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Abstract 21 

Metabolomics has a great potential in the development of new biomarkers in cancer. In this 22 

study, metabolomics and gene expression data from breast cancer tumor samples were 23 

analyzed, using (1) probabilistic graphical models to define associations using quantitative data 24 

without other a priori information; and (2) Flux Balance Analysis and flux activities to 25 

characterize differences in metabolic pathways. On the one hand, both analyses highlighted 26 

the importance of glutamine in breast cancer. Moreover, cell experiments showed that 27 

treating breast cancer cells with drugs targeting glutamine metabolism significantly affects cell 28 

viability. On the other hand, these computational methods suggested some hypotheses and 29 

have demonstrated their utility in the analysis of metabolomics data and in associating 30 

metabolomics with patient’s clinical outcome.   31 
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Introduction 32 

Breast cancer is one of the most common malignancies, with 266,120 estimated new cases and 33 

40,920 estimated deaths in the United States in 2018 (Siegel et al, 2018). In clinical practice, 34 

the expression of hormonal receptors and HER2 allows the classification of this disease into 35 

three groups: hormonal receptor-positive (ER+), HER2+ and triple negative (TNBC).  36 

Metabolomics, a technique focused in the holistic study of the metabolites present in a 37 

biological system, is considered the most recent -omics. It consists of measuring the entire set 38 

of metabolites present in a biological sample (Fiehn, 2002). The most common techniques in 39 

metabolomics experiments are mass spectrometry-related methods, which are based on the 40 

mass/charge relationships of each metabolite or its fragments (Emwas, 2015). Recent 41 

advances in this technique allow the measurement of thousands of metabolites from minimal 42 

amounts of biological samples (Emwas, 2015; Fuhrer & Zamboni, 2015). Therefore, 43 

metabolomics is a promising tool for the development of new biomarkers (Gowda et al, 2008). 44 

We used two different methods to merge metabolomics and gene expression data in breast 45 

cancer. In previous studies, we used probabilistic graphical models (PGMs) to study differences 46 

between breast tumor subtypes and to characterize muscle-invasive bladder cancer at a 47 

functional level using proteomics data (Gámez-Pozo et al, 2015; Gámez-Pozo et al, 2017; 48 

Sánchez-Navarro et al, 2010). Flux Balance Analysis (FBA), however, is a method that has been 49 

widely used to study biochemical networks (Varma & Palsson, 1995). FBA predicts the growth 50 

rate or the rate of production of a given metabolite (Orth et al, 2010), and it has previously 51 

been used to characterize breast cancer cell responses against drugs targeting metabolism 52 

(Trilla-Fuertes et al, 2018). In this study, flux activities were proposed as a feasible method to 53 

compare flux patterns in metabolic pathways. 54 

Glutamine has a relevant role in tumor metabolism. The entrance of glutamine in the 55 

tricarboxylic acid cycle (TCA) generates lactate, a process known as glutaminolysis. The 56 
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metabolism of glutamine serves to maintain the availability of non-essential aminoacids and to 57 

maintain TCA intermediates while NADH is generating (DeBerardinis et al, 2007). Glutamine is 58 

necessary to cellular proliferation and its metabolism is regulated by the levels of MYC 59 

oncogene (Eagle et al, 1956; Wise et al, 2008). 60 

In the present study, metabolomics and gene expression data from 67 fresh tissue samples 61 

(Terunuma et al, 2014) were analyzed through PGMs and FBA. Our aim was to find 62 

associations between metabolomics and gene expression data and the characterization of 63 

breast cancer from a metabolomics point of view.  64 
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Results 65 

Patient characteristics 66 

With the aim of study the relationships between metabolomics, gene expression, and FBA 67 

results, metabolomics and gene expression data , analyzed by mass-spectrometry and 68 

microarrays GeneChip Human Gene 1.0 ST (Affymetrix) respectively and published by 69 

Terunuma et al., were analyzed (Terunuma et al, 2014).  70 

A total of 67 tumor fresh tissue samples from patients with breast cancer were studied. This 71 

patient cohort comprises 33 ER+ and 34 ER- (of which 14 were also TNBC). The median follow-72 

up was 50 months, and 31 deaths occurred during this time. No significant differences 73 

regarding overall survival (OS) were observed between patients with ER+ or ER- tumors. 74 

