# Base-pairing requirements for small RNA- 

## mediated gene silencing of recessive self-

 incompatibility alleles in Arabidopsis halleri.N. Burghgraeve ${ }^{1}$, S. Simon ${ }^{1}$, S. Barral ${ }^{1}$, I. Fobis-Loisy ${ }^{2}$, A-C Holl ${ }^{1}$, C. Poniztki ${ }^{1}$, E. Schmitt ${ }^{1}$, X. Vekemans ${ }^{1}$, V. Castric ${ }^{1 *}$

1. CNRS, Univ. Lille, UMR 8198 - Evo-Eco-Paleo, F-59000

Lille, France
2. Laboratoire Reproduction et Développement des Plantes, Univ de Lyon, ENS de Lyon, UCB Lyon1, CNRS, INRA, F-69342, Lyon, France

* Corresponding author

E-mail : Vincent.Castric@univ-lille.fr


#### Abstract

Small RNAs (sRNA) are central regulators of gene expression, yet identifying the molecular alphabet of sRNA-target interactions remains challenging. Here, we take advantage of the dominance hierarchy among self-incompatibility alleles in Arabidopsis halleri to evaluate the base-pairing requirements for effective transcriptional silencing by a highly diversified set of sRNA-target interactions. We used RT-qPCR to follow temporal expression of the pollen (SCR) and pistil (SRK) determinants of selfincompatibility in numerous heterozygous combinations. $S C R$ and $S R K$ had sharply distinct expression dynamics through flower development. Recessive $S C R$ alleles were transcriptionally silenced in all heterozygote combinations examined, bringing levels of SCR transcripts below detection limits regardless of the position of the sRNA target along the $S C R$ sequence. A simple threshold model of base-pairing for the sRNA-target interaction captures most of the variation in $S C R$ transcript levels. In contrast, both $S R K$ alleles were expressed at similar levels in all heterozygote genotypes. We show that the base-pairing requirements for effective transcriptional silencing by these sRNAs are broadly similar to those of canonical microRNAs, even though they are believed to function in sharply different ways. We discuss the implications for the evolutionary processes associated with the


origin and maintenance of the dominance hierarchy among selfincompatibility alleles.

## Author summary

Small non-coding RNAs are important regulatory molecules that achieve their function through sequence similarity with their target sites. In many cases however, the precise base-pairing requirements for effective regulation are poorly known. At the selfincompatibility (SI) locus in Arabidopsis, dominance between alleles is pervasive and is controlled in pollen by small non-coding RNAs produced by dominant alleles that target specific sequence motifs on recessive alleles. Here we use a large number of heterozygote combinations of SI alleles to show that dominance is tightly associated with strong transcriptional silencing of the recessive alleles in presence of a more dominant allele. We take advantage of this highly diversified system of multiple sRNAs and their diversified target sites to determine the base-pairing requirements for successful small-RNA mediated transcriptional silencing. The threshold model that we identify has important functional and evolutionary implications for this complex regulatory mechanism.

## Introduction

Small non-coding RNAs are short RNA molecules (20-25nt) with a range of regulatory functions whose central importance has constituted a major discovery in the last 20 years (Vazquez et al., 2010; Aalto \& Pasquinelli, 2012). The best-known members of this class of molecules are microRNAs, which are typically involved in post-transcriptional gene silencing and regulate the activity of their target gene in trans by either mRNA cleavage (quickly followed by degradation) or by blocking translation (Li et al., 2014). In some cases, the action of microRNAs leads to the production of secondary phased short interfering RNAs (pha-siRNAs) by their target coding or non-coding sequence, which in turn can regulate downstream targets (Fei et al., 2013). Another major set of small RNAs is heterochromatic short interfering RNAs (hc-siRNAs) which are mediating transcriptional silencing of repeat sequences in the genome through epigenetic modification by the RNAdependent DNA methylation pathway (RdDM, Matzke et al., 2009).

Both microRNAs and siRNAs guide their effector molecules (members of the ARGONAUTE gene family: AGO1 and AGO4, respectively) to their target sites by sequence similarity through base-pairing. For plant microRNAs, sequence similarity with the target sequence is typically very high and appears to be a shared
feature of all functionally verified interactions (Wang et al., 2015).
Total base-pairing complementarity, however, is not the sole determinant of target specificity, and the position of the mismatches along the microRNA:target duplex is also important. Indeed, expression assays showed that while individual mismatches typically have limited functional consequences, they can also entirely inactivate the interaction when they hit specific positions such as e.g. the $10^{\text {th }}$ and $11^{\text {th }}$ nucleotide, corresponding to the site of cleavage (Jones-Rhoades et al., 2006). Furthermore, the position of mismatches along the microRNA:target duplex also seems to be crucial, with a greater tolerance in the $3^{\prime}$ than the $5^{\prime}$ region of the microRNA (up to four mismatches generally have limited functional consequences in the 3 ' region, while only two mismatches in the 5 ' region seem sufficient to abolish the target recognition capability; Liu et al., 2014, Mallory et al., 2004; Parizotto et al., 2004; Schwab et al., 2005). These observations have led to the formulation of general "rules" for microRNA targeting (Axtell \& Meyers, 2018), but in the same time they also revealed a large number of exceptions. As a result, in silico prediction of microRNA target sites currently remains a difficult challenge (Ding et al., 2012; Axtell \& Meyers, 2018). For other types of small RNAs (pha-siRNAs and hc-siRNAs), even less is known about the base-pairing requirements for targeting, mostly
because of the absence of experimentally confirmed examples of discrete, single siRNA target sites either in cis or in trans (Wang et al., 2015).

In this context, the recent discovery by Tarutani et al. (2010), Durand et al. (2014) and Yasuda et al., (2016) of a highly diversified set of small non-coding RNAs at the gene cluster controlling self-incompatibility (SI) in Brassicaceae, provides an experimentally tractable model to evaluate the base-pairing requirements for silencing by a set of sRNAs that are regulating expression of a single gene. Sporophytic SI is a genetic system that evolved in several hermaphroditic plant lineages to enforce outcrossing by preventing self-fertilization, hence avoiding inbreeding depression (De Nettancourt, 2001). In the Brassicaceae family, SI is controlled by a single genomic region called the " S locus", which contains two tightly linked genes, namely $S C R$ and SRK, that encode the pollen S-locus cysteine-rich and the stigma Slocus receptor kinase recognition proteins, respectively. This system involves a polymorphism in which multiple deeply diverged allelic lines are maintained, and accordingly a large number of S -alleles is typically found in natural populations of self-incompatible species (Castric \& Vekemans, 2004). With such a large allelic diversity and the very process of self-rejection, most individual plants are heterozygotes at the S-locus. Yet in most
cases, only one of the two S-alleles in a heterozygous genotype is expressed at the phenotypic level in either pollen or pistil, as can be revealed by controlled pollination assays on pollen or pistil tester lines (Llaurens et al., 2008; Durand et al., 2014). Which of the two alleles is expressed is determined by their relative position along a dominance hierarchy, whose molecular basis for the pollen phenotype has been initially studied in the genus Brassica. In this genus, dominance is controlled at the transcriptional level in pollen (Schopfer 1999, Kakizaki et al. 2003). Transcriptional silencing of recessive alleles by dominant alleles is caused by $24 n t-l o n g$ transacting small RNAs produced by dominant S-alleles and capable of targeting a DNA sequence in the promoter sequence of the $S C R$ gene of recessive S -alleles, provoking DNA methylation (Shiba et al. 2006). Details of how these sRNAs achieve their silencing function remains incompletely understood (Finnegan et al., 2011), but it is clear that their biogenesis is similar to that of microRNAs (i.e., they are produced by a short hairpin structure), while their mode of action is rather reminiscent of that of siRNAs (i.e., the transcriptional gene silencing functions through recruitment of the methylation machinery). Strikingly, the full dominance hierarchy in the Brassica genus seems to be controlled by just two small RNAs called Smi and Smi 2 (Tarutani et al., 2010, Yasuda et al. 2016). Smi and Smi 2 target distinct DNA sequences, but both are
located in the promoter region of $S C R$, and both seem to involve DNA methylation and 24-nt active RNA molecules.

