellyfish (medusae) are a distinctive life-cycle stage of medusozoan cnidarians. They are major marine predators, with integrated neurosensory, muscular and organ systems. The genetic foundations of this complex form are largely unknown. We report the draft genome of the hydrozoan jellyfish Clytia hemisphaerica and use multiple transcriptomes to determine gene use across life-cycle stages. Medusa, planula larva and polyp are each characterised by distinct transcriptome signatures reflecting abrupt life cycle transitions, and all deploy a mixture of phylogenetically old and new genes. Medusa specific transcription factors, including many with bilaterian orthologs, associate with diverse neurosensory structures. Compared to Clytia, the polyp-only hydrozoan Hydra has lost many of the medusa-expressed transcription factors, despite similar overall rates of gene content and sequence evolution. Absence of expression and gene loss among Clytia orthologs of genes patterning the anthozoan aboral pole, secondary axis and endomesoderm support simplification of planulae and polyps in Hydrozoa, including loss of bilateral symmetry. Consequently, although the polyp and planula are generally

considered the ancestral cnidarian forms, in Clytia the medusa maximally deploys ancestral cnidarian-bilaterian transcription factor gene complexity.

In most cnidarians a ciliated, worm-like planula larva settles to produce a polyp. In Anthozoa (corals and anemones), the polyp is the sexually reproductive form, but in the Medusozoa branch of Cnidaria, polyps generally produce sexually reproductive jellyfish by a process of strobilation or budding. Jellyfish (medusae) are gelatinous, pelagic, radially symmetric forms found only in the medusozoans. They show complex physiology and behaviour based on neural integration of welldefined reproductive organs, digestive systems, locomotory striated muscles and sensory structures, even camera eyes in some species. Medusae in many species show some degree of nervous system condensation, notably the nerve rings running around the bell margin [1]. Historical arguments that the medusa is the ancestral cnidarian form are no longer widely supported, as recent molecular phylogenies suggest Anthozoa and Medusozoa are sister groups, favouring a benthic, polyp-like adult ancestor on parsimony grounds [2,3] (supplementary note 1). Candidate gene expression studies have shown parallels between medusa and polyp development [4], and transcriptome comparisons between species with and without medusae have extended candidate gene lists [5], but in general the genetic foundations of complex medusa evolution within the cnidarian lineage are not well understood.

There are four classes of Medusozoa: the Cubozoa (box jellyfish), Scyphozoa (so-called 'true' jellyfish), Staurozoa (stalked 'jellyfish') and Hydrozoa [2,6]. Life cycles in different medusozoan lineages have undergone frequent modifications, including loss of polyp, planula and medusa stages. Hydra, the classical model of animal regeneration, is a hydrozoan characterized by the loss of the planula and medusa stages from the life-cycle. Compared to anthozoan genomes [7-9], the Hydra genome is highly diverged and dynamic; it may therefore be untypical of the medusozoa and even the Hydrozoa [10]. Here we describe the genome of Clytia hemisphaerica, a hydrozoan with a typical medusozoan life-cycle, including planula, polyp and medusa stages (Fig. 1). Clytia is easy to maintain and manipulate, and amenable to gene function analysis including Cas9 mediated mutation, allowing mechanistic insight into cellular and developmental processes [6,11,12]. We analyse transcriptomes from all life cycle forms, illuminating the evolution of the planula, polyp and medusa, and demonstrate how the gene complement of the cnidarian-bilaterian ancestor provided the foundation of anatomical complexity in the medusa.

Results

Characteristics of the Clytia genome

We sequenced the Clytia hemisphaerica genome using a whole genome shotgun approach (see methods, tab. S1, fig. S1), giving an assembly with overall length of 445Mb. Staining of DNA in prophase oocytes shows the genome is packaged into 15 chromosome pairs (fig. S2). We predicted transcript sequences using expressed sequence reads from a comprehensive set of stages and tissues as well as deep sequencing of mixed-stage libraries (tab. 1) giving 26,727 genes and 69,083 transcripts. BUSCO analysis of the presence of 'Universal Single Copy Orthologs' indicates a coverage of 86%, comparable or better than many other recently sequenced nonbilaterian animals (tab. S1). The GC content is 35\%, higher than Hydra (29\%, [10]) but lower than the anthozoan Nematostella (39\%, [7]), with a repeat content of $\sim 41 \%$. Reads mapped to the genome suggested a polymorphism frequency of $\sim 0.9 \%$, likely an underestimate of heterozygosity in wild populations, as genomic DNA and mRNA for transcriptomes was derived from self-crossed laboratory-reared Clytia Z strains - see methods. The complete mitochondrial genome showed the same gene order as the Hydroidolina ancestor [13] (fig. S1).

Patterns of gene gain and loss

We identified groups of orthologs for a selection of animals with completely sequenced genomes, and unicellular eukaryotic outgroups (see methods). A binary matrix of orthologous group
presence or absence was then used to infer a maximum-likelihood phylogeny that recapitulated the widely accepted major groupings of animals (fig. 2); Cnidarians were the sister group of the Bilateria, and within the Cnidaria, we recovered the expected monophyletic relationships: corals, anemones, anthozoans and hydrozoans. The hydrozoan branch lengths were the longest within the cnidarians, implying elevated rates of gene gain and loss in their lineage, although branches leading to several other species were noticeably longer, including the ecdysozoan models Caenorhabditis and Drosophila, the ascidian Ciona, as well as the ctenophore Mnemiopsis. Clytia and Hydra branch lengths were similar, suggesting that genome evolution has proceeded at comparable rates in these two hydrozoan lineages. This gene content-based phylogeny positioned sponges (represented by Amphimedon), not ctenophores (represented by Mnemiopsis), as the sister group of all other animals [14-16], although confirmation with additional species is required.

Among many examples of gene gain in Clytia, we could identify new multigene families and also instances of Horizontal Gene Transfers (HGT), as illustrated by a UDP Glucose Dehydrogenase (UGDH) gene (fig. S3). UGDH is required for the biosynthesis of various proteoglycans and so to regulate signalling pathways during metazoan embryonic development [17]. Unusually, the Clytia genome contains two versions of the UGDH gene, including one acquired in Hydrozoa by HGT from a giant virus of the Mimiviridae family and expressed specifically during medusa formation. Interestingly, this UGDH xenolog was lost in the Hydra lineage and replaced by another UGDH acquired through HGT from bacteria (fig. S3) [10]. We also detected numerous gene duplications in the hydrozoan lineage, illustrated by the 39 Innexin gap junction genes (fig. S4), 14 Green Fluorescent Protein (GFP) and 18 Clytin photoprotein genes (fig. S5) found in the Clytia genome. The 4 GFPs and 3 Clytins previously reported in Clytia are transcribed from several recently duplicated genes, likely facilitating the levels of protein production needed to achieve the high cytoplasmic concentrations required for energy transfer between Clytins and GFPs [18].

Numerous likely gene losses in the hydrozoan lineage (i.e. absent in Clytia and Hydra) were confirmed by alignment-based phylogenetic analyses. These include many transcription factors involved in nervous system development in Bilateria (e.g. GBX, MNX, RAX, DBX, Pax3-7/PaxD, FOXG) $[19,20]$. Also absent were regulators of the anthozoan directive axis (the axis orthogonal to the oral/aboral axis, and likely related to the bilaterian dorsal/ventral axis [21,22], including HOX2 (represented in Nematostella by Anthox7/HoxC, Anthox8/HoxD), GBX, Netrin, the netrin receptor UNC-5, and chordin (The 'Chordin-like' gene described in Hydra [23], is not orthologous to bilaterian and Nematostella Chordin [24]). Comparisons between the two available hydrozoan genomes revealed that 7 Clytia transcription factors that we identify as specifially expressed in the medusa (DRGX, PDX/XLOX, TLX, CDX, Six1/2, FoxL2, CnoxA, see below) have been lost in Hydra, but are still present in the transcriptome of one of its closest relatives possessing a medusoid stage, Ectopleura larynx (fig. S6). These Hydra gene losses thus likely relate to the loss of the medusa stage.

Gene order disruption in the hydrozoan lineage

We tested conservation of gene order between Clytia, Hydra, Nematostella and Branchiostoma floridae, a bilaterian showing a particularly slow rate of loss of syntenic blocks [25], by identifying conserved adjacent pairs of orthologs (see methods) shared between two genomes. Clytia shares most genes in adjacent pairs with Hydra (340), including myc2 and its target CAD [26]. Fewer pairs were conserved between Clytia and either Nematostella (36) or Branchiostoma (16). Although Nematostella, Hydra and Clytia, as cnidarians, are equally distant phylogenetically from Branchiostoma, the number of genes in adjacent pairs in Clytia/Branchiostoma (16) or Hydra/ Branchiostoma (13) is considerably smaller than in Nematostella/Branchiostoma (110). Similar trends emerged from analyses limited to orthologs identified in all four species (Ch/Hv $51 ; \mathrm{Ch} / \mathrm{Nv}$ 8; Ch/Bf 4; Nv/Bf 20), so our conclusions are not biased by an inability to detect more divergent orthologs. These numbers are all significant compared to the same analyses performed with a randomized Clytia gene order. Such conservation of adjacent gene pairs possibly relates to coordinated transcription, or enhancers being embedded in adjacent genes [27]. In contrast, none
of the previously described clusters of homologous developmental genes conserved between Nematostella and bilaterians, involving Wnt, Fox, NK, ParaHox or Hox family members [22,28,29] could be detected in Clytia (tab. S2) reinforcing the idea of rapid evolution of the genome organization in the common branch of Clytia and Hydra.