Patient characteristics are shown in Table 1. 75 

Analysis of metabolomics data 76 

After Kaplan-Meier analysis, 29 metabolites were found related to OS (p<0.05) (Sup Table 1). 77 

Then, an OS predictor using this metabolomics data was built. This metabolite-based signature 78 

included five metabolites: glutamine, 2-hydroxypalmitate, deoxycarnitine, butyrylcarnitine and 79 

glycerophosphorylcholine (p-value =0.003, hazard ratio [HR] = 0.34, 50:50%) (Fig 1). A 80 

multivariate analysis showed that the predictor provided additional prognostic information to 81 

clinical data (S1 Table). 82 

Metabolomics data without using any a priori information were analyzed through PGM. 83 

Metabolomics database, including information about 536 metabolites, was reduced to 237 84 

metabolites due to quality criteria. A main metabolic pathway was assigned to each functional 85 

node of the resulting network using IMPaLA. IMPaLA is a tool that allows ontology analyses 86 

based on metabolic pathways instead of genes. Strikingly, this network had a functional 87 

structure, grouping the metabolites into metabolic pathways as it has been previously shown 88 
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for gene and protein PGMs (de Velasco et al, 2017; Gámez-Pozo et al, 2015; Gámez-Pozo et al, 89 

2017; Trilla-Fuertes et al, 2018). Five functional nodes were defined, each with a different 90 

overrepresented metabolic pathway (Fig 2). 91 

The activity of each functional node was calculated as previously described and comparisons 92 

between ER+ and ER- were done (de Velasco et al, 2017; Gámez-Pozo et al, 2015; Gámez-Pozo 93 

et al, 2017; Trilla-Fuertes et al, 2018). Significant differences were found between ER+ and ER- 94 

tumors regarding lipid and purine metabolism (p<0.05) (S1 Fig). 95 

Moreover, the lipid metabolism functional node showed prognostic value in this cohort (p 96 

=0.045, HR = 0.48, 50:50%) (Fig 3). However, a multivariate analysis showed that the predictor 97 

do not add additional prognostic information to that provided by clinical features (S2 Table). 98 

Analyses combining gene expression with metabolomics data 99 

On the other hand, a network combining metabolomics and gene expression data was built. 100 

Due to the differences between both kinds of data, most of the metabolites were grouped 101 

together. However, some metabolites were integrated into gene branches (Fig 4).  102 

This combined network was then functionally characterized based on the majority function of 103 

the genes contained in each branch. The resulting network had eleven functional nodes and a 104 

twelfth branch that include the majority of the metabolites (Fig 4). 105 

Once the main functions were assigned, a literature review was performed to study the 106 

relationship between metabolites included in the gene functional nodes and the main function 107 

of each functional node. We found out that a relationship with functional nodes had been 108 

previously described for 4 of 20 metabolites: succinate, cytidine, histamine and 1,2-109 

propanediol. The relationships between metabolites and their node function are shown in 110 

Table 2. 111 
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Flux Balance Analysis and flux activities 112 

FBA and flux activities were calculated as previously described (Trilla-Fuertes et al, 2018). 113 

Briefly, gene expression data from 67 tumor samples were used, GPR rules were solved and 114 

the normalized values were introduced into the metabolic model using modified E-flux 115 

algorithm (Colijn et al, 2009; Gámez-Pozo et al, 2017). Finally, FBA was calculated using a 116 

biomass reaction representative of tumor growth. No significant differences were found in the 117 

tumor growth rate between ER+ and ER- tumors (S2 Fig). 118 

Flux activities showed significant differences between ER+ and ER- in glycerophospholipid 119 

metabolism, phosphatidyl inositol metabolism, urea cycle, propanoate metabolism, pyrimidine 120 

catabolism and reactive oxygen species (ROS) detoxification (S3 Fig). 121 

In addition, the combination of glutamate metabolism (the pathway that includes the 122 

glutamine) and alanine and aspartate metabolism flux activities showed prognostic value in 123 

this cohort (p-value = 0.024, HR = 0.41, 50:50%) (Fig 5). A multivariate analysis showed that 124 

this flux activity-based predictor provides prognostic information independently from clinical 125 

data (S3 Table). 126 

PGM analysis combining flux activities with metabolomics data 127 

Flux activities were calculated for each metabolic pathway defined in the Recon2. Then, using 128 

flux activities and metabolomics data, a new PGM was built to study association between both 129 

types of data. Interestingly, both types of data appeared mixed in the network; with the 130 

peculiarity that flux activities appeared usually at the periphery of the network (Fig 6). 131 