The dominance hierarchy in Brassica is however peculiar in that only two ancestral allelic lineages segregate in that genus (the class I and class II alleles referred to above, see e.g. Leducq et al., 2014), whereas self-incompatible species in Brassicaceae typically retain dozens of highly divergent ancestral allelic lineages (Castric \& Vekemans, 2004). A recent study showed that in Arabidopsis halleri, a Brassicaceae species with multiple allelic lineages at the S-locus, the dominance hierarchy among S-alleles in pollen is controlled by not just two but as many as eight different sRNA precursor families and their target sites, whose interactions collectively determine the position of the alleles along the hierarchy (Durand et al., 2014). In that genus, much less is known about the mechanisms by which the predicted sRNA-target interactions translate into the dominance phenotypes. First, the expression dynamics of the $S C R$ gene across flower development stages is poorly known. Indeed, Kusaba et al. (2002) measured expression of $S C R$ alleles in A. lyrata, but focused on only two Salleles (SCRa and SCRb, also known as AlSCR13 and AlSCR20, respectively, in Mable et al. 2003) and showed striking differences in their expression dynamics in anthers. Hence, the developmental stage at which the transcriptional control of dominance in pollen
should be tested is not clear. Second, while they did confirm monoallelic expression, consistent with the observed dominance relationship between the two alleles $(S C R \mathrm{~b}>S C R \mathrm{a}$, Kusaba et al. 2002), the fact that only a single heterozygote combination was measured among the myriad possible combinations given the large number of S-alleles segregating in that species (at least 38 Salleles: Castric et al., 2008) prevents generalization at this step. Hence, a proper experimental validation of the transcriptional control of dominance in Arabidopsis is still lacking. Third, Durand et al., (2014) observed rare sRNA-target interaction predictions that did not agree with the observed dominance phenotype. In particular, they identified cases where no sRNA observed as being produced by a dominant allele was predicted to target the $S C R$ gene of a recessive allele, while the dominance phenotype had been well established phenotypically by controlled crosses (e.g. Ah04>Ah03) suggesting the possibility that mechanisms other than transcriptional control may be acting. Conversely, in other rare cases, sRNAs produced by a recessive S-allele were predicted to target the $S C R$ gene of a more dominant allele, suggesting exceptions to the set of base-pairing rules used to predict target sites. Fourth, although the target sites for the two sRNAs in Brassica were both located in the promoter sequence, and can thus be reasonably expected to prevent transcriptional initiation through
local modification of the chromatin structure associated with DNA methylation, many of the predicted sRNA target sites in $A$. halleri are rather mapped to the $S C R$ intron or the intron-exon boundary (beside some in the promoter as well), which suggests that distinct silencing pathways might be acting (Cuerda-Gil \& Slotkin, 2016). It thus remains to be determined whether transcriptional control is also valid when the targets are at other locations along the $S C R$ gene structure. Finally, the dominance hierarchy at the female determinant $S R K$ differs from that at $S C R$, co-dominance being more frequent than on the pollen side both in Brassica (Hatakeyama et al., 2001) and in A. halleri (Llaurens et al., 2008). Limited transcriptional analysis in Brassica and Arabidopsis suggests that dominance in pistils is not associated with SRK expression differences, but again the number of interactions tested has remained limited (Suzuki et al. 1999; Kusaba et al. 2002). Here, we take advantage of the fact that dominance interactions in Arabidopsis SI are controlled in pollen by a diversity of sRNAs and the diversity of their target sites to determine the base-pairing requirements for successful small-RNA mediated transcriptional silencing of recessive $S C R$ alleles in plants with controlled S-locus genotypes. We first developed and validated a protocol for qPCR expression analysis of a set of $S C R$ and $S R K$ alleles in $A$. halleri. We then analysed the expression dynamics across four flower
developmental stages of nine $S C R$ and five $S R K$ alleles and tested the transcriptional control of dominance for both genes in many heterozygote combinations. We quantified the strength of silencing of recessive $S C R$ alleles and propose a quantitative threshold model for how sequence identity between the small non-coding RNAs and their target sites results in silencing. We discuss the implications of this model on the evolutionary processes associated with the origin and maintenance of the S-locus dominance hierarchy in Brassicaceae.

## Material \& Methods

Plant material
We used a collection of 88 A. halleri plants containing nine different S-alleles (S1, S2, S3, S4, S10, S12, S13, S20, and S29) in a total of 37 of all 45 possible homozygous and heterozygous combinations. Each plant was genotyped at the S-locus using the PCR-based protocol described in Llaurens et al. (2008). The plants were obtained by controlled crosses (Llaurens et al., 2008; Durand et al., 2014; Leducq et al., 2014) and in a few instances were cloned by cuttings. Hence, a given S-locus genotype can be either represented in the collection by different clones (identical genetic background) or by offspring from crosses of distinct parental
origins (different genetic backgrounds). Below we refer to these two levels of experimental replicates as "clone replicates" and "biological replicates", respectively. On average, the collection comprises $n=2.05$ biological replicates per S-locus genotype and clone replicates were available for three different S-locus genotypes (Table S1 \& S2). The pairwise dominance interactions between these alleles as determined by pollen and pistil compatibility phenotypes of heterozygote plants are reported in Table S3.