Elevated stage specific gene expression in medusae and polyps

Hydrozoan life cycles are characterised by abrupt morphological transitions: metamorphosis from the planula to polyp; and growth and budding of the compex medusa from gonozooid polyps. To better understand global trends in differential gene use across the life cycle we produced a comprehensive replicated transcriptome dataset from 11 samples: early gastrula embryos, planulae at 3 developmental stages, newly-metamorphosed primary polyps, 3 components of the polyp colony (the feeding gastrozooid polyps, budding gonozooids and stolon), freshly-budded baby medusae, and adult male and female medusae (Fig. 1A).

Principal component analysis (PCA) of the most variably expressed genes across these transcriptomes confirmed sample reproducibility and revealed clear clustering of the three distinct hydrozoan life cycle stages: 1) the gastrula and planula samples 2) the polyp and stolon samples and 3) the medusa samples (Fig. 3A). Transcriptomes from gonozooids, specialized polyp structures containing developing medusae, were intermediate between the polyp and medusa ones. Inter-sample distances based on all genes presented a similar picture to the PCA (Fig. 3B). The main Clytia life cycle phases thus have qualitatively distinct overall profiles of gene expression, with a distance based dendrogram showing the polyp and medusa transcriptomes closer to each other than either is to the planula stage.

We used a novel method to identify stage specific genes, fitting the distribution of log-transformed gene expression for a given library to the sum of two Gaussian distributions, one of which we interpret as an 'on' set and the other an 'off' set (see methods, Fig. 3C, Fig. S7) [30]. By these criteria, polyp and medusa stages expressed more genes than embryo and planula stages, with highest expression of distinct genes at the primary polyp stage (19801 genes) and lowest expression at the early gastrula (13489 genes).

The majority of predicted genes, 84% (22472/26727) are expressed in at least one of our sampled stages (see methods; note that our gene prediction protocol includes data from deep sequencing of other mixed libraries), and 41% (10874/26727) are expressed at all stages. We defined genes as specific to a life-cycle stage if they were 'on' in at least one of the component samples for each main stage (Planula: early gastrula, 1, 2 or 3 day old planula; Polyp: stolon, primary polyp, or polyp head; Medusa: baby, mature or male), and 'off' in all other stages. We also identified genes specifically not expressed at either planula, polyp or medusa stages and so expressed at the two other stages. By these criteria, we found 335 planula, 1534 polyp and 808 medusa specific genes, and 1932, 284 and 981 genes specifically not expressed at planula, polyp and medusa stages respectively. We further filtered these data, requiring that genes also show significant ($\mathrm{P}<0.001$, as defined by DESeq2 contrasts) expression differences between stages defined as 'on' and other stages, allowing a rigorous treatment of the variance between biological replicates. The application of this comparative expression criterion to the initial "stage-specific" gene sets derived by independent "on-off" determination for each sample, reduced the lists to 183 planula, 783 polyp and 614 medusa specific genes, and 1126,180 and 374 genes specifically not expressed at planula polyp and medusa stages respectively. We can thus conclude that the two adult stages in the Clytia life cycle show greater complexity of gene expression than the planula larva.

In order to determine whether the medusa stage was enriched in genes found only in the medusozoan clade, as might plausibly be expected of an evolutionary novelty, we combined these lists of stage specific genes with a phylogenetic classification. We classified stage specific genes by the phylogenetic extent of the OMA Hierarchical Orthology Group of which they were a member (see methods), or the absence of significant sequence similarity to other species (for `Clytia
specific' sequences), and tested for enrichment of phylogenetic classes in each life-cycle stage (fig. S8). By these criteria, all three main life cycle stages (planula, polyp and medusa) were enriched in 'Clytia specific' sequences, indicating that phylogenetically 'new' genes are more likely than 'old' genes to show stage-specific expression, but are not associated with any one life cycle phase. In general, genes that evolved after the cnidarian/bilaterian split were more likely to be expressed specifically in adult (polyp/medusa) stages.

Stage specific transcription factors

To address the nature of the molecular differences between stages, we assessed enrichment of Gene Ontology (GO) terms in stage specific genes relative to the genome as a whole. Planula larvae were found to be significantly enriched in G-protein coupled receptor signalling components, while polyp and medusa were enriched in cell-cell and cell-matrix adhesion class molecules (see tab. S3). Medusa specific genes were unique in being significantly enriched in the "nucleic acid binding transcription factor activity" term.

Confirming the strong qualitative distinction in gene expression profiles between planula, polyp and medusa (see above Fig. 3a and 3b) clustering of transcription factor expression profiles recovers the three major life-cycle stages (Fig. 4A). The majority of transcription factors (TFs) that were specific to a particular stage, using the criteria described above, were specific to the medusa (33, of which 11 are plausibly sex specific, see tab. S4). 12 were polyp specific (e.g. VSX, two HMX orthologs) and 16 were polyp-medusa specific, such that a total of 63 TFs were expressed at polyp and/or medusa stages but not at the planula stage (12.5% of the total TF). Only 3 TFs showed expression specific to the planula (TBX8 [31], a zinc finger containing protein and another T-box containing protein, neither obviously orthologous to other animal genes), while 8 were planula-polyp and 7 planula-medusa specific. This pattern is even more striking in the case of the 64 total homeodomain-containing TFs: 9 were medusa specific, 6 polyp specific and 5 polypmedusa specific, with a total of 31% TF expressed at polyp and/or medusa stages but not at the planula stage. No homeodomain-containing TFs were identified as planula specific, with 1 specific to planula-polyp and 2 to planula-medusa.

Among TFs expressed strongly in the medusa, but poorly at planula stages, we noted a large number with known involvement neural patterning during bilaterian development (Medusa only: Paraxis/TCF15, PDX/XLOX, CDX, TLX, Six1/2, DRGX, FOXQ2 paralogs; Polyp and Medusa: Six3/6, FoxD, FezF, OTX paralogs, HMX, TBX4/5, DMBX, NK2, NK6, Neurogenin1/2/3). We performed in situ hybridization analysis in medusae for a selection of these TF genes, and detected major sites of expression in the manubrium, gonads, nerve rings and tentacle bulbs (Fig. 4c,d). Within these structures, which are involved in mediating and coordinating feeding, spawning and swimming in response to environmental stimuli $[1,32,33]$, expression showed a variety of distinct patterns, including scattered cell populations with putative sensory or effector roles. The variety of cellular distributions indicates a degree of complexity not previously described at the molecular level. We propose that, in Clytia, expression of conserved TFs in the medusa is associated with diverse cell types, notably with the neural and neurosensory functions of a complex nervous system, with continuous expression of certain transcription factors in post-mitotic neurons being necessary to maintain neuronal identity [34]. Members of the Sox, PRDL and Achaete scute (bHLH subfamily) orthology groups, commonly associated with neurogenesis [35,36] are detectable across all life cycle stages in Clytia, so our results are unlikely simply due to a higher production of nerve cells in the medusa.

Anthozoan larvae and bilaterian embryos express a common set of TFs at their respective aboral/ anterior ends, including Six3/6, FezF, FoxD, Otx, Rx, FoxQ2, and Irx [37,38] In the Clytia planula, whose anterior/aboral structures are relatively simple, most orthologs of this TF set are not expressed (Six3/6, FezF, FoxD, Otx orthologs), while another, Rx, was not found in the genome. A FoxQ2 gene (CheFoxQ2a) was reported to be aborally expressed in Clytia planulae [39] but this is a parlog of Nematostella aboral and Platynereis apical FoxQ2 [37,38], which are instead
orthologous to CheFoxQ2b, a Clytia polyp-medusa specific gene (fig. S6.2, [39]). Irx is the only member of this conserved set of anterior/aboral TFs likely to be aborally expressed in Clytia planulae [40].

Organisation of the endoderm and oral ectoderm is also markedly simpler in Clytia than in Nematostella planulae, lacking mesenteries, mouth and pharyngeal structures. Correspondingly, many endoderm and mesoderm patterning genes expressed in many bilaterian larvae and Nematostella planulae (Cdx, PDX/XLOX, Nk2, Nk6, Twist, Paraxis/TCF15, Six1/2, Hand) [41,42], are not expressed in Clytia planulae. In contrast, despite different gastrulation mechanisms in anthozoans and hydrozoans, orthologs of TFs associated with gastrulation and endoderm formation in Nematostella [43], including FoxA, FoxB, Brachyury, Snail, Gsc are also expressed in oralderived cells at gastrula and planula stages in Clytia [40], as well as at polyp and medusa stage.

