
	

	 1	

Modern wolves trace their origin to a late Pleistocene expansion from Beringia 1	

Liisa Loog1,2,3*, Olaf Thalmann4†, Mikkel-Holger S. Sinding5,6,7†, Verena J. Schuenemann8,9†, 2	

Angela Perri10, Mietje Germonpré11, Herve Bocherens9,12, Kelsey E. Witt13, Jose A. 3	

Samaniego Castruita5, Marcela S. Velasco5, Inge K. C. Lundstrøm5, Nathan Wales5, Gontran 4	

Sonet15, Laurent Frantz2, Hannes Schroeder5,15, Jane Budd16, Elodie-Laure Jimenez 11, Sergey 5	

Fedorov17, Boris Gasparyan18, Andrew W. Kandel19, Martina Lázničková-Galetová20,21,22, 6	

Hannes Napierala23, Hans-Peter Uerpmann8, Pavel A. Nikolskiy24,25, Elena Y. Pavlova26,25, 7	

Vladimir V. Pitulko25, Karl-Heinz Herzig4,27, Ripan S. Malhi26, Eske Willerslev2,5,29, Anders J. 8	

Hansen5,7, Keith Dobney30,31,32, M. Thomas P. Gilbert5,33, Johannes Krause8,34, Greger 9	

Larson1*, Anders Eriksson35,2*, Andrea Manica2* 10	

 11	

*Corresponding Authors: L.L. (liisaloog@gmail.com), G.L. (greger.larson@arch.ox.ac.uk), 12	

A.E. (anders.eriksson@kcl.ac.uk), A.M. (am315@cam.ac.uk) 13	

 14	
†These authors contributed equally to this work 15	

 16	

1 Palaeogenomics & Bio-Archaeology Research Network Research Laboratory for 17	

Archaeology and History of Art, University of Oxford, Dyson Perrins Building, South Parks 18	

Road, Oxford OX1 3QY, UK  19	

2 Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, 20	

UK 21	

3 Manchester Institute of Biotechnology, School of Earth and Environmental Sciences, 22	

University of Manchester, Manchester, M1 7DN, UK 23	

4 Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of 24	

Medical Sciences, Szpitalna 27/33, 60-572 Poznan, Poland 25	

5 Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, 26	

Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark 27	

6 Natural History Museum, University of Oslo, P.O. Box 1172 Blindern, NO-0318 Oslo, 28	

Norway 29	

7 The Qimmeq project, University of Greenland, Manutooq 1, PO Box 1061, 3905 Nuussuaq, 30	

Greenland 31	

8 Institute for Archaeological Sciences, University of Tübingen, Rümelinstr. 23, 72070 32	

Tübingen, Germany 33	

9 Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, 34	

72070 Tübingen, Germany 35	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/370122doi: bioRxiv preprint 

https://doi.org/10.1101/370122
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 2	

10 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 1	

Deutscher Platz 6, 04103 Leipzig, Germany 2	

11 OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 3	

29, 1000 Brussels, Belgium 4	

12 Department of Geosciences, Palaeobiology, University of Tübingen, Tübingen, Germany 5	

13 School of Integrative Biology, University of Illinois at Urbana-Champaign, 109A 6	

Davenport Hall, 607 S. Mathews Avenue, Urbana IL 61801, USA 7	

14 OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Vautierstraat 8	

29, 1000 Brussels, Belgium 9	

15 Faculty of Archaeology, Leiden University, Postbus 9514, 2300 RA Leiden, The 10	

Netherlands 11	

16 Breeding Centre for Endangered Arabian Wildlife, PO Box 29922 Sharjah, United Arab 12	

Emirates 13	

17 Mammoth Museum, Institute of Applied Ecology of the North of the North-Eastern 14	

Federal University, ul. Kulakovskogo 48, 677980 Yakutsk, Russia 15	

18 National Academy of Sciences, Institute of Archaeology and Ethnography, Charents St. 16	

15, Yerevan 0025, Armenia 17	

19 Heidelberg Academy of Sciences and Humanities: The Role of Culture in Early 18	

Expansions of Humans, Rümelinstr. 23, 72070 Tübingen, Germany 19	

20 Departement of Anthropology, University of West Bohemia, Sedláčkova 15, 306 14 20	

Pilzen, Czech republic 21	

21 Moravian museum, Zelný trh 6, 659 37 Brno, Czech republic 22	

22 Hrdlička Museum of Man, Faculty of Science, Charles University, Viničná 1594/7,128 00 23	

Praha, Czech republic 24	

23 Institute of Palaeoanatomy, Domestication Research and History of Veterinary Medicine, 25	

Ludwig-Maximilians-University Munich, Kaulbachstraße 37 III/313, D-80539 Munich, 26	

Germany 27	

24 Geological Institute, Russian Academy of Sciences, 7 Pyzhevsky per., 119017 Moscow, 28	

Russia 29	

25 Institute for Material Culture History, Russian Academy of Sciences, 18 Dvortsovaya nab., 30	

St Petersburg 191186, Russia 31	

26 Arctic and Antarctic Research Institute, 38 Bering St., St Petersburg 199397, Russia 32	

27 Insitute of Biomedicine and Biocenter of Oulu, Medical Research Center and University 33	

Hospital, University of Oulu, Aapistie 5, 90220 Oulu University, Finland 34	

28 Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 35	

1206 W Gregory Dr., Urbana, Illinois 61820, USA 36	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/370122doi: bioRxiv preprint 

https://doi.org/10.1101/370122
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 3	