## RNA extraction and reverse transcription

On each plant, we collected flower buds at four developmental stages: 1) five highly immature inflorescence extremities (more than 2.5 days before opening, buds below 0.5 mm , stages $1-10$ in $A$. thaliana according to Smyth et al., 1990), 2) ten immature buds ( 2.5 days before opening, between 0.5 and 1 mm , approximately stage 11), 3) ten mature buds (one day before opening, longer than 1 mm , approximately stage 12 ), and 4 ) ten open flowers (approximately stages 13-15). These stages were characterized by establishing the size distribution within each stage and measuring the time to flower opening based on ten buds. Samples collected were flash-frozen in liquid nitrogen, then stored at $-80^{\circ} \mathrm{C}$ before RNA extraction. Tissues were finely ground with a FastPrep-24 5G Benchtop Homogenizer (MP Biomedicals, Model \#6004-500)
equipped with Coolprep $24 \times 2 \mathrm{~mL}$ adapter (6002-528) and FastPrep Lysis Beads \& Matrix tube D. Total RNAs were extracted with the Arcturus "Picopure RNA isolation" kit from Life Science (PN: KIT0204) according to the manufacturer's protocol, including a step of incubation with DNAse to remove gDNA contamination. We normalized samples by using 1 mg of total RNA to perform reverse-transcription (RT) using the RevertAid Fermentas enzyme following the manufacturer's instructions.

## Primer design

A major challenge to study expression of multiple S -alleles is the very high levels of nucleotide sequence divergence among them, precluding the possibility of designing qPCR primers that would amplify all alleles of the allelic series (both for $S R K$ and $S C R$ ). Hence, we rather designed qPCR primers specifically targeted towards each of the $S C R$ and $S R K$ alleles, and for each heterozygote genotype we independently measured expression of both alleles of each gene. Primers were designed based on genomic sequences from BAC clones (Goubet et al 2012; Durand et al. 2014; Novikova et al. 2017), with a length of $\sim 20$ nucleotides, a GC content around $50 \%$ and a target amplicon size of 200 nt . Whenever possible, we placed primers on either side of the $S C R$ intron to identify and discard amplification from residual gDNA.

291 However, because the coding sequence of the $S C R$ gene is short, the number of possible primers was limited and this was not always possible. In two cases (SCR01 and SCR20), both primers were thus located in the same exon. For $S R K$ alleles, the primers were designed on either side of the first intron. To obtain relative expression levels across samples, we used actin 8 as a housekeeping gene for standardization after we verified that the $A$. thaliana and $A$. halleri sequences are identical at the primer positions (An et al. 1996). Primer sequences are reported in Table S4.

Quantitative real-time PCR On each cDNA sample, at least three qPCR reactions (referred to below as "technical" replicates) were performed for actin 8 and for each of the S-alleles contained in the genotype (one S-allele for homozygotes, two S-alleles for heterozygotes). The runs were made on a LightCycler480 (Roche) with iTaq Universal SYBR Green Supermix (Bio-rad, ref 172-5121). Amplified cDNA was quantified by the number of cycles at which the fluorescence signal was greater than a defined threshold during the logarithmic phase of amplification using the LightCycler 480 software release 1.5.0 SP3. The relative transcript levels are shown after normalisation with actin amplification through the comparative $2^{-\Delta C t}$ method (Livak \& Schmittgen, 2001). The $C t_{\text {SCR }}$ and $C t_{\text {SRK }}$ values of each
technical replicate were normalized relative to the average $C t_{\text {actin }}$ measure across three replicates.

Validation of qPCR primers at the dilution limits Given the very large nucleotide divergence between alleles of either $S C R$ or $S R K$, cross-amplification is unlikely. However, to formally exclude that possibility, we first performed crossamplification experiments by using each pair of $S C R$ primers on a set of cDNA samples that did not contain that target $S C R$ allele but instead contained each of the other $S C R$ alleles present in our experiment.

In order to evaluate our ability to measure expression of $S C R$ alleles in biological situations where they are expected to be transcriptionally silenced, we then used a series of limit dilutions to explore the loss of linearity of the relationship between Ct and the dilution factor. We used six to eight replicates per dilution level to evaluate the linearity of the amplification curve. Then we examined the shape of the melting curves to determine whether our measures at this limit dilution reflected proper PCR amplification or the formation of primer dimers. Finally, we used water in place of cDNA to evaluate the formation of primer dimers in complete absence of the target template DNA.

Expression dynamics and the effect of dominance We used generalized linear mixed models (lme4 package in $R$; Bates et al., 2014) to decompose $C t$ values normalized by the actin 8 control (as the dependent variable) into the effects of five explanatory variables: biological and clone replicates -reflecting the hierarchical structure of our dataset-, developmental stage, dominance phenotype and allelic identity (Table S5). Because expression of the different $S C R$ (and $S R K$ ) alleles was quantified by different primer pairs with inevitably different amplification efficiencies, $C t$ values cannot be directly compared across alleles. Most analyses were thus performed by comparing expression levels of a given focal allele in different contexts (e.g. different genotypic contexts, different developmental stages) and accordingly we considered the identity of $S C R$ or $S R K$ alleles as nuisance parameters in our statistical model by including them as random effects. We visually examined normality of the residuals of the model under different distributions of $2^{-\Delta C t}$, including Gaussian, Gamma and Gaussian with logarithmic transformations. We then tested the effect of developmental stages and dominance on $S C R$ and $S R K$ expression by considering them as fixed effects. Phenotypic pairwise dominance relationships were obtained from Llaurens et al., (2008) and Durand et al., (2014), and a set of additional controlled crosses performed following the same
protocol (Table S3). Pollen and pistil dominance relationships were used to assess the effect of dominance on $S C R$ and $S R K$, respectively. To test whether the different S -alleles have distinct expression profiles across developmental stages, as suggested by Kusaba et al. (2002) in A. lyrata, we used ANOVA to compare nested models in which a random effect for the interaction between the "allelic identity" and "stage" effects was introduced.

Target features and silencing effect.
We then sought to determine how the expression of $S C R$ alleles was affected by specific features of the small RNA-target interactions between alleles within heterozygote genotypes. We first used the small RNA sequencing data in Durand et al. (2014) and Novikova et al. (2017) to identify the populations of 18-26nt small RNA molecules produced by the small RNA precursors carried at the S-locus by each of the nine S-alleles. For each heterozygote combination, we then predicted the presence of putative target sites of the small RNAs produced by one S-allele on the genomic sequence of the $S C R$ gene of the other S-allele including 2 kb of nucleotide sequence upstream and downstream of SCR using a dedicated alignment algorithm and scoring matrix, as described in Durand et al. (2014). The reciprocal analysis was also performed regardless of the dominance relationship. Briefly, alignment quality was assessed by a scoring system based on the
addition of positive or negative values for properly paired nucleotides $(+1)$, mismatches and gaps ( -1 ), taking into account the non-canonical G:U interaction (-0.5). For each pair of alleles considered, only the sRNA/target combination with the highest score was selected for further analysis (Table S6). We used Akaike Information Criteria (AIC) to compare how well different basepairing scores for target site identification predicted the level of $S C R$ expression (and hence the silencing phenomenon), varying the threshold from 14 to 22 . Lower values of AIC are associated with a best fit of the model. We then added a new fixed effect in our model to test whether targets in the promoter or in the intron of the $S C R$ gene were associated with different strengths of silencing. For this analysis, we included only targets above the threshold identified (score $>=18$ ).

To determine whether the base-pair requirement for silencing were identical between Brassica and Arabidopsis, we calculated the alignment score with our method between Smi \& Smi2 sRNAs and their targets sites in the class II alleles in Brassica rapa (Tarutani et al., 2010, Yasuda et al., 2016).

