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20 Abstract

21 Metabolomics has great potential in the development of new biomarkers in cancer. In this 

22 study, metabolomics and gene expression data from breast cancer tumor samples were 

23 analyzed, using (1) probabilistic graphical models to define associations using quantitative data 

24 without other a priori information; and (2) Flux Balance Analysis and flux activities to 

25 characterize differences in metabolic pathways. A metabolite network was built through the 

26 use of probabilistic graphical models. Interestingly, the metabolites were organized into 

27 metabolic pathways in this network, thus it was possible to establish differences between 

28 breast cancer subtypes at the metabolic pathway level. Additionally, the lipid metabolism node 

29 had prognostic value. A second network associating gene expression with metabolites was 

30 built. Associations were established between the biological functions of genes and the 

31 metabolites included in each node. A third network combined flux activities from Flux Balance 

32 Analysis and metabolomics data, showing coherence between the metabolic pathways of the 

33 flux activities and the metabolites in each branch. In this study, probabilistic graphical models 

34 were valuable for the functional analysis of metabolomics data from a functional point of view, 

35 allowing new hypotheses in metabolomics and associating metabolomics data with the 

36 patient’s clinical outcome.

37 Author summary

38 Metabolomics is a promising technique to describe new biomarkers in cancer. In this 

39 study we proposed computational methods to manage this type of data and associate it 

40 with gene expression data. We also employed a metabolic computational model to 

41 compare predictions from this model with metabolomics measurements. Finally, we built 

42 predictors of relapse based on the integration of those high-dimensional data in breast 

43 cancer patients.
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44 Introduction

45 Breast cancer is one of the most common malignancies, with 266,120 estimated new cases and 

46 40,920 estimated deaths in the United States in 2018 [1]. In clinical practice, the expression of 

47 hormonal receptors and HER2 allows the classification of this disease into three groups: 

48 hormonal receptor-positive (ER+), HER2+ and triple negative (TNBC). 

49 Metabolomics is the most recent -omics. It consists of measuring the entire set of metabolites 

50 present in a biological sample [2]. The most common techniques in metabolomics experiments 

51 are mass spectrometry-related methods, which are based on the mass/charge relationships of 

52 each metabolite or its fragments [3]. Metabolomics is a promising tool for the development of 

53 new biomarkers [4].

54 We used two different methods to merge metabolomics and gene expression data in breast 

55 cancer. In previous studies, we used probabilistic graphical models (PGMs) to study differences 

56 between breast tumor subtypes and to characterize muscle-invasive bladder cancer at a 

57 functional level using proteomics data [5-7]. Flux Balance Analysis (FBA), however, is a method 

58 that has been widely used to study biochemical networks [8]. FBA predicts the growth rate or 

59 the rate of production of a given metabolite [9], and it has previously been used to 

60 characterize breast cancer cell responses against drugs targeting metabolism [10]. In this 

61 study, flux activities were proposed as a feasible method to compare flux patterns in metabolic 

62 pathways.

63 In the present study, metabolomics and gene expression data from 67 fresh tissue samples 

64 [11] were analyzed through PGMs and FBA. Our aim was to find associations between 

65 metabolomics and gene expression data.

66
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67 Results

68 Patient characteristics

69 The data used in this study are from the previous work of Terunuma et al. [11]. A total of 67 

70 paired normal and tumor fresh tissue samples from patients with breast cancer were studied. 

71 We only selected samples from tumor tissues for the present analyses.

72 This cohort included 67 patients, 33 ER+ and 34 ER- (of which 14 were TNBC). The median 

73 follow-up was 50 months, and 31 deaths had occurred during this time. No significant 

74 differences regarding overall survival were observed between patients with ER+ or ER- tumors. 

75 Patient characteristics are shown in Table 1.

n (%) ER+ ER-

Number of patients 67 33 34

Age (years)

Median 51 57 48

Range 30–93 34–93 30–75

TNM stage

I 6 (9%) 4 (12%) 2 (6%)

II 2 (3%) 1 (3%) 1 (3%)

IIA 23 (35%) 12 (37%) 11 (32%)

IIB 21 (31%) 7 (21%) 14 (41%)

IIIA 9 (13%) 5 (15%) 4 (12%)

IIIB 6 (9%) 4 (12%) 2 (6%)

N category

pN0 37 (55%) 17 (52%) 20 (59%)

pN1 24 (35%) 13 (39%) 11 (32%)
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pN2 5 (8%) 3 (9%) 2 (6%)

Missing 1 (2%) 0 (0%) 1 (3%)

Grade

G1 8 (12%) 8 (24%) 0 (0%)