Discussion

Three lines of evidence suggest that the Clytia genome has undergone a period of rapid evolution since the divergence of Hydrozoa from their common ancestor with Anthozoa (fig. 5). Firstly, rates of amino acid substitution appear to be elevated in hydrozoan relative to anthozoan cnidarians [44]. Secondly, orthologous gene content analysis shows that hydrozoans have the longest branches within the Cnidaria, with elevated rates of gene gain and loss (fig. 2). Thirdly, analysis of adjacent gene pairs shows more conservation between Anthozoa and Branchiostoma (as a representative of the Bilateria) than between Hydrozoa and Branchiostoma.

Gene expression analysis and lost developmental genes point to secondarily simplified planula and polyp structures in Clytia. The planula larva, in particular, shows an absence of key apical (i.e. aboral/anterior) and endomesoderm patterning genes considered ancestral on the basis of shared expression patterns in Anthozoa and bilaterian larvae [37,38,42]. Similarly, several genes with roles in patterning the directive axis of the anthozoan planula $[21,45]$ are lost from the Clytia and Hydra genomes (Chordin, Hox2, Gbx, Netrin, unc-5), providing support for loss of bilaterality in medusozoans [24]. Much of the directive axis-patterning gene expression lost in Clytia planulae is, in Nematostella, likely involved in differentiating structures - mesenteries - that are maintained in the adult polyp, supporting the idea that the simple state of the Clytia polyp is secondary.

The medusa stage, as well as being morphologically complex, expresses a notable number of transcription factors that are conserved between cnidarians and bilaterians. These genes are expressed either specifically in the medusa (eg. DRGX, Twist and Pdx), or in both polyp and medusa but not planula stages (eg. Six3/6, Otx and FoxD), with medusa expression patterns suggesting roles in establishment or maintenance of neural cell-type identity. Hydra has lost the medusa from its life-cycle and has lost orthologs of most transcription factors that in Clytia are expressed specifically in the medusa, further supporting the notion that these genes are regulating the identity of cells now restricted to the medusa.

We propose then that, in part, the rapid molecular evolution we observe at the genome scale in Hydrozoa is connected as much to the simplified planula and polyp as the more obvious novelty of the medusa. Genomic and transcriptomic studies of additional medusozoan species, including scyphozoans, which produce medusae by strobilation and whose polyps are less simple than those of hydrozoans, may show whether the expansion of cell type and morphological complexity in the medusa phase, involving both old and new genes, has similarly been offset by reduction of gene usage in planula and polyp stages in other medusozoan lineages.

Data availability

Data downloads and a genome browser are available at http://marimba.obs-vlfr.fr/

Acknowledgments

We thank Iain Mathieson (UPenn) and Richard Mott (UCL) for statistical advice, and S. Collet, L Gissat and L. Gilletta for animal maintenance. Funding was provided by the CORBEL European Research Infrastructure cluster project, grants from the Agence Nationale de la Recherche (ANR-13-BSV2-0008-01 "OOCAMP" and ANR-13-PDOC-0016 "MEDUSEVO"), a Marie Curie training network (FP7-PEOPLE-2012-ITN 317172 "NEPTUNE"), André Picard Network, EMBRC-Fr as well as core CNRS and Sorbonne University funding to the LBDV.

Methods

Animals and extraction of genomic DNA.

A 3-times self-crossed strain (Z4C) ${ }^{2}$ (male) was used for genomic DNA extraction, aiming to reduce polymorphisms. The first wild-type Z-strain colony was established using jellyfish sampled in the bay of Villefranche-Sur-Mer (France). Sex in Clytia is influenced by temperature [46] and some young polyp colonies can produce both male and female medusae. Male and female medusae from colony Z were crossed to make colony Z^{2}. Two further rounds of self-crossing produced (Z4C)2 (see fig. S1 for relationships between colonies). For in situ hybridization (and other histological staining) we used a female colony $Z 4 B$, a male colony $Z 10$ (offspring of (Z4C) ${ }^{2} x$ Z4B) as well as embryos produced by crossing Z10 and Z4B strains. (Z4C) ${ }^{2}, Z 4 B$ and $Z 10$ are maintained as vegetatively growing polyp colonies.

For genomic DNA extraction mature (Z4C) ${ }^{2}$ jellyfish were cultured in artificial sea water (RedSea Salt, 37% salinity) then in Millipore filtered artificial sea water containing penicillin and streptomycin for 3 to 4 days. They were starved for at least 24 hours. Medusae were snap frozen in liquid nitrogen, ground with mortar and pestle into powder then transferred into a 50 ml Falcon tubes (roughly 50~100 jellyfish/tube). About 20 ml of DNA extraction buffer (200 mM Tris-HCl pH 8.0 and 20 mM EDTA, $0.5 \mathrm{mg} / \mathrm{ml}$ proteinase K and $0.1 \% \mathrm{SDS}$) were added and incubated at $50^{\circ} \mathrm{C}$ for 3 hours until the solution became uniform and less viscous. An equal volume of phenol was added, vortexed for 1 minute, centrifuged for 30 minutes at 8000 g , then supernatant was transferred to a new tube. This extraction process was repeated using chloroform. X1/10 volume of 5 M NaCl then 2.5 volumes of ethanol were added to the supernatant before centrifugation for 30 min at 8000 g . The DNA precipitate was rinsed with 70% ethanol, dried and dissolved into distilled water. $210 \mu \mathrm{~g}$ of DNA was obtained from 270 male medusae.

Genome sequencing and assembly.

Libraries for Illumina \& 454 sequencing were prepared by standard methods (full details in supplementary methods file 1).

Sequence files were error corrected using Musket [47] and assembled using SOAPdenovo2 [48] with a large kmer size of 91 in an effort to separate haplotypes at this stage. We subsequently used Haplomerger2 to collapse haplotypes to a single more contiguous assembly [49]. Further scaffolding was done with L_RNA_Scaffolder using Trinity predicted transcript sequences (see below) $[50,51]$.

RNA extraction, transcriptome sequencing and gene prediction.

RNA samples were prepared from Z4B female and Z10 male medusae and polyps, as well as embryos generated by crossing these medusae. Animals were starved for at least 24 hours before extraction and kept in Millipore filtered artificial sea water containing penicillin and streptomycin. Then they were put in the lysis buffer (Ambion, RNAqueous ${ }^{\circledR}$ MicroKit), vortexed, immediately frozen in liquid nitrogen, and stored at $-80^{\circ} \mathrm{C}$ until RNA preparation.

Total RNA was prepared from each sample using the RNAqueous® Microkit or RNAqueous ${ }^{\circledR}$ (Ambion). Treatment with DNase I (Q1 DNAse, Promega) for 20 min at $37^{\circ} \mathrm{C}$ (2 units per sample) was followed by purification using the RNeasy minElute Cleanup kit (Qiagen). See tab. S5 for total RNA (evaluated using Nanodrop). RNA quality of all samples was checked using the Agilent 2100 Bioanalyzer. The samples used to generate the expression data presented in fig. 3A are described in tab. S5. For the 'mix' sample, purification of mRNA and construction of a non-directional cDNA library were performed by GATC Biotech ${ }^{\circledR}$, and sequencing was performed on a HiSeq 2500 sequencing system (paired-end 100 cycles). For the other samples, purification of mRNA and construction of a non-directional cDNA library were performed by USC Genomics Center using the Kapa RNA library prep kit, and sequencing was performed using either HiSeq 2500 (single read 50 cycles) or NextSeq (single read 75 cycles).

Transcriptome assembly

We constructed a de novo transcriptome assembly without recourse to genomic data, assembling all RNA-Seq libraries with Trinity [50].

Gene prediction

Genes were predicted from transcriptome data. Using tophat2, we mapped single end RNA-seq reads from libraries of early gastrula; 1, 2 and 3 day old planula; stolon, polyp head, gonozooid, baby medusa, mature medusa, male medusa, growing oocyte and fully grown oocyte to the genomic sequence [52]. In addition we mapped a mixed library made from the above samples but sequenced with 100bp paired end reads, and a further mature medusa library (100bp paired end). Genes were then predicted from these mappings using cufflinks and cuffmerge. Proteins were predicted from these structures using Transdecoder, and the protein encoded with the most exons taken as a representative for gene level analyses.

Protein data sets.