Finally, we used the phylogeny in Durand et al. (2014) to classify sRNA/target interactions into "ancient" (mir867 and mirS4) and "recent" (mirS1, mirS2 mirS3, mirS5, mir1887 and mir4239). Based on this classification, we used a linear regression to compare
the alignment score for recent and ancient sRNAs in order to test the hypothesis that interactions with base-pairing scores above the threshold at which silencing was apparently already complete correspond to recently emerged interactions that did not yet have time to accumulate mismatches.

## Results

> Validation of the qPCR protocol and the allelespecific primers

Melting curves confirmed proper amplification and low primer dimers formation unless template DNA concentration was very low (data not shown). The specificity test confirmed the absence of cross-amplification between alleles, as the $C t$ measures for water control and cross amplification were comparably high (around $C t=34$ ) and both were higher than the positive controls (median $C t=22$, Figure S 1 ). For each allele tested, we then evaluated the linearity of $C t$ values through serial dilutions of the template cDNA. Overall, the range of variation of $C t$ values spanned by a given allele across the different developmental stages or dominance status was generally well within the range over which $C t$ varied mostly linearly with template cDNA concentration, suggesting high power to detect these effects. For $S C R$, linearity was good throughout most of the dilution range, but was lost as
expected at very low concentration (in particular for alleles SCR01, SCR02, SCR04, SCR13 and SCR20, Figure S2a). We note that comparing levels of expression for a given allele between different recessive contexts (e.g. when silenced by different sRNAs) should therefore be challenging, especially for the above-mentioned alleles. Linearity was good for most $S R K$ alleles (Figure S2b) except for SRK12 (data not shown), so this allele was excluded from further analyses.

## SCR and SRK expression dynamics across flower development stages

In total, we performed 344 RNA extractions and RT-PCR from the 37 different S-locus genotypes sampled at four developmental stages and measured $1,838 C t_{S C R} / C t_{\text {actin }}$ expression ratios, resulting in an average of 26.9 measures of each S-allele for each diploid genotype when combining clone, biological, and technical replicates and $480 C_{S R K} / C t_{\text {actin }}$ (Table S1, Table S2). Distribution of the residues of the generalized mixed linear model was closest to normality after log-transformation of the ratios (Figure S3). As expected, measured expression levels were more highly repeatable across clones than across biological replicates for a given S-locus genotype, but these sources of variation were minor as compared to the technical error and the allele's expression dynamic in our experiment (deviance estimates of $0.40,1.07$ and 6.08 and 4.56
respectively, Table S5a) after taking allele identity, developmental stage and dominance status into account. To determine the expression dynamics of the different $S C R$ alleles, we focused on genotypes in which a given focal allele was known to be dominant at the phenotypic level (Figure 1a). Overall, we observed a consistent pattern of variation among stages ( F -value: 13.805, pvalue: $1.107 \mathrm{e}-05$, Table S 5 c ) with a very high expression in buds at early developmental stages ( $<0.5$ to 1 mm ), and low level of expression in late buds right before opening and in open flowers, consistent with degeneration in these stages of the anther tapetum where $S C R$ is expected to be expressed. Accordingly to Kusaba et al., (2002), we found evidence that the expression dynamics varied across alleles (Chi: 217.32, p-value $<2.2 \mathrm{e}-16$, Table S5b). The SRK alleles had sharply distinct dynamics of expression, with monotonously increasing expression in the course of flower development (Chi²: 6.9103, p-value 0.00857 , Table S5g), with lowest expression in immature buds ( $<0.5 \mathrm{~mm}$ ) and highest expression in open flowers (Figure 1b).

## Transcriptional control

Based on these results, we compared expression of $S C R$ alleles across genotypes by averaging $2^{-\Delta C t}$ values across $<0.5 \mathrm{~mm}$ to 1 mm stages. Beside a few exceptions (see below), our expression data were largely consistent with the hypothesis of transcriptional
control of the dominance hierarchy in pollen (31 of 37 genotypic combinations, Figure 2). In the four S-alleles for which homozygote genotypes were available (S1, S2, S3 and S20), SCR alleles had substantial expression in homozygotes and this was the only case where expression of the most recessive allele (SCR01) could be detected. One of the two biological replicates for the S1S1 homozygote genotype had consistently low expression across two clone replicates (Figure S4), so we carefully confirmed homozygosity of these two samples by analysing segregation after crossing to plants that did not carry S1 (all of 58 tested progenies indeed carried S 1 as determined by PCR on gDNA). Climbing up the dominance hierarchy from most recessive to most dominant, the S -alleles measured were expressed in an increasing number of heterozygous combinations. At the top of the dominance hierarchy, the two most dominant alleles, $S C R 13$ and $S C R 20$, were expressed in all heterozygous contexts, including when they formed a heterozygote combination with one another (S13S20), as expected given the codominance observed between them at the phenotypic level (Durand et al., 2014). This general rule had a few exceptions however (Figure 2). For instance, we detected some expression for both SCR02 and SCR29 in heterozygote combination even though phenotypic data indicate that S2>S29 in pollen (Table S3). We also observed low expression for $S C R 10$ and $S C R 12$ when they were in
heterozygote combination with $S C R 01$ and the absence of expression for both SCR10 and SCR12 in the heterozygote combination they formed together, which is not consistent with the documented phenotypic dominance of these two alleles over $S C R 01$ and between them (SCR12>SCR10; see Table S3). We confirmed proper phenotypic expression of S12 in pollen produced by the S10S12 genotype, as five replicate pollinations on a S1S12 plant produced no silique.

Overall, in spite of these six exceptions, we observed a striking contrast in transcript levels for a given allele according to its relative phenotypic dominance status in the genotype, with at least an overall 145 -fold increase in transcript abundance in genotypes where a given focal allele was phenotypically dominant as compared to genotypes in which the same focal allele was recessive at stages when $S C R$ is expressed ( F -value: 38.582; pvalue: $<2.2 \mathrm{e}-16$, Table S 5 c ). In most cases, the recessive allele came close to or even below the detection limits of our method as determined by the break of linearity of the dilution experiment (Figure S 1 ), so this fold-change value is probably under-estimated. In strong contrast, we found no significant effect of dominance in pistils on SRK expression (F-value: 6.8884 p-value: 0.068244; Figure 3, Table S5h), confirming the absence of transcriptional control of dominance for SRK.