G2 20 (30%) 14 (43%) 6 (18%)

G3 29 (43%) 7 (21%) 22 (64%)

Missing 10 (15%) 4 (12%) 6 (18%)

Neoadjuvant therapy

Yes 6 (9%) 2 4 (12%)

No 50 (75%) 26 24 (70%)

Missing 11 (16%) 5 6 (18%)

76 Table 1: Patient characteristics.

77 Analysis of metabolomics data

78 An overall survival predictor using metabolomics data was built. This signature included five 

79 metabolites: glutamine, 2-hydroxypalmitate, deoxycarnitine, butyrylcarnitine and 

80 glycerophosphorylcholine (p-value =0.003, hazard ratio [HR] = 0.342, cut-off = 50:50) (Fig 1). A 

81 multivariate analysis showed that the predictor provided additional prognostic information to 

82 that of the clinical data (S1 Table).

83 Fig 1: Predictive signature built using metabolomics data.

84 Metabolomics data, including 237 metabolites, were analyzed through PGM. The resulting 

85 network was built assigning a main metabolic pathway to each node using IMPaLA. IMPaLA is a 

86 tool that allows ontology analyses based on metabolic pathways instead of genes. Strikingly, 

87 this network had a functional structure, grouping the metabolites into metabolic pathways. 

88 The network had five nodes, each with a different overrepresented metabolic pathway (Fig 2).
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89 Fig 2: Probabilistic graphical model from metabolomics data.

90 The activity of each node was calculated as previously described [6, 7, 10, 12]. Significant 

91 differences were found between ER+ and ER- tumors in lipid metabolism and purine 

92 metabolism (p<0.05) (S1 Fig).

93 The lipid metabolism node had prognostic value in this cohort (p =0.045, HR = 0.479, cut-off = 

94 50:50) (Fig 3). Differences remained when stratified by the expression of hormonal receptors. 

95 However, a multivariate analysis did not show that the predictor supplied additional 

96 prognostic information to that of the clinical data (S2 Table).

97 Fig 3: Predictor based on lipid metabolism node activity.

98 Analyses combining gene expression with metabolomics data

99 A network combining metabolomics and gene expression data was built. Although most 

100 metabolites were grouped in the same node, some were integrated into gene nodes (Fig 4). 

101 Fig 4: A. Network associating genes (red) and metabolites (blue). B. Metabolite and gene 

102 network functionally characterized.

103 This combined network was then functionally characterized. The resulting network had eleven 

104 functional nodes and a twelfth node that grouped the metabolites (Fig 4).

105 Once the main functions were assigned, a literature review was performed to study the 

106 relationship between metabolites included in the gene nodes and the main function of each 

107 node. A relationship with functional nodes had been previously described for 4 of 20 

108 metabolites: succinate, cytidine, histamine and 1,2-propanediol. The relationships between 

109 metabolites and their node function are shown in Table 2.

Metabolite Node Described relationship Reference

Succinate Immune Increases immune response, induces IL-1b production, PMID: 28109906
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response promotes adaptive immune response.

Cytidine Immune 

response

5-aza-2’-deoxycytidine potentiates antitumor immune response, 

role in innate immune response

PMID: 23865062, 

PMID: 24559534

Histamine Angiogenesis Histamine promotes angiogenesis by enhancing VEGF 

production

PMID: 23225320

1,2-propanediol 

(prev.X-4796)

Angiogenesis Modulates the immune system through S1P, which promotes 

angiogenesis and proliferation. 14C-sulfoquinovosyl 

acylpropanediol is an antiangiogenic drug

PMID: 21632869, 

PMID: 29543539

110 Table 2: Previously described relationships between metabolites included in gene nodes and 

111 the function of these nodes.

112 Flux Balance Analysis and flux activities

113 FBA and flux activities were calculated as previously described [10]. No significant differences 

114 were found in the tumor growth rate between ER+ and ER- tumors (S2 Fig).

115 Flux activities showed significant differences between ER+ and ER- in glycerophospholipid 

116 metabolism, phosphatidyl inositol metabolism, urea cycle, propanoate metabolism, pyrimidine 

117 catabolism and reactive oxygen species (ROS) detoxification (S3 Fig).

118 A predictor for overall survival was built with flux activities of glutamate metabolism and 

119 alanine and aspartate metabolism (p-value = 0.024, HR = 0.411, cut-off = 50:50) (Fig 5). A 

120 multivariate analysis showed that the predictor provided prognostic information independent 

121 from clinical data (S3 Table).