29 Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK 1	

30 Department of Archaeology, Classics and Egyptology, University of Liverpool, 12-14 2	

Abercromby Square, Liverpool L69 7WZ, UK 3	

31 Department of Archaeology, University of Aberdeen, St Mary's, Elphinstone Road, 4	

Aberdeen AB24 3UF, UK 5	

32 Department of Archaeology, Simon Fraser University, Burnaby, B.C. V5A 1S6, 778-782-6	

419, Canada 7	

33 Norwegian University of Science and Technology, University Museum, N-7491 8	

Trondheim, Norway 9	

34 Max Planck Institute for the Science of Human History, Khalaische Straße 10, 07745 Jena, 10	

Germany 11	

35 Department of Medical & Molecular Genetics, King's College London, Guys Hospital, 12	

London SE1 9RT, UK13	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/370122doi: bioRxiv preprint 

https://doi.org/10.1101/370122
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 4	

ABSTRACT 1	

 2	

Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that maintained 3	

a wide geographic distribution across the Northern Hemisphere throughout the 4	

Pleistocene and Holocene. Recent genetic studies have suggested that, despite this 5	

continuous presence, major demographic changes occurred in wolf populations between 6	

the late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a 7	

single late Pleistocene population. Both the geographic origin of this ancestral 8	

population and how it became widespread remain a mystery. Here we analyzed a large 9	

dataset of novel modern and ancient mitochondrial wolf genomes, spanning the last 10	

50,000 years, using a spatially and temporally explicit modeling framework to show that 11	

contemporary wolf populations across the globe trace their ancestry to an expansion 12	

from Beringia at the end of the Last Glacial Maximum - a process most likely driven by 13	

the significant ecological changes that occurred across the Northern Hemisphere during 14	

this period. This study provides direct ancient genetic evidence that long-range 15	

migration has played an important role in the population history of a large carnivore 16	

and provides an insight into how wolves survived the wave of megafaunal extinctions at 17	

the end of the last glaciation. Moreover, because late Pleistocene grey wolves were the 18	

likely source from which all modern dogs trace their origins, the demographic history 19	

described in this study has fundamental implications for understanding the 20	

geographical origin of the dog. 21	

22	
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The Pleistocene epoch harbored a large diversity of top predators though most became extinct 1	

during or soon after the Last Glacial Maximum (LGM) ~24 thousand years ago. The grey 2	

wolf (Canis lupus) was one of the few large carnivores that survived and maintained a wide 3	

geographical range throughout the period (1), and both the paleontological and archaeological 4	

records attest to the continuous presence of grey wolves across the Northern Hemisphere for 5	

at least the last 300,000 years (2) (reviewed in Supplementary Information 1). This 6	

geographical and temporal continuity across the Northern Hemisphere contrasts with analyses 7	

of complete modern genomes which have suggested that all contemporary wolves and dogs 8	

descend from a common ancestral population that existed as recently as ~20,000 years ago 9	

(3–5). These analyses point to a bottleneck followed by a rapid radiation from an ancestral 10	

population around or just after the LGM, but the geographic origin and dynamics of this 11	

radiation remain unknown. Resolving these demographic changes is necessary for 12	

understanding the ecological circumstances that allowed wolves to survive the late 13	

Pleistocene megafaunal extinctions. Furthermore, because dogs were domesticated from late 14	

Pleistocene grey wolves (6), a detailed insight into wolf demography during this time period 15	

would provide an essential context for reconstructing the history of dog domestication. 16	

Reconstructing past demographic events solely from modern genomes is challenging since 17	

multiple demographic histories can lead to similar genetic patterns in present-day samples (7). 18	

Analyses that incorporate ancient DNA sequences can eliminate some of these alternative 19	

histories by quantifying changes in population genetic differences through time. While 20	

nuclear markers provide greater power relative to mitochondrial DNA (mtDNA), the latter is 21	

more easily retrievable and better preserved in ancient samples due to its higher copy number 22	

compared to the nuclear DNA, thus allowing for the generation of datasets with greater 23	

geographical and temporal coverage. Furthermore, the nuclear mutation rate in canids is 24	

poorly understood, leading to wide date ranges for past demographic events reconstructed 25	

from panels of modern whole genomes (e.g. (3, 5). Having samples from a broad time period 26	

can reduce mutation rate uncertainty by calibrating the evolutionary rate with directly dated 27	

samples (8–10). 28	

Although mtDNA can be retrieved from a wider range of ancient samples, the sparseness of 29	

samples across space and time, compounded by the stochasticity of a single non-recombining 30	

genetic marker, can lead to patterns that are difficult to interpret intuitively (7). Population 31	

genetic models that explicitly capture the expected temporal (e.g. (11) and spatial (e.g. (12, 32	

13) differences between samples can be used to overcome this problem.  33	

In order to reconstruct the demographic history of wolves, we assembled a substantial dataset 34	