The resulting network was split into several branches to study the relationship of the 132 

metabolites with the flux activities included in each branch (Fig 6). Coherence between both 133 

types of data was shown by the PGM, associating flux activities and metabolites related to 134 

these flux activities in the same branch. For instance, branch 1 includes glycolysis flux activity 135 
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and three metabolites previously related to glycolysis (S4 Table). Regarding vitamins and 136 

cofactors, it was not possible make comparisons because the IMPaLA label for this category is 137 

“Vitamin and co-factor metabolism” and Recon2 labels differentiate between the various 138 

vitamins, labeling them as “Vitamin B6 metabolism”, “Vitamin A metabolism”, etc. 139 

Cell viability assays using drugs targeting glutamine metabolism 140 

As the computational analyses pointed out the relevance of glutamine and its metabolism in 141 

breast cancer, cell viability assays employing two drugs targeting glutaminolysis 142 

(aminooxyacetic acid [AOA], and L-Glutamic acid γ-(p-nitroanilide) hydrochloride [GPNA]) were 143 

performed. Dose-response curves of these two drugs confirm that targeting glutamine 144 

metabolism affected cell viability (Figure 7).  145 

In AOA-treated cell lines, the IC50 did not show any differential response between breast 146 

cancer subtypes. However, in GPNA-treated cells, IC50 for ER+ cell lines were lower than IC50 for 147 

TNBC cells (Table 3).  148 

149 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 11, 2019. ; https://doi.org/10.1101/370221doi: bioRxiv preprint 

https://doi.org/10.1101/370221


9 

 

Discussion 150 

Metabolomics is attracting considerable interest as a technique for finding new biomarkers in 151 

cancer. In this study, a new analytical workflow for the management and study of 152 

metabolomics data was proposed. This workflow allowed global metabolic characterization, 153 

beyond analyses based on unique metabolites. On the other hand, this workflow pointed out 154 

the relevance of glutamine metabolism in breast cancer, a hypothesis that was confirmed by 155 

cellular experiments. 156 

Genomics and metabolomics data from Terunuma et al. have previously been used by The 157 

Cancer Genome Atlas Consortium to correlate gene expression data with metabolomics data 158 

(Peng et al, 2018; Terunuma et al, 2014). Based on this dataset, we applied PGMs for the first 159 

time in metabolomics data from tumor samples and also in metabolomics data combined with 160 

gene expression data and flux activities, with the aim of confirming known associations and 161 

finding new ones. 162 

First, we evaluated whether metabolomics data were related to OS in patients with breast 163 

cancer. An OS predictive signature was built that included the expression values of glutamine, 164 

deoxycarnitine, butyrylcarnitine, glycerophosphorylcholine and 2-hydroxypalmitate 165 

(DeBerardinis et al, 2007). The first four metabolites have been previously related to survival in 166 

breast cancer (Bhowmik et al, 2015; Cao et al, 2012). However, to our knowledge, this is the 167 

first report associating 2-hydroxypalmitate with cancer survival. Additionally, in the previous 168 

study by Terunuma et al., 2-hydroxyglutarate was associated with poor prognosis in patients 169 

with breast cancer (Terunuma et al, 2014). 2-hydroxyglutarate is a glutamine intermediate in 170 

the tricarboxylic acid cycle, involved in the conversion of glutamine into lactate, a process 171 

known as glutaminolysis (DeBerardinis et al, 2007). The negative sign in the predictor of 172 

glutamine points a protective effect (the more glutamine the better prognosis). An increased 173 

presence of glutamine could indicate that it has not been introduced into the Krebs cycle and 174 
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transformed into lactate, a fact associated with a more aggressive phenotype and a worst 175 

prognosis.  176 

A metabolite network using metabolomics data was built using PGMs. PGMs are based on 177 

expression data, or quantification data in the case of metabolomics, and they do not need any 178 

additional information. The output of this analysis is a network that reflects the correlations 179 

between genes, proteins or metabolites. On the other hand, IMPaLA assigned a dominant 180 

metabolic function to each resulting node. In previous studies, we demonstrated that PGMs 181 

are useful for functionally characterizing gene or protein networks (de Velasco et al, 2017; 182 