Target features and silencing effect
Levels of SCR expression of any given focal allele varied sharply with the alignment score of the "best" target available for the repertoire of sRNAs produced by the other allele present in the genotype (Figure 4a). Specifically, we observed high and variable expression of $S C R$ when the score of its best predicted target was low, but consistently low $S C R$ expression when the score of the best target was high (Figure 4a, Table S5d). Strikingly, the transition between high expression and low expression was very abrupt (around an alignment score of 18), suggesting a threshold effect rather than a quantitative model for transcriptional silencing. In three cases, the presence of a target with a high score within the $S C R$ gene of the dominant allele was associated with high relative $S C R$ expression (in agreement with the dominant phenotype), suggesting the absence of silencing in spite of the presence of a target with high sequence similarity to the sRNA produced by the recessive allele (sRNA from Ah03 on $\operatorname{SCR} 29$, score $=18.5$; sRNA from Ah04 on SCR20, score $=20$; and sRNA from Ah10 on SCR20, score $=21$; Figure 5a). Examining these targets in detail did not reveal mismatches at the $10-11^{\text {th }}$ nucleotide position, suggesting that mismatches at other positions have rendered these sRNAtarget interactions inactive (Figure 5a). Another exception concerns the observed low score (15.5) for the best match between
a sRNA from the dominant allele Ah04 and a target at $S C R$ from the recessive Ah03 allele (Figure 5b). Whether Ah04 silences SCR from Ah03 through this unusual target or through another elusive mechanism remains to be discovered. In spite of the generally very low expression of all recessive alleles, we found some evidence that the strength of silencing experienced by a given $S C R$ allele may vary across genotypic combinations for a given allele (Fvalue $=2.222$, $p$-value $=0.0756$, Table S5i). However, we found no evidence that the position of the target site on the measured allele (promoter; intron; intron-exon boundary $v s$. upstream/downstream) could explain this variation (F-value $=1.4432$, n.s, TableS5e). The alignment scores obtained in Brassica for Smi \& Smi2 on SCR sequences show that dominant interactions are also strictly distinct from recessive interactions, but at a threshold score of 16.5 , hence lower than that we observed in Arabidopsis (Table S6). Finally, we found no effect of the inferred age of the miRNA on the mean alignment score (mean= 20.41 and 20.22 for recent or ancient miRNAs, respectively; F-value: 0.0362; ns, Table S5j).

## Discussion

Our main objective was to evaluate the base-pairing requirement of the sRNA-target interactions controlling dominance/recessivity interactions between alleles of the allelic series controlling SI in $A$. halleri. Determining the base-pairing requirement for sRNA silencing in plants has remained challenging because the "rules" used for target prediction have typically been deduced from observations that conflate distinct microRNA genes and their distinct mRNA targets over different genes. Moreover, detailed evaluations of the functional consequences of mismatches have relied on heterologous reporter systems (typically GFP in transient tobacco assays), hence limiting the scope of the phenotypic consequences that can be studied. Here, we used a genetic system (plant self-incompatibility) where multiple sRNAs regulate target sites on a single gene $(S C R)$, and in which we are able to make a direct link between the sRNA-target interactions, the level of $S C R$ transcript and the encoded phenotype (dominance/recessivity interaction).

The first step was to clarify several aspects of the expression pattern of the genes controlling SI in A. halleri, as earlier accounts had suggested that alleles of the allelic series may differ from one another in their expression profile (Kusaba et al., 2002). In line with Kakizaki et al., (2003), Suzuki et al., (1999); Schopfer et al., (1999); Takayama et al., (2000); Shiba et al., (2002), we found maximal expression of $S C R$ in early buds but low or no expression at the open flower stage. This expression pattern is consistent with
in situ hybridization experiments showing that $S C R$ transcripts are localized in the tapetum, a specialized layer of cells involved in pollen grains coating (Iwano et al., 2003), which undergoes apoptosis and is quickly degraded as the development of pollen grains inside the anther progresses (Murphy \& Ross, 1998; Takayama et al., 2000). We confirmed that differences exist in the temporal dynamics of expression among alleles, as suggested by Kusaba et al. (2002) in A. lyrata, possibly as the result of strong sequence divergence of the promotor sequences of the different $S C R$ alleles. Finally, we confirmed that $S C R$ and $S R K$ have sharply distinct expression dynamics throughout flower development. Indeed, transcript levels of SRK increased steadily along development and were very low in early buds, consistent with the observation that SI can be experimentally overcome to obtain selfed progenies by "bud-pollination" (Llaurens et al. 2009). Based on this clarified transcriptional dynamics, we confirmed the generality of the transcriptional control of dominance for $S C R$. In particular, we observed that even in the few heterozygote genotypes where in our previous study (Durand et al., 2014) no sRNA produced by the phenotypically dominant allele was predicted to target the sequence of the phenotypically recessive $S C R$ allele, transcripts from the recessive $S C R$ allele were undetected. This suggests either that some functional sRNAs or targets have remained undetected by previous sequencing and/or by our in silico prediction procedures, or that mechanisms other than sRNAs may cause transcriptional silencing for some S-allele combinations. In contrast, we confirmed the absence of transcriptional control for $S R K$, for which both alleles were consistently expressed at similar levels in all heterozygote genotypes examined, irrespective of the (pistil) dominance phenotype. For $S R K$, other dominance mechanisms must therefore be acting, which are yet to be discovered (e.g. Naithani et al., 2007).

An important feature of the silencing phenomenon is that the decrease of transcript levels for recessive $S C R$ alleles was very strong in heterozygous genotypes, bringing down transcript levels below the limits of detection in most cases. This is in line with the intensity of transcriptional silencing by heterochromatic siRNAs (typically very strong for transposable element sequences, see Marí-Ordóñez et al., 2013), while post-transcriptional gene silencing by microRNAs is typically more quantitative (Liu et al., 2014). As a result of this strong decrease of transcript levels, the strength of silencing appeared independent from the position of the sRNA target along the $S C R$ gene (promoter $v s$. intron), although we note that our power to distinguish among levels of transcripts of recessive alleles, which were all extremely low, is itself fairly
low. It remains to be discovered whether the different positions of the sRNA targets do indeed imply different transcriptional silencing mechanisms (Durand et al., 2014).

Based on the many allelic combinations where we could compare the agnostic prediction of putative target sites with the level of transcriptional silencing, we find that a simple threshold model for base-pairing between sRNAs and their target sites captures most of the variation in $S C R$ expression in heterozygotes. This result provides a direct experimental validation of the $a d$-hoc criteria used in Durand et al., (2014). However, our results also indicate that this quantitative threshold is not entirely sufficient to capture the complexity of targeting interactions. Indeed, in two cases for which the dominance relationship is known, this simple threshold model would inappropriately predict that sRNAs from recessive alleles should be able to target more dominant $S C R$ alleles, yet the dominant $S C R$ alleles were expressed at normal levels with no sign of silencing in these heterozygote genotypes (Figure 5a). The position of the mismatches on these sRNAs (at position 15 and 18 of the sRNA for Ah03 on Ah29, and position 3 and 12 for the others) therefore appear to be sufficient to abolish the function of the targeting interaction. Similarly, a mismatch at position 10 in the Smi interaction in Brassica (Tarutani et al., 2010) and in other microRNA-targets interactions (Franco-Zorrilla et al., 2007) was
shown to result in loss of function of the interaction (Table S6). Interestingly, quantitative differences may exist between Arabidopsis and Brassica, as the experimentally validated targets in Brassica (Tarutani et al., 2010; Yasuda et al., 2016) correspond to base-pairing threshold below the one that we find in Arabidopsis (i.e. a target score of 16.5 seems sufficient for silencing in Brassica vs. 18 in Arabidopsis). For Brassica, both class I and class II alleles have $S m i$, but a mismatch at the $10^{\text {th }}$ position was proposed to explain why the class II Smi is not functional. Here, we found that this mismatch drives the alignment score under the 16.5 threshold and could be sufficient to explain the loss of function, regardless of its position. Overall, although these small RNAs achieve their function in a way that is sharply different from classical microRNAs (DNA methylation vs. mRNA cleavage), our results suggest that the sRNA-target complementarity rules for silencing in both cases are qualitatively consistent (Liu et al., 2014). Better understanding the molecular pathway by which these sRNAs epigenetically silence their target gene ( $S C R$ ) will now be key to determine whether this threshold model can be generalized to more classical siRNAs found across the genome, as evidence is still missing for such classes of sRNAs.