(Fig. 1, Table S1) consisting of 90 modern and 45 ancient wolf whole mitochondrial genomes 35	
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(55 of which are newly sequenced), spanning the last 50,000 years and the geographic breadth 1	

of the Northern Hemisphere. We first used the ancient mitogenomes to estimate a wolf 2	

mutation rate using BEAST. We then designed a spatially and temporally explicit population 3	

genetic (coalescent) model that accounts for the stochasticity of the mitochondrial 4	

phylogenetic tree, as well as the uneven spatial and temporal distribution of the samples. We 5	

used our spatial model to investigate the origin and population dynamics of the expansion of 6	

grey wolves during the LGM.  7	

Bayesian Phylogenetic Analysis 8	

 9	

All sequences included in the study were subjected to stringent quality criteria with respect to 10	

coverage and damage patterns. We used the 38 ancient samples for which we had direct 11	

radiocarbon dates to estimate mitochondrial mutation rates using BEAST (14), and 12	

molecularly dated the remaining seven ancient samples (Supplementary Information 3.1). 13	

 14	

Our Bayesian phylogenetic analysis suggests that the most recent common ancestor of all 15	

North Eurasian and American wolf samples dates to ca. 90,000 (95% CIs: 82.000 – 99.000) 16	

years ago (Fig. 2, see Figs. S11 and S12 for node support values and credibility intervals). At 17	

the root of this tree, we find a divergent clade consisting exclusively of ancient samples from 18	

Europe and the Middle East that has not contributed to present day mitochondrial diversity in 19	

our data (see also (15). The rest of the tree consists of a monophyletic clade made up of 20	

ancient and modern samples from across the Northern Hemisphere and shows a pattern of 21	

rapid bifurcations of genetic lineages centered on 25,000 years ago. A Bayesian skyline 22	

analysis (Fig. S13, see Supplementary Information 3 for details) also shows a recent reduction 23	

in effective population size. This pattern is compatible with a scenario of rapid radiation that 24	

has also been suggested by whole genome studies (e.g. (3, 5). At the root of this clade we find 25	

predominantly samples from Beringia, pointing to a possible expansion out Northeast Eurasia 26	

or the Americas. However, given the uneven temporal and geographic distribution of our 27	

samples and the stochasticity of a single genetic marker (16), it is important to explicitly test 28	

the extent to which this pattern can occur by chance under other plausible demographic 29	

scenarios, taking the geographic and temporal distribution of our samples into account. 30	

 31	

Spatial Modelling of Past Wolf Demography  32	

Motivated by the population structure observed in whole genome studies of modern wolves 33	

(5), we tested the degree of spatial genetic structure among the modern wolf samples in our 34	

dataset, and found a strong pattern of genetic isolation by distance across Eurasia (ρ=0.3, 35	
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p<0.0001; see Fig. S8). To take this structure into account in our spatial framework, we 1	

represented the wolf distribution in the Northern Hemisphere as seven demes (Fig. 1), each of 2	

which is defined by major geographic barriers including mountain ranges, seas, oceans and 3	

deserts (see Materials and Methods). We then used coalescent simulations (see Materials and 4	

Methods) to test a range of different explicit demographic scenarios (illustrated in Fig. 3a), 5	

with sampling matching the empirical spatial and temporal distribution of our samples.  6	

The first scenario consisted of a constant population size and uniform movement between 7	

neighboring demes. This allowed us to test the null hypothesis that drift within a structured 8	

population alone can explain all the patterns observed in the mitochondrial tree. We then 9	

considered two additional demographic processes that could explain the observed patterns: 1) 10	

a temporal sequence of two population size changes that affected all demes simultaneously 11	

(thus allowing for a bottleneck); and 2) an expansion out of one of the demes, which had a 12	

continuous population through time and sequentially replaced the populations in the other 13	

demes (repeated for all seven possible expansion origins). We considered each demographic 14	

event in isolation as well as their combined effect (resulting in a total of 16 scenarios) and 15	

used Approximate Bayesian Computation (ABC) to calculate the likelihood of each scenario 16	

and estimate parameter values. 17	

Both the null scenario and the scenario of only population size change in all demes were 18	

strongly rejected (Bayes Factor (BF) ≤ 0.1, Fig. 3b and Table S6), illustrating the power of 19	

combining a large dataset of ancient samples with statistical modeling. Scenarios that 20	

combined an expansion with a change in population size (bottleneck) were better supported 21	

than the corresponding scenarios (i.e. with the same origin) with constant population size 22	

(Fig. 3b). The best-supported scenario (BF 1, Fig. 4) was characterized by the combination of 23	

a rapid expansion of wolves out of the Beringian deme ~25,000 years ago (95% CI: 33,000-24	

14,000 years ago) with a population bottleneck between 15,000 and 40,000 years ago, and 25	

limited gene flow between neighboring demes (see Table S7 and Fig. S15 for posterior 26	

distributions of all model parameters). We also found relatively strong support for a scenario 27	

that describes a wolf expansion out of the East Eurasian deme (BF 0.7) with nearly identical 28	

parameters to the best-supported scenario (Table S8 & Fig. S16). This can be explained by 29	

geographic proximity of East Eurasia to Beringia and the genetic similarity of wolves from 30	

these areas.  31	

Discussion 32	

Recent whole-genome studies (3–5) found that modern grey wolves (Canis lupus) across 33	

Eurasia are descended from a single source population. The results of our analyses using both 34	
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ancient and modern grey wolf samples (Fig. 1) within a spatially and temporally explicit 1	

modeling framework (Fig. 3), suggest that this process began ~25,000 (95% CI:13,000-2	