122 Fig 5: OS predictor based on glutamate metabolism and alanine and aspartate metabolism 

123 flux activities.
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124 PGM analysis combining flux activities with metabolomics data

125 Using flux activities and metabolomics data, a new network was built. Interestingly, this 

126 network combined both types of data; however, flux activities appeared at the periphery of 

127 the network (Fig 6).

128 Fig 6: A. Network combining flux activities (purple) and metabolite (pink) expression data. B. 

129 Division in branches of the network formed by flux activities and metabolomics data.

130 The resulting network was split into several branches to study the relationship of the 

131 metabolites to the flux activities included in each branch (Fig 6). Coherence between both 

132 types of data was shown, associating flux activities and metabolites related to these flux 

133 activities in the same branch. For instance, branch 1 includes glycolysis flux activity and three 

134 metabolites previously related to glycolysis (S4 Table). Regarding vitamins and cofactors, it was 

135 not possible make comparisons because the IMPaLA label for this category is “Vitamin and co-

136 factor metabolism” and Recon2 labels differentiate between the various vitamins, labeling 

137 them as “Vitamin B6 metabolism”, “Vitamin A metabolism”, etc.
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139 Discussion

140 Metabolomics is attracting considerable interest as a technique for finding new biomarkers in 

141 cancer. In this study, a new analytical workflow for the management and study of 

142 metabolomics data was proposed. This workflow allowed global metabolic characterization, 

143 beyond analyses based on unique metabolites.

144 Genomics and metabolomics data from Terunuma et al. have previously been used by The 

145 Cancer Genome Atlas Consortium to correlate gene expression data with metabolomics data 

146 [11, 13]. Based on this dataset, we applied PGMs for the first time in metabolomics data from 

147 tumor samples and also in metabolomics data combined with gene expression data and flux 

148 activities, with the aim of confirming known associations and finding new ones.

149 First, we evaluated whether metabolomics data were related to overall survival in patients 

150 with breast cancer. An overall survival predictive signature was built that included the 

151 expression values of glutamine, deoxycarnitine, butyrylcarnitine, glycerophosphorylcholine 

152 and 2-hydroxypalmitate [14]. The first three of these metabolites has previously been related 

153 to survival in breast cancer [15, 16]. However, to our knowledge, this is the first report 

154 associating 2-hydroxypalmitate with cancer survival. Additionally, in the previous study by 

155 Terunuma et al., 2-hydroxyglutarate was associated with a poor prognosis in patients with 

156 breast cancer [11]. 2-hydroxyglutarate is a glutamine intermediate in the tricarboxylic acid 

157 cycle, involved in the conversion of glutamine into lactate, a process known as glutaminolysis 

158 [14]. These results highlight the relevance of glutamine metabolism in breast cancer 

159 prognoses.

160 A metabolite network using metabolomics data was built using PGM. IMPaLA assigned a 

161 dominant metabolic function to each resulting node. In previous studies, we demonstrated 

162 that PGMs are useful for functionally characterizing gene or protein networks [6, 7, 12]. 
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163 However, to our knowledge, this is the first time a PGM has been applied to metabolomics 

164 data from tumor samples. Just as observed in genes or proteins, metabolites are grouped into 

165 metabolic pathways, allowing the characterization of differences in metabolic pathways 

166 between ER+ and ER- tumors. For example, both lipid metabolism and purine metabolism 

167 node activities were higher in ER- tumors. ER- tumors usually overexpress genes related to 

168 lipid metabolism. [17]. Moreover, the activity of the lipid metabolism node had prognostic 

169 value. No relationship between purine metabolism and breast cancer has previously been 

170 defined.

171 On the other hand, the network combining gene expression data and metabolomics data 

172 grouped most of the metabolites into an isolated node. Yet, some metabolites were included 

173 in gene nodes. We found that four of the twenty metabolites showed a previously reported 

174 relationship with the main function of the gene node in which they were included. Succinate 

175 and cytidine were located in the immune response node. Succinate acts as an inflammation 

176 activation signal, inducing IL-1β cytokine production through hypoxia-inducible factor 1 [18]. In 

177 addition, succinate increases dendritic cell capability to act as antigen-presenting cells, 

178 prompting an adaptive immune response [19]. Regarding cytidine, Wachowska et al. described 

179 that 5-aza-2’-deoxycytidine modulates the levels of major histocompatibility complex class I 

180 molecules in tumor cells, induces P1A antigen and has immunomodulatory activity when 

181 combined with photodynamic therapy [20].