Protein analyses. We constructed a database of metazoan protein coding genes from complete genomes, including the major bilaterian phyla, all non-bilaterian animal phyla (including 6 cnidarian species) and unicellular eukaryotic outgroups. For the majority of species, we used annotation from NCBI, and selected one representative protein per gene, to facilitate subsequent analyses (tab. S6). We used the proteins as the basis for an OMA analysis to identify orthologous groups [53]. We converted the OMA gene OrthologousMatrix.txt file into Nexus format with datatype=restriction and used it as the basis for a MrBayes analysis, using corrections for genes present in fewer than 2 taxa 'Iset coding=noabsencesites|nosingletonpresence', as described in [14]. This tree was then used in a subsequent OMA run to produce Hierarchical Orthologous Groups (HOGs). These HOGs were used as the basis for the phylogenetic classification of Clytia genes into one category out of eukaryotic, holozoan, metazoan, planulozoan, cnidarian or hydrozoan, based on the broadest possible ranking of the constituent proteins. Genes were presumed to have evolved in the most recent common ancestor of extant leaves, and leaves under this node where the gene was not present were presumed to be losses, with the minimum number of losses inferred to explain the observed presence and absence. Clytia specific genes were identified as those whose encoded proteins had no phmmer hits to the set of proteins used in the OMA analysis.

Where specific genes are named in the text, orthology assignments were taken from classical phylogenetic analysis (or in a few cases pre-existing sequence database names). Signature domains (e.g. Homeobox, Forkhead, T-box, HLH) were searched against the protein set using Pfam HMM models and hmmsearch of the hmmer3 package, with the database supplied 'gathering' threshold cutoffs [54,55]. Sequence hits were extracted and aligned with MAFFT [56] and a
phylogeny reconstructed using RAxML with the LG model of protein evolution and gamma correction [57].

Transcription factors were assigned via matches beneath the 'gathering' threshold to Pfam domains contained in the transcriptionfactor.org database [58], with the addition of MH1, COE1_DBD, BTD, LAG1-DNAbind and HMG_Box.

Ectopleura larynx proteins were predicted with Transdecoder, including Pfam hit retention, from Trinity assembled reads (SRA accessions SRR923510_1 and SRR923510_2) [50,59].

Synteny analyses. Genes were ordered on their scaffolds (using the GFF files described in tab. S6) based on the average of their start and end position, and for each gene, the adjacent genes recorded, ignoring order and orientation but respecting boundaries between scaffolds (i.e. terminal genes had only one neighbour). Between species comparisons were performed using the Orthologous Groups from OMA, to avoid ambiguity from 1:many and many:many genes. When both members of an adjacent pair in one species were orthologous to the members of an adjacent pair in the other species, two genes were recorded as being involved in a CAPO (Conserved Adjacent Pair of Orthologs). A consecutive run of adjacent pairs (i.e. a conserved run of 3 genes) would thus be two pairs, but count as 3 unique genes.

RNA-Seq analyses. RNA-seq reads were aligned to the genome using STAR [60]. Counts of reads per gene were obtained using HTSeq-count. Gene level counts were further analyzed using the DESeq2 R package [61]. An estimate of the mode of row geometric means (rather than the default median) was used to calculate size factors. PCA and heatmaps were generated using regularized logarithms of counts (with blind = F). Bootstrapped hierarchical clustering was performed with pvclust using the default parameters [62]. Significant differences in gene expression were calculated via pairwise contrasts of different 'conditions' (replicated libraries). Planula stages were defined as any of 1,2 or 3 day old planula; Polyp any of stolon, primary polyp, polyp head or gonozooid; medusa any of gonozooid, baby medusa, mature medusa or male medusa. In order to be considered 'up' in planula, polyp or medusa, a gene needed to be significantly up (Ifc threshold $=0.0$, alt hypothesis $=$ 'greater') in at least one 'condition' of that stage relative to all 'condition' of different stages.

Stage specific expression. To identify genes whose expression is restricted to particular stages we developed a two component pipeline: Firstly we discriminated 'on' vs 'off' genes independently for each stage as defined by absolute expression values, and then we assessed statistically significant differences between stages (which may not be between 'on' and 'off'). To estimate for each sample the relative proportions of genes in the on vs. off categories, following Hebenstreit and Teichmann [30] we fitted each of our length normalized rlog -transformed gene expression datasets, averaged over replicates, to a mixture of two Gaussian distributions using the mixmodel R package [63]. The total number of 'on' genes for a given stage is estimated by multiplying the mixing proportion (lambda) of the 'on' peak by the total number of genes. Individual genes were defined as 'on' if they had a posterior probability >0.5 of coming from the more highly expressed distribution. This approach avoids choosing an arbitrary "FPKM" (Fragments per Kilobase per Million mapped reads) value as an indicator of expression. Our frequency-distribution based approach defines gene 'on' or 'off' states independently of the total numbers of distinct transcripts expressed in a given sample, unlike FPKM values which are a measure of concentration and so for similarly expressed genes will be relatively higher in samples with low complexity.

GO term enrichment. GO terms were assigned via sequence hits to the PANTHER database using the supplied 'pantherScore2.0.pl' program. Term enrichment was tested using the 'Ontologizer' software with a 'Parent-Child-Union' calculation (the default) and Bonferroni multiple testing correction [64].

Supplementary notes

Note 1. Arguments for an ancestral medusa.

Historically, some authors considered the medusa form to be the ancestral state of the cnidarians, with the anthozoans having lost this stage. Under this scenario hydrozoans are the earliest branching cnidarians (i.e. the sister group of other cnidarian taxa) because of their more radial (and hence assumed simpler) morphology, and consequently medusozoans are paraphyletic (to use modern terminology). Anthozoans would then have evolved from within the medusozoan group, and so must have lost the medusa stage [65]. Aside from debatable assumptions, this scenario has no support from molecular phylogenies [2,3]. More recently, some selected gene expression patterns have been used to support the idea of homology between the mesoderm of bilaterians and the entocodon of developing hydrozoan medusae, a 'third' cell layer that forms between ectoderm and endoderm during the early stages of medusa bud development [66-68]. Again, such arguments are not easily reconciled with modern phylogenies.