33,000) years ago when a population of wolves from Beringia (or a Northeast Asian region in 3	

close geographic proximity) expanded outwards and replaced indigenous Pleistocene wolf 4	

populations across Eurasia (Fig. 4). The star-like topology of modern wolves observed in 5	

these whole genome studies is also consistent with our inferred scenario (Fig. 4) in which the 6	

wave of expansion is divided by geographic barriers, leading to divergence of subpopulations 7	

within the Northern Hemisphere due to subsequent limited gene flow.  8	

In the Americas, the Beringian expansion was delayed due to the presence of ice sheets 9	

extending from Greenland to the northern Pacific Ocean (Fig. 4) (13). A recent study by (17) 10	

suggested that wolf populations that were extant south of these ice sheets were replaced by 11	

Eurasian wolves crossing the Beringian land bridge. Our analyses support the replacement of 12	

North American wolves (following the retreat of the ice sheets), and our more extensive 13	

ancient DNA sampling combined with a spatially explicit model has allowed us to narrow 14	

down the geographic origin of this expansion. 15	

Were the wolves before and after this replacement ecologically equivalent? Analyses of wolf 16	

specimens have noted morphological differences between Late-Pleistocene and Holocene 17	

wolves: late Pleistocene specimens have been described as cranio-dentally more robust than 18	

the present-day grey wolves, as well as having specialized adaptations for carcass and bone 19	

processing (18–20) associated with megafaunal hunting and scavenging (21, 22). In contrast, 20	

the early Holocene archaeological record has only yielded a single sample with the 21	

Pleistocene wolf morphotype (in Alaska) (19), suggesting that this ecomorph had largely 22	

disappeared from the Northern Hemisphere by the Pleistocene-Holocene transition. This 23	

change in wolf morphology coincides with a shift in wolf isotope composition (23) and the 24	

disappearance of many megafaunal herbivores as well as other large predators, such as cave 25	

hyenas and cave lions, suggesting a possible change in the ecological niche of wolves. 26	

It has been unclear whether the morphological change was the result of population 27	

replacement (genetic turnover), a plastic response to a dietary shift, or both. Our results 28	

suggest that the Pleistocene-Holocene transition was accompanied by a genetic turnover in 29	

most of the Northern Hemisphere wolf populations since most indigenous wolf populations 30	

experienced a large-scale replacement resulting in the loss of all native Pleistocene genetic 31	

lineages (Fig. 4). Similar population dynamics of discontinuity and replacement by 32	

conspecifics have been observed in several other large Pleistocene mammals in Europe 33	

including cave bears, woolly mammoths (24, 25), giant deer (24) and even humans (11, 26).  34	
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The geographic exception to this pattern of widespread replacement is Beringia, where we 1	

infer demographic continuity between late Pleistocene and Holocene wolf populations (Fig. 2	

4). This finding is consistent with a recent study using the mtDNA control region by (27) that 3	

failed to reject continuity in this region, but at odds with a previous suggestion of genetic 4	

turnover in Beringia (19). This contradiction is likely the result of both the amount of data 5	

available and the analytical methodology: (19) used a short segment (427 bases long) of the 6	

mitochondrial control region and employed a descriptive phylogeographic approach, whereas 7	

our conclusions are based on an expanded dataset both in terms of sequence length, sample 8	

number, and geographic and temporal range (Fig. 1) and a formal hypothesis testing within a 9	

Bayesian framework (Figs. 3 and 4). As a consequence, the morphological and dietary shift 10	

observed in Beringian wolves between the late Pleistocene and Holocene (19) cannot be 11	

explained by a population turnover, but instead requires an alternative explanation such as 12	

adaptation or plastic responses to the substantial environmental and ecological changes that 13	

took place during this period. Indeed, grey wolves are a highly adaptable species. Studies of 14	

modern grey wolves have found that differences in habitat - specifically precipitation, 15	

temperature, vegetation, and prey specialization, can strongly affect their cranio-dental 16	

morphology (28–32). 17	

The specific causal factors for the replacement of indigenous Eurasian wolves during the 18	

LGM by their Beringian conspecifics (and American wolves following the disappearance of 19	

the Cordilleran and Laurentide ice sheets) are beyond the scope of this study. However, one 20	

possible explanation may be related to the relatively stable climate of Beringia compared to 21	

the substantial climatic fluctuations that impacted the rest of Eurasia and Northern America 22	

during the late Pleistocene (33). These fluctuations have been associated with dramatic 23	

changes in food webs, leading to the loss of most of the large Pleistocene predators in the 24	

region (23, 34–36). In addition, the hunting of large Pleistocene predators by Upper 25	

Palaeolithic people (e.g. (37–39) may have also negatively impacted large carnivore 26	

populations (5). An interdisciplinary approach involving morphological, isotopic as well as 27	

genetic data is necessary to better understand the relationship between wolf population 28	

dynamics and dietary adaptations in the late Pleistocene and early Holocene period.  29	

In summary, we have found that that, despite a continuous fossil record through the late 30	