Gámez-Pozo et al, 2015; Gámez-Pozo et al, 2017). However, to our knowledge, this is the first 183 

time a PGM has been applied to metabolomics data from tumor samples. Just as observed in 184 

genes or proteins, metabolites are grouped into metabolic pathways, allowing the 185 

characterization of differences in metabolic pathways between ER+ and ER- tumors. For 186 

example, both lipid metabolism and purine metabolism node activities were higher in ER- 187 

tumors. Although there has not been described a relationship between lipids and breast 188 

cancer subtypes, it was described that ER- tumors usually overexpress genes related to lipid 189 

metabolism (Wang et al, 2017). Moreover, the activity of the lipid metabolism node had 190 

prognostic value. No relationship between purine metabolism and breast cancer has 191 

previously been defined. 192 

On the other hand, the network combining gene expression data and metabolomics data 193 

grouped most of the metabolites into an isolated branch. Yet, some metabolites were included 194 

into gene branches. We found that four out of twenty metabolites showed a previously 195 

reported relationship with the main function of the gene functional node in which they were 196 

included. Succinate and cytidine were located in the immune response functional node. 197 

Succinate acts as an inflammation activation signal, inducing IL-1β cytokine production through 198 

hypoxia-inducible factor 1 (Tannahill et al, 2013). In addition, succinate increases dendritic cell 199 
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capability to act as antigen-presenting cells, prompting an adaptive immune response (Jiang & 200 

Yan, 2017). Regarding cytidine, Wachowska et al. described that 5-aza-2’-deoxycytidine 201 

modulates the levels of major histocompatibility complex class I molecules in tumor cells, 202 

induces P1A antigen and has immunomodulatory activity when combined with photodynamic 203 

therapy (Wachowska et al, 2014). 204 

Both histamine and 1,2-propanediol appeared to be related to the angiogenesis functional 205 

node. Histamine is known to promote angiogenesis through vascular epithelial growth factor 206 

(Lu et al, 2013). On the other hand, sulfoquinovosyl acylpropanediol, an 1,2-propanediol 207 

derivate, inhibits angiogenesis in murine models with pulmonary carcinoma (Ruike et al, 2018).  208 

The remaining sixteen metabolites require an in-depth study to establish associations with 209 

their respective functional nodes. These results support the potential of PGMs as a tool to 210 

generate hypotheses without the need of a priori knowledge. 211 

FBA was used to model metabolism using gene expression data. Although FBA-predicted 212 

biomass did not show significant differences between ER+ and ER- tumors, differences in flux 213 

activities were shown between both subtypes. Some of these activities were also related to 214 

prognosis, such as “Glutamine metabolism”, which agrees with the results obtained from the 215 

metabolomics data, including glutamine in the metabolite signature capable of predicting OS. 216 

These results highlighted the relevance of glutamine metabolism in breast cancer, suggesting 217 

the utility of drugs targeting this pathway such as GPNA, which it has already been described 218 

as affecting proliferation in lung cancer cells (Hassanein et al, 2013). Strikingly, cell viability 219 

experiments using GPNA and AOA, two drugs targeting glutamine metabolism, showed a 220 

decreased in cell viability, confirming the relevant role of this process in breast cancer. Despite 221 

the highest levels of glutamine-related enzymes described in TNBC and HER2 tumors 222 

comparing with luminal tumors, dose-response curves did not show any differential response 223 

between ER+ and TNBC breast cancer cells in the case of AOA (Cao et al, 2014; Kanaan et al, 224 
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2014). In addition, ER+ cells seem to be more sensible to GPNA. On the other hand, AOA has 225 

been successfully tested in ER+ and ER- breast cancer xenograft models (Korangath et al, 226 