References

1. Koizumi O, Hamada S, Minobe S, Hamaguchi-Hamada K, Kurumata-Shigeto M, Nakamura M, Namikawa H: The nerve ring in cnidarians: its presence and structure in hydrozoan medusae. Zoology 2015, 118:79-88.
2. Zapata F, Goetz FE, Smith SA, Howison M, Siebert S, Church SH, Sanders SM, Ames CL, McFadden CS, France SC, et al.: Phylogenomic Analyses Support Traditional Relationships within Cnidaria. PLoS One 2015, 10:e0139068.
3. Kayal E, Bentlage B, Sabrina Pankey M, Ohdera AH, Medina M, Plachetzki DC, Collins AG, Ryan JF: Phylogenomics provides a robust topology of the major cnidarian lineages and insights on the origins of key organismal traits. BMC Evol Biol 2018, 18:68.
4. Kraus JEM, Fredman D, Wang W, Khalturin K, Technau U: Adoption of conserved developmental genes in development and origin of the medusa body plan. Evodevo 2015, 6:23.
5. Sanders SM, Cartwright P: Interspecific Differential Expression Analysis of RNA-Seq Data Yields Insight into Life Cycle Variation in Hydractiniid Hydrozoans. Genome Biol Evol 2015, 7:2417-2431.
6. Leclère L, Copley RR, Momose T, Houliston E: Hydrozoan insights in animal development and evolution. Curr Opin Genet Dev 2016, 39:157-167.
7. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J, Salamov A, Terry A, Shapiro H, Lindquist E, Kapitonov VV, et al.: Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 2007, 317:86-94.
8. Shinzato C, Shoguchi E, Kawashima T, Hamada M, Hisata K, Tanaka M, Fujie M, Fujiwara M, Koyanagi R, Ikuta T, et al.: Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 2011, 476:320-323.
9. Baumgarten S, Simakov O, Esherick LY, Liew YJ, Lehnert EM, Michell CT, Li Y, Hambleton EA, Guse A, Oates ME, et al.: The genome of Aiptasia, a sea anemone model for coral symbiosis. Proc Natl Acad Sci U S A 2015, 112:11893-11898.
10. Chapman JA, Kirkness EF, Simakov O, Hampson SE, Mitros T, Weinmaier T, Rattei T, Balasubramanian PG, Borman J, Busam D, et al.: The dynamic genome of Hydra. Nature 2010, 464:592-596.
11. Houliston E, Momose T, Manuel M: Clytia hemisphaerica: a jellyfish cousin joins the laboratory. Trends Genet 2010, 26:159-167.
12. Quiroga Artigas G, Lapébie P, Leclère L, Takeda N, Deguchi R, Jékely G, Momose T, Houliston E: A gonad-expressed opsin mediates light-induced spawning in the jellyfish Clytia. Elife 2018, 7.
13. Kayal E, Bentlage B, Collins AG, Kayal M, Pirro S, Lavrov DV: Evolution of linear mitochondrial genomes in medusozoan cnidarians. Genome Biol Evol 2012, 4:1-12.
14. Pisani D, Pett W, Dohrmann M, Feuda R, Rota-Stabelli O, Philippe H, Lartillot N, Wörheide G: Genomic data do not support comb jellies as the sister group to all other animals. Proc Natl Acad Sci U S A 2015, 112:15402-15407.
15. Whelan NV, Kocot KM, Moroz TP, Mukherjee K, Williams P, Paulay G, Moroz LL, Halanych KM: Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 2017, 1:1737-1746.
16. Feuda R, Dohrmann M, Pett W, Philippe H, Rota-Stabelli O, Lartillot N, Wörheide G, Pisani D: Improved Modeling of Compositional Heterogeneity Supports Sponges as Sister to All Other Animals. Curr Biol 2017, 27:3864-3870.e4.
17. García-García MJ, Anderson KV: Essential role of glycosaminoglycans in Fgf signaling during mouse gastrulation. Cell 2003, 114:727-737.
18. Fourrage C, Swann K, Gonzalez Garcia JR, Campbell AK, Houliston E: An endogenous green fluorescent protein-photoprotein pair in Clytia hemisphaerica eggs shows cotargeting to mitochondria and efficient bioluminescence energy transfer. Open Biol 2014, 4:130206.
19. Lowe CJ, Wu M, Salic A, Evans L, Lander E, Stange-Thomann N, Gruber CE, Gerhart J, Kirschner M: Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 2003, 113:853-865.
20. Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu J-K: Evolution of bilaterian central nervous systems: a single origin? Evodevo 2013, 4:27.
21. Matus DQ, Pang K, Marlow H, Dunn CW, Thomsen GH, Martindale MQ: Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proc Natl Acad Sci U S A 2006, 103:11195-11200.
22. Ryan JF, Mazza ME, Pang K, Matus DQ, Baxevanis AD, Martindale MQ, Finnerty JR: Prebilaterian origins of the Hox cluster and the Hox code: evidence from the sea anemone, Nematostella vectensis. PLoS One 2007, 2:e153.
23. Rentzsch F, Guder C, Vocke D, Hobmayer B, Holstein TW: An ancient chordin-like gene in organizer formation of Hydra. Proc Natl Acad Sci U S A 2007, 104:3249-3254.
24. Genikhovich G, Technau U: On the evolution of bilaterality. Development 2017, 144:3392-3404.
25. Simakov O, Kawashima T, Marlétaz F, Jenkins J, Koyanagi R, Mitros T, Hisata K, Bredeson J, Shoguchi E, Gyoja F, et al.: Hemichordate genomes and deuterostome origins. Nature 2015, 527:459-465.
26. Hartl M, Mitterstiller A-M, Valovka T, Breuker K, Hobmayer B, Bister K: Stem cell-specific activation of an ancestral myc protooncogene with conserved basic functions in the early metazoan Hydra. Proc Natl Acad Sci U S A 2010, 107:4051-4056.
27. Irimia M, Tena JJ, Alexis MS, Fernandez-Miñan A, Maeso I, Bogdanovic O, de la CalleMustienes E, Roy SW, Gómez-Skarmeta JL, Fraser HB: Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res 2012, 22:2356-2367.
28. Sullivan JC, Ryan JF, Mullikin JC, Finnerty JR: Conserved and novel Wnt clusters in the basal eumetazoan Nematostella vectensis. Dev Genes Evol 2007, 217:235-239.
29. Shimeld SM, Degnan B, Luke GN: Evolutionary genomics of the Fox genes: origin of gene families and the ancestry of gene clusters. Genomics 2010, 95:256-260.
30. Hebenstreit D, Fang M, Gu M, Charoensawan V, van Oudenaarden A, Teichmann SA: RNA sequencing reveals two major classes of gene expression levels in metazoan cells. Mol Syst Biol 2011, 7:497.
31. Sebé-Pedrós A, Ariza-Cosano A, Weirauch MT, Leininger S, Yang A, Torruella G, Adamski M, Adamska M, Hughes TR, Gómez-Skarmeta JL, et al.: Early evolution of the T-box transcription factor family. Proc Natl Acad Sci U S A 2013, 110:16050-16055.
32. Mackie GO, Singla CL, Stell WK: Distribution of nerve elements showing FMRFamidelike immunoreactivity in hydromedusae. Acta Zool 1985, 66:199-210.
33. Takeda N, Kon Y, Quiroga Artigas G, Lapébie P, Barreau C, Koizumi O, Kishimoto T, Tachibana K, Houliston E, Deguchi R: Identification of jellyfish neuropeptides that act directly as oocyte maturation-inducing hormones. Development 2018, 145.
34. Kerk SY, Kratsios P, Hart M, Mourao R, Hobert O: Diversification of C. elegans Motor Neuron Identity via Selective Effector Gene Repression. Neuron 2017, 93:80-98.
35. Jager M, Quéinnec E, Le Guyader H, Manuel M: Multiple Sox genes are expressed in stem cells or in differentiating neuro-sensory cells in the hydrozoan Clytia hemisphaerica. Evodevo 2011, 2:12.
36. Rentzsch F, Layden M, Manuel M: The cellular and molecular basis of cnidarian neurogenesis. Wiley Interdiscip Rev Dev Biol 2017, 6.
37. Sinigaglia C, Busengdal H, Leclère L, Technau U, Rentzsch F: The bilaterian head patterning gene six3/6 controls aboral domain development in a cnidarian. PLoS Biol 2013, 11:e1001488.
38. Marlow H, Tosches MA, Tomer R, Steinmetz PR, Lauri A, Larsson T, Arendt D: Larval body patterning and apical organs are conserved in animal evolution. BMC Biol 2014, 12:7.
39. Chevalier S, Martin A, Leclère L, Amiel A, Houliston E: Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica. Dev Genes Evol 2006, 216:709-720.
40. Lapébie P, Ruggiero A, Barreau C, Chevalier S, Chang P, Dru P, Houliston E, Momose T: Differential responses to Wnt and PCP disruption predict expression and developmental function of conserved and novel genes in a cnidarian. PLoS Genet 2014, 10:e1004590.
41. Martindale MQ, Pang K, Finnerty JR: Investigating the origins of triploblasty:
"mesodermal" gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum, Cnidaria; class, Anthozoa). Development 2004, 131:2463-2474.
42. Steinmetz PRH, Aman A, Kraus JEM, Technau U: Gut-like ectodermal tissue in a sea anemone challenges germ layer homology. Nat Ecol Evol 2017, 1:1535-1542.
43. Röttinger E, Dahlin P, Martindale MQ: A framework for the establishment of a cnidarian gene regulatory network for "endomesoderm" specification: the inputs of Bcatenin/TCF signaling. PLoS Genet 2012, 8:e1003164.
44. Simion P, Philippe H, Baurain D, Jager M, Richter DJ, Di Franco A, Roure B, Satoh N, Quéinnec É, Ereskovsky A, et al.: A Large and Consistent Phylogenomic Dataset Supports Sponges as the Sister Group to All Other Animals. Curr Biol 2017, 27:958-967.
45. Saina M, Genikhovich G, Renfer E, Technau U: BMPs and chordin regulate patterning of the directive axis in a sea anemone. Proc Natl Acad Sci U S A 2009, 106:18592-18597.
46. Carré D, Carré C : Origin of germ cells, sex determination, and sex inversion in medusae of the genus Clytia (Hydrozoa, leptomedusae): the influence of temperature. J Exp Zool 2000, 287:233-242.
47. Liu Y, Schröder J, Schmidt B: Musket: a multistage k-mer spectrum-based error corrector for Illumina sequence data. Bioinformatics 2013, 29:308-315.
48. Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J, He G, Chen Y, Pan Q, Liu Y, et al.: SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 2012, 1:18.
49. Huang S, Kang $M, X u A$: HaploMerger2: rebuilding both haploid sub-assemblies from high-heterozygosity diploid genome assembly. Bioinformatics 2017, 33:2577-2579.
50. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al.: Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 2011, 29:644-652.
51. Xue W, Li J-T, Zhu Y-P, Hou G-Y, Kong X-F, Kuang Y-Y, Sun X-W: L_RNA_scaffolder: scaffolding genomes with transcripts. BMC Genomics 2013, 14:604.
52. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL: TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 2013, 14:R36.
53. Train C-M, Glover NM, Gonnet GH, Altenhoff AM, Dessimoz C: Orthologous Matrix (OMA) algorithm 2.0: more robust to asymmetric evolutionary rates and more scalable hierarchical orthologous group inference. Bioinformatics 2017, 33:i75-i82.
54. Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 7:e1002195.
55. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, et al.: The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 2016, 44:D279-85.
56. Katoh K, Standley DM: MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 2013, 30:772-780.
57. Stamatakis A: RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30:1312-1313.
58. Wilson D, Charoensawan V, Kummerfeld SK, Teichmann SA: DBD--taxonomically broad transcription factor predictions: new content and functionality. Nucleic Acids Res 2008, 36:D88-92.
59. TransDecoder. Github; [date unknown].
60. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR: STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29:15-21.
61. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014, 15:550.
62. Suzuki R, Shimodaira H: Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 2006, 22:1540-1542.
63. Benaglia T, Chauveau D, Hunter D, Young D: mixtools: An R package for analyzing finite mixture models. J Stat Softw 2009, 32:1-29.
64. Bauer S, Grossmann S, Vingron M, Robinson PN: Ontologizer 2.0--a multifunctional tool
for GO term enrichment analysis and data exploration. Bioinformatics 2008, 24:16501651.
65. Hyman LH: The invertebrates: protozoa through ctenophora. McGraw-Hill Book Company; 1940.
66. Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, Schmid V: The cnidarian premises of metazoan evolution: From triploblasty, to coelom formation, to metamery. Ital J Zool 1998, 65:5-9.
67. Spring J, Yanze N, Jösch C, Middel AM, Winninger B, Schmid V: Conservation of Brachyury, Mef2, and Snail in the myogenic lineage of jellyfish: a connection to the mesoderm of bilateria. Dev Biol 2002, 244:372-384.
68. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, Schierwater B: Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Syst Biol 2006, 55:97-115.
69. Kubota S: The life-history of Clytia edwardsi (Hydrozoa; Campanulariidae) in Hokkaido, Japan. Jour Fac Sci Hokkaido Univ Ser [date unknown], 21:317-354.