Pleistocene, wolves experienced a complex demographic history involving population 31	

bottlenecks and replacements (Fig. 4). Our analysis suggests that long-range migration played 32	

an important role in the survival of wolves through the wave of megafaunal extinctions at the 33	

end of the last glaciation. These results will enable future studies to examine specific local 34	

climatic and ecological factors that enabled the Beringian wolf population to survive and 35	

expand across the Northern Hemisphere. 36	
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Lastly, the complex demographic history of Eurasian grey wolves reported here (Fig. 4) also 1	

has significant implications for identifying the geographic origin(s) of wolf domestication and 2	

the subsequent spread of dogs. For example, the limited understanding of the underlying wolf 3	

population structure may explain why previous studies have produced conflicting geographic 4	

and temporal scenarios. Numerous previous studies have focused on the patterns of genetic 5	

variation in modern domestic dogs, but have failed to consider potential genetic variation 6	

present in late Pleistocene wolf population, thereby implicitly assuming a homogenous wolf 7	

population source. As a result, both the domestication and the subsequent human-mediated 8	

movements of dogs were the only processes considered to have affected the observed genetic 9	

patterns in dog populations. However, both domestication from and admixture with a 10	

structured wolf population will have consequences for patterns of genetic variation within 11	

dogs.  12	

In light of the complex demographic history of wolves (and the resulting population genetic 13	

structure) reconstructed by our analysis, several of the geographic patterns of haplotype 14	

distribution observed in previous studies, including differences in levels of diversity found 15	

within local dog populations (40), and the deep phylogenetic split between Eastern and 16	

Western Eurasian dogs (41), could have resulted from known admixture between domestic 17	

dogs and grey wolves (3, 5, 42, 43). Future analyses should therefore explicitly include the 18	

demographic history of wolves and demonstrate that the patterns of variation observed within 19	

dogs fall outside expectations that take admixture with geographically structured wolf 20	

populations into account.  21	
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MATERIALS & METHODS 1	

Data preparation 2	

We sequenced whole mitochondrial genomes of 40 ancient and 22 modern wolf samples. 3	

Sample information, including geographic locations, estimated ages and archaeological 4	

context information for the ancient samples, is provided in the Table S1 and Supplementary 5	

Information (SI) 1.2. Of the 40 ancient samples, 24 were directly radiocarbon dated for this 6	

study and calibrated using the IntCal13 calibration curve (see Table S1 for radiocarbon dates, 7	

calibrated age ranges and AMS laboratory reference numbers). DNA extraction, sequencing 8	

and quality filtering, and mapping protocols used are described in SI 2.  9	

 10	

We included 16 previously published ancient mitochondrial wolf genomes (Table S1 and SI 11	

2). In order to achieve a uniform dataset, we re-processed the raw reads from previously 12	

published samples using the same bioinformatics pipeline as for the newly generated 13	

sequences. 14	

 15	

We subjected the aligned ancient sequences to strict quality criteria in terms of damage 16	

patterns and missing data (Figs. S3 – S5). First, we excluded all whole mitochondrial 17	

sequences that had more than 1/3 of the whole mitochondrial genome missing (excluding the 18	

mitochondrial control region – see below) at minimum three-fold coverage. Secondly, we 19	

excluded all ancient whole mitochondrial sequences that contained more than 0.1% of 20	

singletons showing signs of deamination damage typical for ancient DNA (C to T or A to G 21	

singletons). After quality filtering, we were left with 32 newly sequenced and 13 published 22	

ancient whole mitochondrial sequences (Table S1). 23	

 24	

We also excluded sequences from archaeological specimens that postdate the end of 25	

Pleistocene and that have been identified as dogs (Table S1), since any significant population 26	

structure resulting from a lack of gene flow between dogs and wolves could violate the 27	

assumption of a single, randomly mating canid population. Some of the Pleistocene 28	

specimens used in the demographic analyses (TH5, TH12, TH14) have been argued to show 29	

features commonly found in modern dogs and have therefore been suggested to represent 30	

Paleolithic dogs (e.g. (22, 44–48). Here, we disregard such status calls because of the 31	

controversy that surrounds them ( (49–52), and because early dogs would have been 32	

genetically similar to the local wolf populations form which they derived. This reasoning is 33	

supported by the close proximity of these samples to other wolf specimens confidently 34	

described as wolves in the phylogenetic tree (see Fig. S10). 35	

 36	
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Finally, we added 66 modern published wolf sequences from NCBI and two sequences from 1	

(3) (Table S1) resulting in a final dataset of 135 complete wolf mitochondrial genome 2	

sequences, of which 45 were ancient and 90 were modern. We used ClustalW alignment tool 3	

(version 2.1) (53) to generate a joint alignment of all genomes. In order to avoid the 4	

potentially confounding effect of recurrent mutations in the mitochondrial control region (54) 5	

in pairwise difference calculations, we removed this region from all subsequent analyses. This 6	

resulted in an alignment of sequences 15,466bp in length, of which 1301 sites (8.4%) were 7	

variable. The aligned dataset is located in Supplementary File S1. 8	

 9	

Phylogenetic analysis 10	

We calculated the number of pairwise differences between all samples (Fig. S6) and 11	

generated a neighbor-joining tree based on pairwise differences (Fig. S7). This tree shows a 12	

clade consisting of samples exclusively from the Tibetan region and the Indian sub-continent 13	

that are deeply diverged from all ancient and other modern wolf samples (see also (55, 56)). A 14	

recent study of whole gnome data showed a complex history of South Eurasian wolves (5) 15	

that is beyond the scope of our study. While their neighbor-joining phylogeny grouped South 16	