2015). 227 

With the aim of associating metabolomics and FBA results, flux activities and metabolomics 228 

data were combined to form a new network. As opposed to gene and metabolite data, 229 

metabolomics data and flux activities combined well in the network. Interestingly, flux 230 

activities are dead-end nodes, perhaps due to the fact that they are by definition a final 231 

summary of each pathway. IMPaLA assigned a main metabolic pathway to resulting branches; 232 

thus, it was possible to know how many metabolites were related to flux activity in each 233 

branch. In most cases with available information, there was coherence between metabolites 234 

included in the branch and its flux activity. This validates FBA and flux activities, both based on 235 

gene expression, as a method of simulating metabolism.  236 

Our study has some limitations. The limited number of samples leads us to consider the results 237 

as preliminary, and validation in an independent cohort is needed. Additionally, our results are 238 

difficult to place in the current clinical landscape, given that tumors in the original series had 239 

not been assessed for HER2 expression. On the other hand, evolving techniques currently 240 

allow the detection of more metabolites, which would permit a more thorough analysis.  241 

Metabolomics is postulated as a booming technique for the biomarker search in cancer. 242 

Additionally, PGMs reveal their utility in the analysis of metabolomics data from a functional 243 

point of view, not only metabolomics data alone, but also in combination with flux or gene 244 

expression data. Therefore, PGM is postulated as a method to propose new hypotheses in the 245 

metabolomics field. We also found that it is possible to associate metabolomics data with 246 

clinical outcomes and to build prognostic signatures based on metabolomics data. Finally, 247 

these computational analyses suggested a main role of glutamine metabolism in breast cancer, 248 

a fact that was experimentally validated. 249 
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Materials and methods 250 

Patients included in the study 251 

Metabolomics and gene expression data from 67 fresh tumor tissue samples originally 252 

analyzed by Terunuma et al. (Terunuma et al, 2014) were included in this study.  253 

Preprocessing of gene expression and metabolomics data 254 

Metabolomics data contains information about 536 metabolites. Log2 was calculated. As 255 

quality criteria, data were filtered to include detectable measurements in at least 75% of the 256 

samples. Missing values were imputed to a normal distribution using Perseus software 257 

(Tyanova et al, 2016). After quality control, 237 metabolites were considered for subsequent 258 

analyses. 259 

In terms of gene expression data, the 2,000 most variable genes, i.e., those genes with the 260 

highest standard deviation, were chosen to build the PGM. This data was from an Affymetrix 261 

array and they are available in Gene Expression Omnibus Database under the identifier 262 

GSE37751. 263 

Probabilistic graphical models and gene ontology analyses 264 

As previously described (de Velasco et al, 2017; Gámez-Pozo et al, 2015; Gámez-Pozo et al, 265 

2017; Trilla-Fuertes et al, 2018), PGMs compatible with high dimensional data were used, 266 

using correlation as associative criteria. PGMs were built using metabolomics, gene expression 267 

or flux activity data without any a priori information. The grapHD package (Abreu et al, 2010) 268 

and R v3.2.5  were employed to build the PGMs. The management of the resulting network 269 

was done using Cytoscape software (Shannon et al, 2003). The resulting networks were divided 270 

into branches and ontology analyses were done to assign a majority function/metabolic 271 

pathway to each branch, defining in this way different functional nodes in the networks. In the 272 

case of genes, gene ontology analyses were performed using the DAVID web tool with “homo 273 
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sapiens” as background and GOTERM, KEGG and Biocarta selected as categories (Huang et al, 274 

2009). In the case of metabolites, the Integrated Molecular Pathway Level Analysis (IMPaLA) 275 

web tool was used to assign a main metabolic pathway to each branch (Cavill et al, 2011).  276 

Once the functional structure was defined, functional node activities were calculated in order 277 

to make comparisons between groups, as previously described (de Velasco et al, 2017; Gámez-278 