Figures

Figure 1. The Clytia life cycle (A). The planula larva (B) develops from a fertilized egg, and metamorphoses into a primary polyp (C). The polyp then extends asexually forming a colony composed of (D) feeding polyps (gastrozooids) attached through a common stolon, and gonozooids (E) that release swimming medusae (F). Abbreviations in (A) correspond to the mRNA libraries in tab. S3 : EG: early gastrula; P1/P2/P3: Planula 24h-post-fertilization/48hpf/72hpf; PoPr: Primary polyp; St: Stolon: GO: Gonozooid: PH: Gastrozooid/Polyp head; BMF: Baby medusae 1d old: MMF: Mature female medusa; M: Mature Male Medusa. Drawings in (A) from [69] (F) adapted from [11].

Figure 2. Phylogeny inferred using presence and absence of orthologous genes. The tree was rooted with Saccharomyces cerevisiae (not shown). All nodes have a posterior probability of 1 unless indicated.

Figure 3. (A) PCA of all libraries from staged mRNA samples (B) Distance based clustering of all libraries. AU/BP values are 100 for all nodes unless indicated. Library names are as described in fig. 1 and methods. (C) Gene expression levels can be partitioned into on and off categories. Red and blue lines show fitted log-normal distributions and the black line their sum. Grey bars correspond to the empirically observed distribution of expression levels. Example libraries: P1, 1 day old planula; PH polyp head. All sample distributions are shown in fig. S7.

Figure 4. (A) Clustering of libraries by transcription factor expression distances. $\mathrm{n}=505$ transcription factors. AU/BP values shown. (B) Heatmap showing major classes of transcription factor differential expression. Gene names are taken from orthology assignments of this work, with the suffix -like indicating assignment to a class but no precise orthology. In cases where assignment was not clear, names preceded by * are taken from best human Blast hits. Those followed by ${ }^{* *}$ are genes for which an assignment in Clytia existed in Genbank prior to this study (e.g. Cdx /Drgx). Trailing numbers are unique gene identifiers from this project. Expression units are rlog values from DESeq2 with the row means subtracted. Library names are as described in fig. 1 and methods. (C) in situ hybridization of medusa enriched TFs. (D) Oral and lateral view schematics of Clytia medusa tentacle bulbs indicating TF expression territories.

Figure 5. Simplification of polyp and planula stages in the hydrozoan lineage. (A) Clytia hemisphaerica displays the typical hydrozoan tri-phasic life cycle, comprising a planula stage, a (colonial) polyp stage, and a sexually reproducing medusa form. Both planula and medusa stages have been lost in the Hydra lineage. Hydrozoan planulae and polyps are morphologically simpler than those of Anthozoa (e.g. Nematostella), and have lost the bilateral symmetry. The comparison of Clytia and Hydra genomes with that of Nematostella shows that the hydrozoan lineage underwent important genome reorganization. (B) The planula larva of Nematostella (top) presents a well-defined endoderm and ectoderm, and bears an aboral apical organ. The eight internal mesenteries and the pharynx manifest the directive polarity axis, orthogonal to the oral-aboral one. A number of studies have identified a set of conserved transcription factors responsible for setting up the polarity axes and patterning the body. The Clytia planula (bottom) has a simpler morphology, with an ectodermal layer surrounding a mass of endodermal cells. Though the oral pole shares a set of developmental regulators with the planula of Nematostella (Bra, Gsc, FoxA, FoxB), the aboral pole appears to be highly divergent: expression of these known aboral transcription factors could not be detected - with the exception of CheFoxQ2a which does not belong to the NvFoxQ2a orthology group. Most of Nematostella directive axis regulators have been lost in Hydrozoa. Colored bars represent expression domains.

Supplementary Figures

Supplementary figure 1: (A) Relationships between Clytia hemisphaerica laboratory strains; An original colony Z was derived by metamorphosis of a founder planula larva, with subsequent self crossing between male and female medusae budded from this colony. See methods for details. (B) The medusae used to generate the founder planula were collected in the bay of Villefranche-surMer. (C) Organization of the linear mitochondrial genome of the sequenced Clytia Z strain showed the same organization as that inferred for the Hydroidolina common ancestor. (D, E) Maximum likelihood analyses using two mitochondrial phylogenetic makers (d: cox1/COI, e:rnl/16s RNA) unambiguously assign the Z strains to the species Clytia hemisphaerica.

Supplementary figure 2: Hoechst staining (blue) of DNA in Clytia oocytes dissected from isolated gonads kept overnight in the dark and fixed, 35 minutes after exposing to light, for antitubulin immunofluorescence in red. The oocytes in a) and b), fixed using formaldehyde, are in the resting, meiotic prophase I arrested state, and t he duplicated chromosome pairs are clearly distinct in the dark oocyte nucleus (GV, Germinal Vesicle). The oocyte in c), fixed in cold methanol, has begun the maturation process, and the chromosomes are gathering on a microtubule aster. In each of 5 oocytes in which the Hoechst-stained lumps were clearly distinct, 15 chromosome packets were counted. Maximum projections of z stacks covering the whole GV or chromosome cluster are shown. Scale bar $50 \mu \mathrm{~m}$.

Supplementary figure 3: (A) Maximum likelihood phylogenetic reconstruction (RaxML, LG+Gamma) of the two UGDH-like (UDP-glucose 6-dehydrogenase) genes found in the Clytia genome. (B) Metazoa UGDH subtree including one Clytia ortholog. (C) Subtree showing that the second Clytia UGDH, together with several other hydrozoan sequences, are nested within UGDH genes from mimiviridae, strongly arguing for a Horizontal Gene Transfer (HGT), to a hydrozoan ancestor, from a giant virus of the Mimiviridae family. (D) Subtree showing that two UGDH-like
genes of Hydra are nested within a strongly supported Bacteroidetes clade, strongly suggesting that they were acquired in the Hydra lineage by HGT from bacteria. (E) Evolutionary scenario for the evolution of the UGDHs found in the Hydrozoa lineage. (F) genomic location of Clytia and Hydra UGDH genes inherited by HGT. Presence of clear metazoan orthologs in these scaffolds argues against bacterial/viral contamination. Gene name and taxon of the BLASTp hit are indicated below the genes; TRG: Taxon Restricted Gene - no BLASTp hit. (G) expression level (rlog values) of the two Clytia UGDH genes across the life cycle (see legend of fig. 1 for details on stage abbreviations). Note the ubiquitous expression of the "metazoan" UGDH gene (XLOC_007593) and the Gonozoid (GO) and Baby Medusae (BMF) specific expression of the "Mimiviridae-related" UGDH (XLOC_045289).

Supplementary figure 4: Innexin Maximum Likelihood phylogeny. Model LG+Gamma RAxML. Rooted with ctenophore innexin. Red: Clytia sequences, Blue: Hydra sequences. Values on nodes $=$ rapid RAxML Bootstrap values (500 replicates) $>50 \%$.

Supplementary figure 5: Maximum likelihood phylogenetic analysis of Clytia and Clytinlike (A) and GFP-like (B) genes. Model LG+Gamma RAxML. Rooted with sponge aequorin-like (A) and anthozoan GFP-like (B) genes. Values on nodes = rapid RAxML Bootstrap values (500 replicates). Only BP>50\% are labeled. Red: Clytia sequences.