Eurasian wolves with East and North East Asian wolves (Fig. 3 in Fan et al. (2016)), they 17	

cluster outside of all other grey wolves in a Principal Component Analysis (Fig. 4 in (5)), and 18	

also show a separate demographic history within a PSMC analysis (Fig. 5 in (5)). Because our 19	

study did not possess sufficient samples from the Himalayas and the Indian subcontinent to 20	

unravel their complex demography, we excluded samples from these regions and focused on 21	

the history of North Eurasian and North American wolves, for which we have good coverage 22	

through time and space. 23	

 24	

We used PartitionFinder (57) and BEAST (v.1.8.0) (14) to build a tip calibrated wolf 25	

mitochondrial tree (with a strict global clock, see SI 3.2 for full details) from modern and 26	

directly dated ancient samples, and to estimate mutation rates for four different partitions of 27	

the wolf mitochondrial genome (see Tables S3 and S4 for results). 28	

 29	

We used BEAST to molecularly date seven sequences from samples that were not directly 30	

radiocarbon dated (TH4, TH6, TH14, TU15) or that had been dated to a period beyond the 31	

limit of reliable radiocarbon dating (>48,000 years ago) (CGG12, CGG29, CGG32). We 32	

estimated the ages of the samples by performing a BEAST run where the mutation rate was 33	

fixed to the mean estimates from the previous BEAST analysis and all other parameter 34	

settings were set as described in the SI 3.2. We cross-validated this approach through a leave-35	
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one-out analysis where we sequentially removed a directly dated sample and estimated its 1	

date as described above. We find a close fit (R2=0.86) between radiocarbon and molecular 2	

dates (Fig. S9). We combined the seven undated samples with the 110 ancient and modern 3	

samples from the previous run and used a uniform prior ranging from 0 to 100,000 years to 4	

estimate the ages of the seven undated samples (see Table S5 for results). 5	

 6	

Finally, in order to estimate the mitochondrial divergence time between the South Eurasian 7	

(Tibetan and Indian) and the rest of our wolf samples, we performed an additional BEAST 8	

run in which we included all modern and ancient grey wolves (N = 129) as well as five 9	

Tibetan and one Indian wolf, and used parameters identical to the ones described above. The 10	

age of the ancient samples was set as the mean of the calibrated radiocarbon date distribution 11	

(for radiocarbon dated samples) or as the mean of the age distribution from the BEAST 12	

analyses (for molecularly dated samples).  13	

 14	

Isolation by distance analysis 15	

We performed isolation by distance (IBD) analyses to see the extent to which wolf 16	

mitochondrial genetic variation shows population structure. To this end, we regressed the 17	

pairwise geographic distances between 84 modern wolf samples (Table S1) against their 18	

pairwise genetic (mitochondrial) distances. The geographic distance between all sample pairs 19	

was calculated in kilometres as the great circle distance from geographic coordinates, using 20	

the Haversine Formula (58) to account for the curvature of the Earth as follows:  21	

𝐺!" = 2𝑟 arcsin sin 𝜑! − 𝜑! 2 ! + cos 𝜑! cos 𝜑! sin (𝜆! − 𝜆!) 2
!

    22	

Where G is the distance in kilometers between individuals i and j; φi and φj are the latitude 23	

coordinates of individuals i and j, respectively; λi and λj are the longitude coordinates of 24	

individuals i and j, respectively; and r is the radius of the earth in kilometers. The pairwise 25	

genetic distances were calculated as the proportion of sites that differ between each pair of 26	

sequences (excluding the missing bases), using dist.dna function in the R package APE (59). 27	

 28	

Geographical deme definitions 29	

We represented the wolf geographic range as seven demes, defined by major geographic 30	

barriers through time. 31	
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1. The European deme is bordered by open water from the North and the West (the 1	

Arctic and the Atlantic oceans, respectively); the Ural Mountains from the East; and 2	

the Mediterranean, the Black and the Caspian Sea and the Caucasus mountains from 3	

the South.  4	

2. The Middle-Eastern deme consists of the Arabian Peninsula, Anatolia and 5	

Mesopotamia and is bordered by the Black Sea, the Caspian Sea and the Aral Sea in 6	

the North; the Indian Ocean in the South; the Tien Shen mountain range, the Tibetan 7	

Plateau and the Himalayas from the East; and the Mediterranean Sea in the West. 8	

3. The Central North Eurasian deme consist of the Siberian Plateau and is bordered by 9	

the Arctic Ocean from the North; the Ural Mountains from the West; the Lena River 10	

and mountain ranges of North Eastern Siberia (Chersky and Verkhoyansk ranges) 11	

from the East; and the Tien Shen mountain range, the Tibetan Plateau and the Gobi 12	

Desert from South-East.  13	

4. The East Eurasian deme is bordered by the Tien Shen mountain range, the Tibetan 14	

Plateau and Gobi desert from the West; the Pacific Ocean from the East; and the Lena 15	

river and the mountain ranges of North Eastern Siberia (Chersky and Verkhoyansk 16	

ranges) from the North. 17	

5. The Beringia deme spans the Bering Strait, which was a land bridge during large 18	

parts of the Late Pleistocene and the Early Holocene. It is bordered to the West by the 19	