182 Both histamine and 1,2-propanediol appeared to be related to the angiogenesis node. 

183 Histamine is known to promote angiogenesis through vascular epithelial growth factor [21]. On 

184 the other hand, sulfoquinovosyl acylpropanediol, an 1,2-propanediol derivate, inhibits 

185 angiogenesis in murine models with pulmonary carcinoma [22]. 

186 FBA was used to model metabolism using gene expression data. Although FBA-predicted 

187 biomass did not show significant differences between ER+ and ER- tumors, differences in flux 
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188 activities were shown between both subtypes. Some of these activities were also related to 

189 prognosis. One of these flux activities is “Glutamine metabolism”, which agrees with the 

190 results obtained from the metabolomics data, including glutamine in the metabolite, a 

191 signature capable of predicting overall survival. With the aim of associating metabolomics and 

192 FBA results, flux activities and metabolomics data were combined to form a new network. As 

193 opposed to gene and metabolite data, metabolomics data and flux activities combined well in 

194 the network. Interestingly, flux activities are dead-end nodes, perhaps due to the fact that they 

195 are by definition a final summary of each pathway. IMPaLA assigned a main metabolic pathway 

196 to resulting branches; thus, it was possible to know how many metabolites were related to flux 

197 activity in each branch. In most cases with available information, there was coherence 

198 between metabolites included in the branch and its flux activity. This validates FBA and flux 

199 activities, both based on gene expression, as a method of simulating metabolism. 

200 Our study has some limitations. The limited number of samples leads us to consider the results 

201 as preliminary, and validation in an independent cohort is needed. Additionally, our results are 

202 difficult to place in the current clinical landscape, given that tumors in the original series had 

203 not been assessed for HER2 expression. On the other hand, evolving techniques currently 

204 allow the detection of more metabolites, which would permit a more thorough analysis. 

205 In conclusion, PGMs reveal their utility in the analysis of metabolomics data from a functional 

206 point of view, not only metabolomics data alone, but also in combination with flux or gene 

207 expression data. Therefore, PGM is postulated as a method to propose new hypotheses in the 

208 metabolomics field. We also found that it is possible to associate metabolomics data with 

209 clinical outcomes and to build prognostic signatures based on metabolomics data.

210
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212 Materials and methods

213 Patients included in the study

214 Metabolomics and gene expression data from 67 fresh tumor tissue samples originally 

215 analyzed by Terunuma et al. [11] were included in this study. 

216 Preprocessing of gene expression and metabolomics data

217 For the metabolomics data, log2 was calculated. As quality criteria, data were filtered to 

218 include detectable measurements in at least 75% of the samples. Missing values were imputed 

219 to a normal distribution using Perseus software [23]. After quality control, 237 metabolites 

220 were considered for subsequent analyses.

221 In terms of gene expression data, the 2000 most variable genes, i.e., those genes with the 

222 highest standard deviation, were chosen to build the PGM.

223 Probabilistic graphical models and gene ontology analyses

224 As previously described [6, 7, 10, 12], PGMs compatible with high dimensional data were used, 

225 using correlations as associative criteria. The grapHD package [24] and R v3.2.5 [25] were 

226 employed to build the network. A majority function was assigned to each node using gene 

227 ontology analyses. In the case of genes, gene ontology analyses were performed using the 

228 DAVID web tool with “homo sapiens” as background and GOTERM, KEGG and Biocarta 

229 selected as categories [26]. In the case of metabolites, the Integrated Molecular Pathway Level 

230 Analysis (IMPaLA) web tool was used [27]. 

231 Node activities were calculated, as previously described [6, 7, 10, 12], as the mean of the 

232 expression/quantity of genes/metabolites of each node that are related to the main node 

233 function/metabolic pathway.
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234 Flux Balance Analysis and flux activities

235 FBA was calculated using the human metabolic reconstruction Recon2 [28]. As the objective 

236 function, the biomass reaction proposed in the Recon2 was used. FBA was performed using 

237 the COBRA Toolbox [29] available for MATLAB. Gene-Protein-Reaction rules were solved as 

238 described in previous studies [7, 10], using a modification of the Barker et al. algorithm [30], 

239 which were incorporated into the model by the E-flux method [31].

240 Flux activities were previously proposed as a measurement to compare differences at the flux 

241 pathway level [10]. Briefly, they were calculated as the sum of the fluxes of the reactions 

242 included in each pathway defined in Recon2.

243 Statistical analyses

244 The statistical analyses were performed with GraphPad Prism v6, and the network analyses 

245 were performed using Cytoscape software [32]. Predictor signatures were built with the BRB 

246 Array Tool from Dr. Richard Simon’s team. All p-values are two-sided and are considered 

247 statistically significant under 0.05.

248
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