Supplementary figure 6.1: Maximum likelihood phylogenetic analysis of Clytia and Hydra
Fox-like genes. Model LG+Gamma RAxML. Rooted with non metazoan Forkhead domains. Values on nodes = rapid RAxML Bootstrap values (500 replicates). Only BP>50\% for nodes outside Fox families are labeled. From this topology it can be inferred that FoxM, FoxG, FoxQ1 were lost in the common ancestor of Clytia and Hydra and FoxL2, FoxD were lost in the Hydra lineage. Red: Clytia hemisphaerica, Green: Ectopleura larynx FoxL2, black bold: Nematostella vectensis, Blue: Hydra Hm: Hydra magnipapillata, Hv: Hydra vulgaris, Sk: Saccoglossus kowalevskii, Hs: Homo sapiens.

Supplementary figure 6.2: Maximum likelihood phylogenetic analysis of Clytia and Hydra FoxQ2-like genes (Model LG+Gamma RAxML) rooted with FoxP/FoxN14/FoxN23. Rooted and unrooted ML analyses lead to the exact same ingroup topology. rapid RAxML Bootstrap values $>50 \%$ from the ML analysis of the unrooted dataset are indicated next to the branches. BP values between brackets are from the rooted ML analysis. From this topology, it can be inferred that the cnidarian ancestor had at least 3 FoxQ2-like genes, two of each were also present in the bilaterian ancestor. Expansion of one of those 3 ancestral FoxQ2 gene in the common ancestor of Medusozoa lead to the formation of 7 FoxQ2 medusozoan orthologous groups (highlighted in grey), all still present in the Clytia genome. The Hydra lineage lost 3 of those FoxQ2 paralogs. Note that the aboraly expressed Clytia FoxQ2a does not belong to the same FoxQ2 orthologous group as the aboraly expressed Nematostella FoxQ2a. Red: Clytia hemisphaerica sequences, Green: Ectopleura larynx sequences, black bold: Nematostella vectensis, Blue: Hydra sequences, Hm: Hydra magnipapillata, Hv: Hydra vulgaris, Pca: Podocoryna carnea, C_sow: Craspedacusta sowerbyi, Aa: Aurelia aurita, Sk: Saccoglossus kowalevskii, Hs: Homo sapiens, Lottia: Lottia gigantea, Sp: Strongylocentrotus purpuratus, Bf: Branchiostoma floridae, Pdu: Platynereis dumerilii , Dm: Drosophila melanogaster, Tc: Tribolium castaneum, Ce: Caenorhabditis elegans.

Supplementary figure 6.3: Maximum likelihood phylogenetic analysis of Clytia and Hydra Six genes (Model LG+Gamma RAxML) rooted with distantly related Six-like genes found in cnidarians. Values on nodes = rapid RAxML Bootstrap values (500 replicates). From this topology it can be inferred that Six1/2 was lost in the Hydra lineage after its divergence with the Ectopleura lineage. Red: Clytia hemisphaerica, black bold: Nematostella vectensis, Blue: Hydra magnipapillata, Green: Ectopleura larynx. Pdu: Platynereis dumerilii, Sk: Saccoglossus kowalevskii.

Supplementary figure 6.4: Maximum likelihood phylogenetic analysis of Clytia and Ectopleura and DRGX (A) and TLX (B) genes. Model LG+Gamma RAxML. Values on nodes = rapid RAxML Bootstrap values (500 replicates). Only BP>50\% are labeled. Red: Clytia sequences.

Supplementary figure 6.5: Maximum likelihood phylogenetic analysis of Clytia Twist and TCF15 genes (Model LG+Gamma RAxML) rooted with a selection of human bHLH genes. Values on nodes $=$ rapid RAxML Bootstrap values (500 replicates). From this topology it can be inferred that Twist was lost in a Hydra ancestor. Red: Clytia hemisphaerica, black bold: Nematostella vectensis, Blue: Hydra magnipapillata, Green: Ectopleura larynx.

Supplementary figure 6.6: Maximum likelihood phylogenetic analysis of Clytia Cdx, Pdx, CnoxA and Gsx genes (Model WAG+Gamma RAxML) rooted with Gsx genes. Values on nodes = rapid RAxML Bootstrap values (500 replicates). From this topology it can be inferred that Cdx, Pdx and CnoxA were lost in the Hydra lineage after the divergence with Ectopleura. Red: Clytia hemisphaerica, black bold: Nematostella vectensis, Blue: Hydra magnipapillata, Green: Ectopleura larynx.

Clytia	TLX	PDX	DRGX	CDX	CnoxA	SIX1/2	FOXL2
Hydra	69.4	64.8	85.8	52.8	62.8	245.0	146.5
Ectopleura	88.6	152.8	166.0	145.7	106.5	344.5	219.4
Aurelia	87.3	156.3	144.3	107.3	111.8	344.0	257.2

Supplementary figure 6.7: Evidence for gene loss in Hydra. Phylogenetic analysis shows orthologs of the named Clytia genes in Ectopleura and Aurelia but not in Hydra. The table gives the phmmer bit score [54] for the pairwise comparison of the best hit of the Clytia gene in these three medusozoan species. The Hydra best hits are non-orthologous and substantially lower scoring than the medusoid producing sister species (Ectopleura larynx), or more phylogenetically distant species that retain an ortholog and medusa stage (the scyphozoan Aurelia aurita).

Supplementary figure 7: Gene expression for all life-cycle stages partitioned into 'on' and 'off' distributions. Red and blue lines show fitted log-normal distributions and the black line their sum. Grey bars correspond to the empirically observed distribution of expression levels. Library names are as for fig. 1a.

Supplementary figure 8: Enrichment of OMA HOG phylogenetic class across stage specific genes. Each cell contains the ratio of observed to expected genes for that stage specificity (vertical axis) and phylogenetic scope, as determined by OMA Hierarchical Orthologous Group composition (horizontal axis). Red cells show an enrichment of the phylogenetic class, blue cells a depletion. Effect significance was determined by a Chi-squared test for each cell, corrected for multiple testing using the Benjamini and Hochberg (FDR) method of the p.adjust R function. These values were used to determine the cell color after $\log _{10}$ rescaling, and under-represented cells being made negative.

SUPPLEMENTARY TABLES

Supplementary Table 1 : Comparison between Clytia, Hydra and Nematostella genomic features

Species	Clytia hemisphaerica	Hydra vulgaris	Nematostella vectensis
Clade	Hydrozoa	Hydrozoa	Anthozoa
Presence of jellyfish	yes	no	no
Chromosome number (n)	15	15	15
Genome size (Mb)	445	92.5	457
Scaffold N50 (kb)	366	29	39
GC content (\%)	35	57	26
Repeats (\%)	41		42

Number of genes	26,203	31,452	27,273
BUSCO (\%)	86.4	76.8	91.4

Supplementary table 2: Expression patterns and genome locations for all transcription factors.

File: tf_table.xlsx

Supplementary Table 3 : Significant gene ontology enrichments at major life-cycle stages.

Planula	Adjusted P	Ontology Term
GO:0004872	$9.6 \mathrm{E}-07$	receptor activity
GO:0004930	3.2E-05	G-protein coupled receptor activity
GO:0005886	2.4E-04	plasma membrane
GO:0007186	2.0E-03	G-protein coupled receptor signaling pathway
GO:0007154	6.2E-03	cell communication
Polyp		
GO:0004872	$3.6 \mathrm{E}-11$	receptor activity
GO:0005576	$1.1 \mathrm{E}-10$	extracellular region
GO:0005102	5.7E-10	receptor binding
GO:0005886	8.5E-09	plasma membrane
GO:0007154	6.3E-08	cell communication
GO:0022610	$1.3 \mathrm{E}-05$	biological adhesion
GO:0008081	$1.5 \mathrm{E}-05$	phosphoric diester hydrolase activity
GO:0016298	$2.6 \mathrm{E}-05$	lipase activity
GO:0019210	3.8E-04	kinase inhibitor activity

GO:0050896	$3.2 \mathrm{E}-03$	response to stimulus
GO:0032501	$9.6 \mathrm{E}-03$	multicellular organismal process
Medusa	$4.1 \mathrm{E}-07$	biological adhesion
GO:0022610	$1.4 \mathrm{E}-03$	DNA binding
GO:0003677	$7.9 \mathrm{E}-03$	nucleic acid binding transcription factor activity
GO:0001071	$8.7 \mathrm{E}-03$	extracellular region
GO:0005576		

Supplementary table 4: Classification of medusa specific transcription factors. List of Clytia medusa specific transcription factor and presence/absence of orthologs in Hydra (draft genome) and Ectopleura (transcriptome), its closest relative with a medusoid stage. Note that 7 Clytia medusa specific TF are absent in Hydra but present in Ectopleura, suggesting the loss of these TF in the Hydra lineage was related to loss of the medusa stage. Ortholog for only one Clytia medusa specific TF not sex specific, TCF15, was found in Hydra. Na: non-applicable.