The existence of a threshold model has important implications for how the dominance hierarchy can evolve. In fact, our model
suggests that a single SNP can be sufficient to turn a codominance interaction into a dominance interaction (and vice-versa), making this a relatively trivial molecular event. This is actually what Yasuda et al., (2016) observed in B. rapa, where the combination of single SNPs at the sRNA Smi2 and its $S C R$ target sequences resulted in a linear dominance hierarchy among the four class II Salleles found in that species. Strikingly, in some cases, we observed base pairing at sRNA-target interactions with very high alignment scores (up to 22), i.e. above the threshold at which transcriptional silencing was already complete (score $=18$ ). Under our threshold model, such interactions are not expected since complete silencing is already achieved at the threshold, and no further fitness gain is therefore to be expected by acquiring a more perfect target. A first possibility is that these interactions reflect the recent emergence of these silencing interactions. In fact, one of the models for the emergence of new microRNAs in plant genomes involves a partial duplication of the target gene, hence entailing perfect complementarity at the time of origin that becomes degraded over time by the accumulation of mutations (Allen et al., 2004). Under this scenario, the higher-than-expected levels of sRNA-target complementarity could reflect the recent origin of these sRNAs but we found no evidence of a difference in alignment score for young $v s$. old microRNAs (Table S5j). A
second possibility is that selection for developmental robustness is acting to prevent the phenotypic switch from mono- to bi-allelic expression of $S C R$ (especially during stress events, Boukhibar \& Barkoulas, 2016) that could be devastating for the plant reproductive fitness. Indeed, we do observe strong variation in overall $S C R$ expression when the sRNA target score of the companion allele is below the threshold, and it is possible that under stress conditions the epigenetic machinery may be less efficient, hence requiring stronger base-pairing to achieve proper silencing than in the greenhouse conditions under which we observed them in the present study. Finally, a third possibility is that sRNA-target complementarity above the threshold reflects the pleiotropic constraint of having a given sRNA from a dominant allele control silencing of the complete set of target sequences from the multiple recessive alleles segregating, and reciprocally of having a given $S C R$ target in a recessive allele maintaining molecular match with a given sRNA distributed among a variety of dominant alleles. Comparing the complementarity score of sRNA/target interactions among sRNAs or targets that contribute to high versus low numbers of dominance/recessive interactions will now require a more complete depiction of the sRNA-target regulatory network among the larger set of S-alleles segregating in natural populations.

## 725 Acknowledgments

726 We thank Sylvain Billiard and Isabelle de Cauwer for statistical

## Author Contribution

NB, SS, SB, ACH performed the molecular biology experiments. CP and ES obtained and took care of the plants. SS, IFL and XV provided advice on the experimental strategy and interpretations. NB performed the statistical analyses. VC supervised the work. NB and VC wrote the manuscript.

## 745 References cited

746 Aalto AP, Pasquinelli AE. 2012. Small non-coding RNAs mount silent revolution in gene expression. Current Opinion in Cell Biology 24: 333-340.

Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC. 2004. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nature Genetics 36: 1282-1290.

An YQ, McDowell JM, Huang S, McKinney EC, Chambliss S, Meagher RB. 1996. Strong, constitutive expression of the Arabidopsis ACT2/ACT8 actin subclass in vegetative tissues. The Plant journal : for cell and molecular biology 10: 107-121. Axtell MJ, Meyers BC. 2018. Revisiting criteria for plant miRNA annotation in the era of big data. The Plant Cell: tpc.00851.2017.

Bates D, Mächler M, Bolker B, Walker S. 2014. Fitting Linear Mixed-Effects Models using lme4. Journal of Statistical Software 67: 1-48.

Boukhibar LM, Barkoulas M. 2016. The developmental genetics of biological robustness. Annals of Botany 117: 699-707.

## Castric V, Bechsgaard J, Schierup MH, Vekemans X. 2008.

Repeated adaptive introgression at a gene under multiallelic
balancing selection. PLoS Genetics 4.

Castric V, Vekemans X. 2004. Plant self-incompatibility in natural populations: A critical assessment of recent theoretical and empirical advances. Molecular Ecology 13: 2873-2889.

Cuerda-Gil D, Slotkin RK. 2016. Non-canonical RNA-directed DNA methylation. Nature Plants 2: 16163.

Ding J, Zhou S, Guan J. 2012. Finding MicroRNA Targets in Plants: Current Status and Perspectives. Genomics, Proteomics and Bioinformatics 10: 264-275.

Durand E, Méheust R, Soucaze M, Goubet PM, Gallina S, Poux C, Fobis-loisy I, Guillon E, Gaude T, Sarazin A, et al. 2014. Dominance hierarchy arising from the evolution of a complex small RNA regulatory network. Science 346: 1200-1205. Fei Q, Xia R, Meyers BC. 2013. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. The Plant Cell 25: 2400-2415.

Finnegan EJ, Liang D, Wang M. 2011. Self-incompatibility : Smi silences through a novel sRNA pathway. Trends in Plant Science 16: 238-241.

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I, Leyva A, Weigel D, García JA, Paz-Ares J.
2007. Target mimicry provides a new mechanism for regulation of microRNA activity. Nature Genetics 39: 1033-1037.

Goubet PM, Bergès H, Bellec A, Prat E, Helmstetter N, Mangenot S, Gallina S, Holl A-C, Fobis-Loisy I, Vekemans X, et al. 2012. Contrasted pattern of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis. PLoS genetics 8.

Hatakeyama K, Takasaki T, Suzuki G, Nishio T, Watanabe M, Isogai A, Hinata K. 2001. The S Receptor Kinase gene determines dominance relationships in stigma expression of selfincompatibility in Brassica. Plant Journal 26: 69-76.

## Iwano M, Shiba H, Funato M, Shimosato H, Takayama S,

 Isogai A. 2003. Immunohistochemical studies on translocation of pollen S-haplotype determinant in self-incompatibility of Brassica rapa. Plant and Cell Physiology 44: 428-436.Jones-Rhoades MW, Bartel DP, Bartel B. 2006. MicroRNAs and their regulatory roles in plants. Annual Review of Plant Biology 57: 19-53.