Lena River and mountain ranges of North Eastern Siberia (Chersky and Verkhoyansk 20	

ranges), and to the South and East by the extent of the Cordillerian and Laurentide ice 21	

sheets during the Last Glacial Maximum.  22	

6. The Arctic North America deme consists of an area of the North American continent 23	

east of the Rocky Mountains and west of Greenland, that was covered by ice during 24	

the last Glaciation and is at present known as the Canadian Arctic Archipelago.  25	

7. The North America deme consists of an area in the Northern American sub-continent 26	

that was south of the Cordillerian and Laurentide ice sheets during the last glaciation 27	

(13). 28	

 29	

Demographic scenarios 30	

We tested a total of 16 demographic scenario combinations, from four different kinds of 31	

demographic scenarios (illustrated in Fig. 3a in the main text): 32	

1) Static model (the null hypothesis) – neighboring demes exchange migrants, no 33	

demographic changes. 34	
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2) Bottleneck scenarios – demes exchange migrants as in the static model but 1	

populations have different size in different time periods. We consider three time 2	

periods: 0-15k years ago, 15k-40k years ago, and >40k years ago. 3	

3) Expansion scenarios - demes exchange migrants like in the static model but a single 4	

deme experiences an expansion starting between 5k and 40k years ago (at a minimum 5	

rate of 1,000 years per deme, so the whole world could be colonized within 3,000 6	

years or faster). 7	

4) Combinations of scenarios 2 & 3. 8	

 9	

Population genetic coalescent framework 10	

We implemented coalescent population genetic models for the different demographic 11	

scenarios to sample gene genealogies.  12	

In the static scenario, we simulated local coalescent processes (60) within each deme (scaled 13	

to rate 1/K per pair of lineages, where K is the mean time to most recent common ancestor in 14	

a deme and is thus proportional to the effective population size). In addition, we moved 15	

lineages between demes according to a Poisson process with rate m per lineage. To match the 16	

geographic and temporal distribution of the data, we represented each sample with a lineage 17	

from the corresponding deme and date. 18	

The bottleneck scenario was implemented as the static one but with piecewise constant values 19	

for K as a function of time. We considered three time periods, each with its own value of K 20	

(K1, K2 and K3), motivated by the archaeological and genetic evidence of wolf population 21	

changes described in the main text. The first time period was from present to early Holocene, 22	

0-15k years ago. The second time period extended from early Holocene to late Pleistocene 23	

and covered the last glacial maximum, 15-40k years ago. Finally, the third time period 24	

covered the late Pleistocene and beyond, i.e. 40k years ago and older. 25	

The population expansion scenarios were based on the static model but with an added 26	

population expansion model with founder effects and replacement of local populations (we 27	

refer to populations not yet replaced by the expansion as "indigenous"). Starting at time T, the 28	

population expanded from the initial deme and replaced its neighboring populations. After the 29	

start of the expansion, the expansion proceeded in fixed steps of ΔT (in time). At each step, 30	

colonized populations replaced neighboring indigenous populations (if an indigenous deme 31	

bordered to more than one colonized deme, these demes contributed equally to the 32	

colonization of the indigenous deme). In the coalescent framework (that simulates gene 33	

genealogies backwards in time) the colonization events corresponds to forced migrations from 34	

the indigenous deme to the source deme. If there were more than one source deme, the source 35	
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of each lineage was chosen randomly with equal probability. Finally, founder effects during 1	

the colonization of an indigenous deme were implemented as a local, instantaneous 2	

population bottleneck in the deme (after the expansion), with a severity scaled to give a fixed 3	

probability x of a coalescent event for each pair of lineages in the deme during the bottleneck 4	

(61). (x=1 correspond to a complete loss of genetic diversity in the bottleneck, and x=0 5	

corresponds to no reduction in genetic diversity.) 6	

Finally, the combined scenario of population expansion and bottlenecks was implemented by 7	

making the population size parameter K in the population expansion model time dependent as 8	

in the population bottleneck model. 9	

 10	

Approximate Bayesian Computation analysis 11	

We used Approximate Bayesian Computation (ABC) analysis (62) with ABCtoolbox (63) to 12	

formally test the fit of our different demographic models. This approach allows formal 13	

hypothesis testing using likelihood ratios in the cases where the demographic scenarios are 14	

too complex for a direct calculation of the likelihoods given the models. We used the most 15	

likely tree from BEAST (see SI 3.2 for details) as data, and simulated trees using the 16	

coalescent simulations described above.  17	

To match the assumption of random mixing within each deme in the population genetic 18	

model, we removed closely related sequences if they came from the same geographic location 19	

and time period, by randomly retaining one of the closely related sequences to be included in 20	

the analysis (Table S1, column “Samples_used_in_Simulation_Analysis”). 21	

To robustly measure differences between simulated and observed trees we use the matrix of 22	

time to most recent common ancestor (TMRCA) for all pairs of samples. This matrix also 23	

captures other allele frequency based quantities frequently used as summary statistics with 24	

ABC, such as FST, as they can be calculated from the components of this matrix. 25	

In principle the full matrix could be used, but in practice it is necessary to use a small number 26	

of summary statistics for ABC to work properly (63). To this end, we grouped our seven 27	

demes into four super demes (Fig. S14), based on geographic proximity and genetic similarity 28	

in the dataset, and used mean TMRCA within each super deme and mean TMRCAs between 29	

all super demes as summary statistics in the ABC analysis. The four super demes are 1) 30	