Pozo et al, 2015; Gámez-Pozo et al, 2017; Trilla-Fuertes et al, 2018). Briefly, each functional 279 

node activity was calculated as the mean of the expression/quantity of genes/metabolites of 280 

each node that are related to the main node function/metabolic pathway. 281 

Flux Balance Analysis and flux activities 282 

FBA is a method that allows the estimation of tumor growth rate. FBA was performed using 283 

the library COBRA Toolbox v2.0 (Schellenberger et al, 2011) available for MATLAB. FBA was 284 

calculated using the whole human metabolic reconstruction Recon2 (Thiele et al, 2013). This 285 

metabolic reconstruction includes 2,191 genes collected into the Gene Protein Reaction rules 286 

(GPRs), 5,063 metabolites and 7,440 reactions. GPRs represent the relationships between 287 

genes and metabolic reactions and they are included into the model as Boolean expressions. 288 

GPRs were solved as described in previous studies (Gámez-Pozo et al, 2017; Trilla-Fuertes et al, 289 

2018), using a modification of the Barker et al. algorithm (Barker et al, 2015), which were 290 

incorporated into the model by a modified E-flux method (Colijn et al, 2009; Trilla-Fuertes et 291 

al, 2018). Briefly, the “OR” operators were solved as the sum and the “AND” operators were 292 

solved as the minimum. Then, the GPR data were normalized using the Max-min function and 293 

introduced into the model as the reaction bounds. As the objective function, the biomass 294 

reaction proposed in the Recon2 was used as representative of tumor growth. This biomass 295 

reaction was based on experimental measurements of leukemia cells. The 7,440 reactions are 296 

grouped into 101 metabolic pathways. 297 
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Flux activities were previously proposed as a measurement to compare differences at the 298 

metabolic pathway level (Trilla-Fuertes et al, 2018). Briefly, they were calculated as the sum of 299 

the fluxes of the reactions included in each pathway defined in Recon2. 300 

Statistical analyses 301 

The statistical analyses were performed with GraphPad Prism v6. Predictor signatures were 302 

built with the BRB Array Tool from Dr. Richard Simon’s team (Simon, 2005). All p-values are 303 

two-sided and are considered statistically significant under 0.05. 304 

Cell culture and reagents 305 

Breast cancer cell lines (MCF7, T47D and CAMA1 [ER+], and MDAB231, MDAMB468 and 306 

HCC1143 [TNBC]) were cultured in RPMI-1640 medium with phenol red, supplemented with 307 

10% heat-inactivated fetal bovine serum, 100 mg/mL penicillin and 100 mg/mL streptomycin. 308 

Cell lines were cultured at 37°C in a humidified atmosphere with 5% (v/v) CO2 in the air. The 309 

MCF7, T47D and MDA-MB-231 cell lines were kindly provided by Dr. Nuria Vilaboa (La Paz 310 

University Hospital, previously obtained from ATCC in January 2014). The MDAMB468, CAMA1 311 

and HCC1143 cell lines were obtained from ATCC (July 2014). Cell lines were routinely 312 

monitored and authenticated, tested for Mycoplasma and frozen, and passaged for fewer than 313 

6 months before experiments. The AOA (Sigma Aldrich C13408) and GPNA (Sigma Aldrich 314 

G6133) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 315 

Cell viability assays 316 

Dose-response curves were designed for AOA and GPNA. As the preparation of GPNA needs an 317 

acid medium, HEPES (50mM) was added to buffer the medium. About 5,000 cells were seeded 318 

in each well in 96-well plates and after 24 hours, drugs were added. After an incubation of 72 319 

hours, cell viability was determined using CellTiter 96 AQueous One Solution Cell Proliferation 320 

Assay (Promega) kit and absorbance was quantified on a microplate reader (TECAN). As a 321 

control untreated cells were used and all the experiments were performed by triplicate.  322 
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Figure legends 505 

Fig 1: Predictive signature built using metabolomics data. 506 

Fig 2: Probabilistic graphical model from metabolomics data. 507 

Fig 3: Predictor based on lipid metabolism node activity. 508 
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Fig 4: A. Network associating genes (red) and metabolites (blue). B. Metabolite and gene 509 

network functionally characterized. 510 

Fig 5: OS predictor based on glutamate metabolism and alanine and aspartate metabolism 511 

flux activities. 512 

Fig 6: Probabilistic graphical model combining flux activities and metabolomics data. A. 513 