## Kakizaki T, Takada Y, Ito A, Suzuki G, Shiba H, Takayama S,

 Isogai A, Watanabe M. 2003. Linear dominance relationship among four class-II S haplotypes in pollen is determined by the expression of SP11 in Brassica self-incompatibility. Plant \& cellKusaba M, Tung C-W, Nasrallah ME, Nasrallah JB. 2002.
Monoallelic expression and dominance interactions in anthers of self-incompatible Arabidopsis lyrata. Plant physiology 128: 17-20.

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene
expression data using real-time quantitative PCR and. Methods 25: 402-408.

Llaurens V, Billiard S, Leducq JB, Castric V, Klein EK, Vekemans X. 2008. Does frequency-dependent selection with complex dominance interactions accurately predict allelic frequencies at the self-incompatibility locus in Arabidopsis halleri? Evolution 62: 2545-2557.

Ma R, Han Z, Hu Z, Lin G, Gong X, Zhang H, Nasrallah JB, Chai J. 2016. Structural basis for specific self-incompatibility response in Brassica. Nature Publishing Group 26: 1320-1329. Mable BK, Schierup MH, Charlesworth D. 2003. Estimating the number, frequency, and dominance of S-alleles in a natural population of Arabidopsis lyrata (Brassicaceae) with sporophytic control of self-incompatibility. Heredity 90: 422-31.

Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP. 2004. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. The EMBO Journal 23: 3356-3364.

Marí-Ordóñez A, Marchais A, Etcheverry M, Martin A, Colot V, Voinnet O. 2013. Reconstructing de novo silencing of an active plant retrotransposon. Nature genetics 45: 1029-1039. Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ. 2009.

RNA-mediated chromatin-based silencing in plants. Current Opinion in Cell Biology 21: 367-376. Murphy DJ, Ross JH. 1998. Biosynthesis, targeting and processing of oleosin-like proteins, which are major pollen coat components in Brassica napus. Plant J 13: 1-16. Naithani S, Chookajorn T, Ripoll DR, Nasrallah JB. 2007. Structural modules for receptor dimerization in the S-locus receptor kinase extracellular domain. Proceedings of the National Academy of Sciences 104: 12211-6. De Nettancourt D. 2001. Incompatibility and Incongruity in Wild and Cultivated Plants. (BY Springer-Verlag., Ed.). Novikova PY, Hohmann N, Nizhynska V, Tsuchimatsu T, Ali J, Muir G, Guggisberg A, Paape T, Schmid K, Fedorenko OM, et al. 2016. Sequencing of the genus Arabidopsis identifies a complex history of nonbifurcating speciation and abundant transspecific polymorphism. Nature Genetics 48: 1077-1082. Palazzo AF, Lee ES. 2015. Non-coding RNA: What is functional and what is junk? Frontiers in Genetics 5: 1-11.

Parizotto EA, Parizotto EA, Dunoyer P, Dunoyer P, Rahm N, Rahm N, Himber C, Himber C, Voinnet O, Voinnet O. 2004. In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a

plant miRNA. Genes \& Development 18(18): 2237-2242.

Remans T, Smeets K, Opdenakker K, Mathijsen D, Vangronsveld J, Cuypers A. 2008. Normalisation of real-time RT-PCR gene expression measurements in Arabidopsis thaliana exposed to increased metal concentrations. Planta 227: 13431349.

Schopfer CR, Nasrallah ME, Nasrallah JB. 1999. The male determinant of self-incompatibility in Brassica. Science 286: 1697 LP-1700.

Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D. 2005. Specific effects of microRNAs on the plant transcriptome. Developmental Cell 8: 517-527.

## Shiba H, Iwano M, Entani T, Ishimoto K, Shimosato H, Che F-

 S, Satta Y, Ito A, Takada Y, Watanabe M, et al. 2002. The dominance of alleles controlling self-incompatibility in Brassica pollen is regulated at the RNA level. The Plant cell 14: 491-504.Shiba H, Kakizaki T, Iwano M, Tarutani Y, Watanabe M, Isogai A, Takayama S. 2006. Dominance relationships between self-incompatibility alleles controlled by DNA methylation. Nature Genetics 38: 297-9.

Smyth DR, Bowman JL, Meyerowitz EM. 1990. Early flower development in Arabidopsis. The Plant Cell 2: 755-767.

Suzuki G, Kai N, Hirose T, Fukui K, Nishio T, Takayama S, Isogai A, Watanabe M, Hinata K. 1999. Genomic organization of the S locus : identification and characterization of genes in SLG / SRK region of S9 haplotype of Brassica campestris (syn . rapa ). Genetics 153(1): 391-400.

## Takayama S, Shiba H, Iwano M, Shimosato H, Che FS, Kai N,

 Watanabe M, Suzuki G, Hinata K, Isogai A. 2000. The pollen determinant of self-incompatibility in Brassica campestris. Proceedings of the National Academy of Sciences of the United States of America 97: 1920-1925.Tarutani Y, Shiba H, Iwano M, Kakizaki T, Suzuki G, Watanabe M, Isogai A, Takayama S. 2010. Trans-acting small RNA determines dominance relationships in Brassica selfincompatibility. Nature 466: 983-986.

## Vaucheret H, Béclin C, Elmayan T, Feuerbach F, Godon C,

 Morel JB, Mourrain P, Palauqui JC, Vernhettes S. 1998. Transgene-induced gene silencing in plants. The Plant journal 16: 651-659.Vazquez F, Legrand S, Windels D. 2010. The biosynthetic pathways and biological scopes of plant small RNAs. Trends in Plant Science 15: 337-345.

Wang F, Polydore S, Axtell MJ. 2015. More than meets the eye?

919 Factors that affect target selection by plant miRNAs and 920 heterochromatic siRNAs. Current Opinion in Plant Biology 27:

921 118-124

## Figure legends

Figure 1: Expression dynamics of a. $S C R$ and $\mathbf{b} . S R K$ during flower development, from early buds $(<0.5 \mathrm{~mm})$ to open flowers. For $S C R$, only genotypes in which a given allele was either dominant or co-dominant were included (recessive SCR alleles were strongly silenced at all stages and were therefore not informative here). For each allele, $2^{-\Delta \mathrm{Ct}}$ values were normalized relative to the developmental stage with the highest expression. For each stage, the thick horizontal line represents the median, the box represents the $1^{\text {st }}$ and $3^{\text {rd }}$ quartiles. The upper whisker extends from the hinge to the largest value no further than 1.5 * Inter Quartile Range from the hinge (or distance between the first and third
quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge and the black dots represents outlier values.