Europe; 2) Middle East; 3) North East Eurasia, Beringia and East Eurasia combined; and 4) 31	

Artic and Continental North America combined. This resulted in 10 summery statistics in 32	

total.  33	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/370122doi: bioRxiv preprint 

https://doi.org/10.1101/370122
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

	 17	

An initial round of fitting the model showed that all scenarios underestimate the within-super 1	

deme TMRCA for the Middle East, while the rest of the summary statistics were well 2	

captured by the best fitting demographic scenarios. This could be explained by a scenario 3	

where the Middle East was less affected by the reduction in population size during the last 4	

glacial maximum. However, we currently lack sufficient number of samples from this area to 5	

explicitly test a more complex scenario such as this hypothesis. To avoid outliers biasing the 6	

likelihood calculations in ABC (63) we removed this summary statistic, resulting in nine 7	

summary statistics in total. 8	

For each of the 16 scenarios we performed 1 billion simulations with randomly chosen 9	

parameter combinations, chosen from the following parameter intervals for the different 10	

scenarios: 11	

• The static scenario: m in [0.001,20] and K in [0.01,100]. 12	

• The bottleneck scenarios: m in [0.001,20] and K1, K2, K3 in [0.01,100]. 13	

• The expansion scenarios: m in [0.001,20], K in [0.01,100], x in [0,1], T in [5,40] and 14	

ΔT in [0.001,1]. For expansion out of the North American scenario and the expansion 15	

out of the Arctic North American scenario, the glaciation and during the LGM in 16	

North American and sea level rise during the de-glaciation mean that T must be in the 17	

range [9,16] 18	

• The combined bottleneck and expansion scenarios: m in [0.001,20], K1,K2,K3 in 19	

[0.01,100], x in [0,1], T in [5,40] and ΔT  in [0.001,1]. 20	

The parameter m is measured in units of 1/1,000 years, and T, ΔT, K, K1, K2 and K3 are 21	

measured in units of 1,000 years. The parameters x, T and ΔT were sampled according to a 22	

uniform distribution over the interval, while all other parameters were sampled from a 23	

uniform distribution of their log-transformed values. To identify good parameter 24	

combinations for ABC, we first calculated the Euclidian square distances between predicted 25	

and observed statistics and restricted analysis to parameter combinations within the lowest 26	

tenth distance percentile. We then ran the ABCtoolbox (63) on the accepted parameter 27	

combinations to estimate posterior distributions of the model parameters, and to calculate the 28	

likelihood of each scenario as described in the ABCtoolbox manual. 29	

See Table S6 for ABC likelihoods and Bayes factors for all demographic scenarios tested.  30	

See Tables S7 and S8 for posterior probability estimates and Figs. S.15 and S16 for posterior 31	

density distributions for estimated parameters (ΔT, T, log10 K1, log10 K2, log10 K3, log10 m, x) in 32	

the two most likely models (An expansion out of Beringia with a population size change and 33	

an expansion out of East Eurasia with a population size change). 34	
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Data availability 1	

New sequences are available to download from GenBank database (accession numbers XX-2	

XX). The raw sequence reads are available from ENA database (accession numbers XX-XX). 3	

The scripts used in the analyses are available up on request from L.L. and A.E. 4	

5	
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Figures 1	

 2	
Fig. 1. Geographic distribution of modern (circles) and ancient (triangles) samples, grouped 3	

into seven geographic regions (demes, colour coded) (a) and temporal distribution of ancient 4	

samples (b) used in the analyses. * Samples dated by molecular dating. 5	
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 1	

 2	
 3	

Fig. 2. Tip calibrated BEAST tree of all samples used in the spatial analyses (diamonds), 4	

coloured by geographic region. The circle represents an outgroup (modern Indian wolf, not 5	

used in the analyses). 6	
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 1	

 2	
 3	

Fig. 3. Spatially and temporally explicit analysis. (a) Illustration of the different scenarios, 4	

with circles representing one deme each for the seven different geographic regions (see panel 5	

b for colour legend and text for full description of the scenarios). Solid lines represent 6	

population connectivity. The static scenario (far left) shows stable populations through time. 7	

The expansion scenarios (middle left) shows how one deme (here yellow, corresponding to 8	

Beringia) expands and sequentially replaces the populations in all other demes (from top to 9	

bottom). The population size change scenario (middle right) illustrates how population size in 10	

the demes can change through time (large or small population size shown as large or small 11	

circles, respectively. We also show a combined scenario (far right) of both expansion and 12	

population size change. (b) Likelihood of each demographic scenario relative to the most 13	

likely scenario, shown as Bayes factors, estimated using Approximate Bayesian Computation 14	

analyses (see text for details). For expansion scenarios (including the combined expansion 15	

and population size changes), we colour code each bar according to the origin of the 16	

expansion (see colour legend).17	
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	1	

 2	
Fig. 4. The inferred scenario of wolf demography from the Bayesian analysis using our 3	

spatially and temporally explicit model (see Fig. 3 and the main text). (a) Geographic 4	

representation of the expansion scenario (out of Beringia) with median and 95% CI for the 5	

date of the population replacement in each deme given in white boxes next to each deme. (b) 6	

Effective population size (thick line, boxes and whiskers show the median, interquartal range 7	

and 95% CI, respectively, for each time period). (c) Posterior distribution of migration rate 8	

and (d) starting time of expansion. 9	
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