Network combining flux activities (purple) and metabolite (pink) expression data. B. Division in 514 

branches of the network formed by flux activities and metabolomics data. 515 

Figure 7: Dose-response curves using two drugs targeting glutamine metabolism in breast 516 

cancer cell lines. A. Dose-response curve for AOA (0-6 Mm). B. Dose-response curve for GPNA 517 

(0-4 Mm). 518 

Tables and their legends 519 

 n (%) ER+ ER- 

Number of patients 67 33 34 

Age (years)    

Median 51 57 48 

Range 30–93 34–93 30–75 

TNM stage    

I 6 (9%) 4 (12%) 2 (6%) 

II 2 (3%) 1 (3%) 1 (3%) 

IIA 23 (35%) 12 (37%) 11 (32%) 

IIB 21 (31%) 7 (21%) 14 (41%) 

IIIA 9 (13%) 5 (15%) 4 (12%) 

IIIB 6 (9%) 4 (12%) 2 (6%) 

N category    

pN0 37 (55%) 17 (52%) 20 (59%) 

pN1 24 (35%) 13 (39%) 11 (32%) 

pN2 5 (8%) 3 (9%) 2 (6%) 

Missing 1 (2%) 0 (0%) 1 (3%) 

Grade    

G1 8 (12%) 8 (24%) 0 (0%) 

G2 20 (30%) 14 (43%) 6 (18%) 

G3 29 (43%) 7 (21%) 22 (64%) 

Missing 10 (15%) 4 (12%) 6 (18%) 

Neoadjuvant therapy    

Yes 6 (9%) 2 (6%) 4 (12%) 

No 50 (75%) 26 (79%) 24 (70%) 

Missing 11 (16%) 5 (15%) 6 (18%) 
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Table 1: Patient characteristics. 520 

Metabolite Node Described relationship Reference 

Succinate Immune 

response 
Increases immune response, induces IL-1b production, 

promotes adaptive immune response. 
PMID: 28109906 

Cytidine Immune 

response 
5-aza-2’-deoxycytidine potentiates antitumor immune response, 

role in innate immune response. 
PMID: 23865062, 

PMID: 24559534 
Histamine Angiogenesis Histamine promotes angiogenesis by enhancing VEGF 

production. 
PMID: 23225320 

1,2-propanediol 

(prev.X-4796) 
Angiogenesis Modulates the immune system through S1P, which promotes 

angiogenesis and proliferation. 14C-sulfoquinovosyl 

acylpropanediol is an antiangiogenic drug. 

PMID: 21632869, 

PMID: 29543539 

Table 2: Previously described relationships between metabolites included in gene nodes and 521 

the function of these nodes. 522 

Cell Line Subtype 

 AOA              

IC50 (mM) 

 GPNA              

IC50 (mM) 

T47D ER+ 2.05 0.48 

MCF7 ER+ 3.89 0.69 

CAMA1 ER+ 2.90 1.10 

MDAMB231 TNBC 0.64 1.73 

MDAMB468 TNBC 2.29 2.50 

HCC1143 TNBC 4.22 2.59 

Table 3: IC50 calculated for each drug in each breast cancer cell line. 523 

Supporting information 524 

S1 Table: Multivariate Cox regression model comparing OS predictor based on metabolomics 525 

data. T = tumor stage, N = lymph node status, G = tumor grade. 526 

S2 Table: Multivariate Cox analysis comparing predictor based on node activity of lipid 527 

metabolism. T = tumor stage, N = lymph node status, G = tumor grade. 528 

S3 Table: Multivariate Cox regression comparing predictor based on flux activities. T = tumor 529 

stage, N = lymph node status, G = tumor grade. 530 

S4 Table: Metabolites associated with flux activity of each network branch. 531 

S1 Fig: Node activities from the metabolic network. 532 
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S2 Fig: Tumor growth rate predicted using FBA for ER+ and ER- tumors. 533 

S3 Fig: Flux activities were significantly different between ER+ and ER-. 534 
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