XLOC number	Sex specific	Status	Gene family	Hydra ortholog	Ectopleura ortholog
XLOC_033897	Female enriched	present in Hydra	Max-like	XP_012559560	$?$
XLOC_033152	Male enriched	present in Hydra	Nitrogen Regulatory Protein	Sc4wPfr_703.g8940 t1	E_lar_DN34629_c0_ g1
XLOC_010965	Male enriched	present in Hydra	CREB-binding protein	XP_004207175	E_lar_DN34214_c0_ g1
XLOC_038135	Male enriched	present in Hydra	heat shock factor protein	XP_012558243	E_lar_DN33986_c0_ g1
XLOC_012891	no	present in Hydra	Paraxis/TCF15	XP_012565575	E_lar_DN39961_c0_ g1
XLOC_038912	no	lost in Hydra	Twist	no	$?$
XLOC_014264	no	lost in Hydra	lost in Hydra	barH-like	no
XLOC_004250	no	lost in Hydra	FoxQ2 paralog	no	$?$

XLOC_033828	no	lost in the Hydra lineage since Ectopleura divergence	pdx/xlox	no	E_lar_DN32686_c0_ g1
XLOC_000977	no	lost in the Hydra lineage since Ectopleura divergence	DRGX	no	E_lar_DN34776_c0_ g1
XLOC_043882	no	lost in the Hydra lineage since Ectopleura divergence	TLX	no	no

XLOC_033110	Male enriched	Paralog of XLOC_038551 not medusa specific	Prdm9-like	na	na
XLOC_003858	Male enriched	Paralog of XLOC_038551 not medusa specific	Prdm9-like	na	na
XLOC_017073	Male enriched	Paralog of XLOC_038551 not medusa specific	Prdm9-like	na	na

Supplementary table 5: sequencing libraries.
a) Genomic DNA

Library insert size	Technology	Read length	No. of reads
180	Illumina PE	101	688126703
500	Illumina PE	101	203497401
4000	Illumina Nextra	101	136386432
8000	454	-	11802050
20000	454	-	9505979
40000	454	-	502197

b) RNA preparations for individual libraries

Stage	Name	Strain	Nb indivi duals	Total RNA $\mathbf{(n g)}$	Illumina	cycles
Early gastrula	EG-1	Z4B * Z10	150	1220	NextSeq	75 SR
Early gastrula	EG-1	Z4B * Z10	150	1260	NextSeq	75 SR
Planula 24hpf	P1-1	Z4B * Z10	150	2390	NextSeq	75 SR
Planula 24hpf	P1-2	Z4B $*$ Z10	150	1760	NextSeq	75 SR
Planula 48hpf	P2-1	Z4B $*$ Z10	150	1040	HiSeq 2500	50 SR
Planula 48hpf	P2-2	Z4B $*$ Z10	150	520	HiSeq 2500	50 SR

Planula 72hpf	P3-1	Z4B * Z10	150	520	HiSeq 2500	50 SR
Planula 72hpf	P3-2	Z4B * Z10	150	1105	HiSeq 2500	50 SR
Primary polyp	PoPr-1	Z4B * Z10	100	494	HiSeq 2500	50 SR
Primary polyp	PoPr-2	Z4B * Z10	100	450	HiSeq 2500	50 SR
Gastrozooid	PH-1	Z4B	60	224	HiSeq 2500	50 SR
Gastrozooid	PH-2	Z4B	60	936	HiSeq 2500	50 SR
Gonozooid	GO-1	Z4B	60	400	HiSeq 2500	50 SR
Gonozooid	GO-2	Z4B	60	1365	HiSeq 2500	50 SR
Stolon	St-1	Z4B	60	1131	HiSeq 2500	50 SR
Stolon	St-2	Z4B	60	780	HiSeq 2500	50 SR
Baby medusa	$\begin{aligned} & \text { BMF- } \\ & \text { R1 } \end{aligned}$	Z4B	100	1523	HiSeq 2500	50 SR
Baby medusa	$\begin{aligned} & \text { BMF- } \\ & \text { R2 } \end{aligned}$	Z4B	100	1708	HiSeq 2500	50 SR
Mature female medusa	$\begin{aligned} & \text { MMF- } \\ & \text { R1 } \end{aligned}$	Z4B	1	2607	HiSeq 2500	50 SR
Mature female medusa	$\begin{aligned} & \text { MMF- } \\ & \text { R2 } \end{aligned}$	Z4B	1	2319	HiSeq 2500	50 SR
Mature male medusa	M1	Z10	1	1370	NextSeq	75 SR
Mature male medusa	M2	Z10	1	2370	NextSeq	75 SR

c) Mixed-stage RNA preparation

Stage	Strain	individuals	Total RNA (ng)
Planula P1	Z4B * Z10	150	250
Planula P2	Z4B * Z10	150	250

Planula P3	Z4B * Z10	150	250
Primary Polyp PoPr	Z4B * Z10	20	250
Gastrozoid/Polyp head PH	Z4B	60	250
Gonozoid GO	Z4B	60	250
Stolon St	Z4B	60	250
Mature Female Medusa MMF	Z4B	1	250
Mature Male Medusa M	Z10	1	$\mathbf{2 2 5 0}$
MIX			

250ng RNA extracted for each stage were combined to give a total of 2250 ng RNA, sequenced by GATC.

d) Sequences generated for RNA libraries

Stage		Replicate 1	Replicate 2
Early Gastrula	EG	39331160	43845659
One day old Planula	P1	38554115	42356552
Two day old Planula	P2	55900254	48155906
Three day old Planula	P3	47246549	70793282
Stolon	St	80487282	90277892
Primary Polyp	PoPr	72275162	70676083
Polyp Head	PH	45393098	45627654
Gonozooid	GO	65897403	63831768
Baby Medusa Female	BMF	51835910	35779461
Mature Medusa Female	MMF	44120673	49731226
Male Medusa	M	45793597	50284626

Villefranche Mixed	-	143397155	-
Vienna Medusa	-	106245738	-

Suplementary table 6: Protein datasets used in this study

	download source*	GFF	proteins**
Saccharomyces cerevsiae	www.yeastgenome. org	-	$\begin{aligned} & \text { cerpep (13- } \\ & \text { Jan-2015) } \end{aligned}$
Capsaspora owczazarki	BROAD origins of multicellularity	-	salpingoeca_rosetta _1_proteins.fasta
Monosiga brevicollis	BROAD origins of multicellularity	-	monosiga_brevicolli s_mx1_1_proteins.f asta
Mnemiopsis leidyi	https:// research.nhgri.nih.g ov/mnemiopsis/	-	ML2.2.aa
Nematostella vectensis	www.cnidariangeno mes.org	nveGenes.vienna13 0208.nemVec1.gtf	nveGenes.vienna 130208.protein.fa sta
Amphimedon queenslandica	NCBI	GCF_000090795.1_ v1.0_genomic.gff	$\begin{aligned} & \text { GCF_000090795.1_ } \\ & \text { v1.0_protein.faa } \end{aligned}$
Trichoplax adhaerens	NCBI	GCF_000150275.1_ v1.0_genomic.gff	GCF_000150275.1_ v1.0_protein.faa
Hydra vulgaris	NCBI	ref_Hydra_RP_1.0_t op_level.gff3	102
Exaiptasia	NCBI	ref_Aiptasia_genom e_1.1_top_level.gff 3	100
Orbicella faveolata	NCBI	ref_ofav_dov_v1_to p_level.gff3	100
Acropora digitifera	NCBI	GCF_000222465.1_ Adig_1.1_genomic. gff	GCF_000222465.1_ Adig_1.1_protein.fa a
Strongylocentrotus purpuratus	NCBI	ref_Spur_4.2_top_I evel.gff3	GCF_000222465.1_ Adig_1.1_protein.fa a
Saccoglossus kowalevskii	NCBI	ref_Skow_1.1_top_\| evel.gff3	101
Homo sapiens	NCBI	ref_GRCh38.p2_top _level.gff3	107

Ciona intestinalis	NCBI	ref_KH_top_level.gf f3	102
Branchiostoma floridae	NCBI	GCF_000003815.1_- Version_2_genomic. gff	GCF_000003815.1_- Version_2_protein.f aa
Drosophila melanogaster	NCBI	GCF_000001215.4_ Release_6_plus_IS O1_MT_genomic.gff	GCF_000001215.4_ Release_6_plus_IS O1_MT_protein.faa
Caenorhabditis elegans	NCBI	GCF_000002985.6_-. WBcel235_genomic. gff	GCF_000002985.6_ WBcel235_protein.f aa
Capitella teleta	NCBI	GCA_000328365.1_ Capca1_genomic.gff	GCA_000328365.1_ Capca1_protein.faa
Lingula anatina	NCBI	ref_LinAna1.0_top_I evel.gff3	100
Crasssostrea gigas	NCBI	ref_oyster_v9_top_I evel.gff3	100
Aplysia californica	NCBI	ref_ApICal3.0_top_I evel.gff3	101

* The original Broad institute 'Origins of multicellularity' website is no longer accessible - data downloads are redirected to the NCBI
** For NCBI protein files, an annotation version number is given when the file name is 'protein.fa'
bioRxiv preprint doi: https://doi.org/10.1101/369959; this version posted July 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