Figure 2: Expression of individual $S C R$ alleles in different genotypic contexts. Pollen dominance status of the S-allele whose expression is measured relative to the other allele in the genotype as determined by controlled crosses are represented by different letters (D: dominant; C: codominant; R: recessive; $\mathbf{U}$ : unknown; H: Homozygote, Table S3). In a few instances, relative dominance status of the two alleles had not been resolved phenotypically and were inferred from the phylogeny (marked by asterisks). Thick horizontal bars represent the median of $2^{-\Delta C t}$ values, $1^{\text {st }}$ and $3^{\text {rd }}$ quartile are indicated by the upper and lower limits of the boxes. The upper whisker extends from the hinge to the largest value no further than 1.5 * Inter Quartile Range from the hinge (or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge and the black dots represents outlier values. We normalized values relative to the highest median across heterozygous combinations within each panel. Alleles are ordered from left to right and from top to bottom according to their position along the dominance hierarchy, with SCR01 the most recessive and SCR13 and SCR20 the most dominant alleles. Under a model of transcriptional control
of dominance, high expression is expected when a given allele is either dominant or co-dominant and low expression when it is recessive. Exceptions to this model are marked by black vertical arrows and discussed in the text. "Na" marks homozygote or heterozygote genotypes that were not available.

Figure 3: Expression of individual $S R K$ alleles in different genotypic contexts. Putative pistil dominance status of the S-allele whose expression is measured relative to the other allele in the genotype is represented by different letters (D: dominant; $\mathbf{R}$ : recessive; $\mathbf{U}$ : unknown; $\mathbf{H}$ : Homozygote). Note that the pistil dominance hierarchy of the S -allele have been less precisely determined than the pollen hierarchy, and so many of the pairwise dominance interactions were indirectly inferred from the phylogenetic relationships (and marked by an asterisk) rather than directly measured phenotypically. Thick horizontal bars represent the median of $2^{-\Delta C t}$ values, $1^{\text {st }}$ and $3^{\text {rd }}$ quartile are indicated by the upper and lower limits of the boxes. The upper whisker extends from the hinge to the largest value no further than 1.5 * Inter Quartile Range from the hinge (or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge and the black dots represents outlier values.. We normalized the values for each allele relative to the higher median across heterozygous combination. We
normalized values relative to the highest median across heterozygous combinations within each panel. Alleles are ordered from left to right and from top to bottom according to their position in the pistil dominance hierarchy, with SRK01 the most recessive and SRK04 the most dominant allele in our sample, based on the phenotypic determination in Llaurens et al. (2008).

Figure 4: Base-pairing requirements for the transcriptional control of SCR alleles by sRNAs suggest a threshold model. a. Relative expression of $S C R$ alleles as a function of the alignment score of the "best" interaction between the focal allele (including 2 kb of sequence upstream and downstream of $S C R$ ) and the population of sRNAs produced by sRNA precursors of the other allele in the genotype. For each allele, expression was normalized relative to the genotype in which the $2^{-\Delta \mathrm{Ct}}$ value was highest. Dots are coloured according to the dominance status of the focal SCR allele in each genotypic context (black: dominant; white: recessive; grey: undetermined). The black line corresponds to a local regression obtained by a smooth function (loess function, span=0.5) in the ggplot2 package (Wickham, 2009) and the grey area covers the 95\% confidence interval. Vertical arrows point to observations that do not fit the threshold model of transcriptional control and are represented individually on Figure 5. b. Barplots of the Akaike Information Criteria (AIC) quantifying the fit of the generalized
linear model for different target alignment scores used to define functional targets. Lower AIC values indicate a better fit.

Figure 5: Predicted sRNA/target interactions that do not fit with the documented dominance phenotype or the measured expression. For each alignment, the sequence on top is the sRNA and the bottom sequence is the best predicted target site on the $S C R$ gene sequence (including 2 kb of sequence upstream and downstream of $S C R$ ). a. sRNA targets with a score above 18 , while the S -allele producing the sRNA is phenotypically recessive over the S-allele containing the $S C R$ sequence. b. sRNA target with a score below 18 , while the S -allele producing the sRNA (Ah04) is phenotypically dominant over the S-allele containing the SCR sequence and transcript levels of the SCR03 allele is accordingly very low. This is the best target we could identify on SCR03 for sRNAs produced by Ah04.

## Supplementary figures

Figure S1. Validation of the $S C R$ qPCR primers. "Positive control" corresponds to amplification with the Master Mix containing primers for $S C R$ alleles that are present in the cDNA used. For the "Cross Amplification" assay, we used a Master Mix on cDNAs that do not contain alleles corresponding to the primer
pair used. "Water": master mix with water instead of cDNA. Thick horizontal bars represent the median of $2^{-\Delta \mathrm{Ct}}$ values, $1^{\text {st }}$ and $3^{\text {rd }}$ quartile are indicated by the upper and lower limits of the. The upper whisker extends from the hinge to the largest value no further than 1.5 * Inter Quartile Range from the hinge (or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 * IQR of the hinge and the black dots represents outlier values.

Figure S2: qPCR amplification (non-transformed $C t$ values) in serial dilutions for each $\operatorname{SCR}$ (a) and $\operatorname{SRK}$ (b) allele. Solid lines are the linear regressions over all $C t$ values. Dashed lines are linear regressions excluding the highest dilution level.

Figure S3. Generalized linear mixed model used to test the effect of developmental stage and dominance status on the expression of $S C R$ alleles ( $C t$ values). The distribution shows that the residues of the full model are approximately normally distributed when taking allele identity, developmental stage and dominance status into account and using a logarithmic transformation of the $C t_{\mathrm{SCR}} / C t_{\text {actin }}$ ratios.

Figure S4. Expression of individual $S C R$ alleles in different genotypic contexts, representing each biological and clone replicate separately. Symbols on top of the boxes indicate measures from identical clone replicates. See legend of Figure 2 for a full description.

Table S1. SCR samples analysed for each S-locus genotype, showing the number of biological and clone replicates over the four developmental stages sampled. "Allele 1" refers to the first allele noted in the genotype (for example in the S1S2 genotype, "allele $1 "$ is S 1 and "allele 2 " is S 2 ).

Table S2: SRK samples analysed for each S-locus genotype, showing the number of biological and clone replicates over the four developmental stages sampled. The alleles are named accordingly to the Table S1.

Table S3: Dominance relationships between alleles from the different genotypes included in this study as determined by controlled crosses.

Table S4: qPCR primer sequences for each $S C R$ and $S R K$ alleles studied.

Table S5: Detailed results from the generalized linear mixed models. a. Decomposition of the sources of variance across allele identity and the hierarchical levels biological, clones and technical replicates for $S C R$. $\mathbf{b}$. Test of the variation of expression dynamic across $S C R$ alleles. c. Test of the dominance and stage effects on $S C R$ transcript levels, showing a significant interaction. d.

1076 Comparison of the fit of the model under different base-pairing 1077 score thresholds. e. Test of the effect of the position of the target on the strength of silencing. $\mathbf{f}$. Decomposition of the source of variance across the technical replicates and the allele identity for SRK. g. Test of the variation of expression dynamic across SRK alleles. $\mathbf{h}$. Test of the effect of stage and dominance on $S R K$ transcript levels. i. Test of the effect of the identity of the companion allele on SCR transcript levels. j: Test of the effect of age on alignment score above the threshold of 18 .

Table S6: sRNA and target identified as the best match for every pair of alleles for $S C R . C t_{S C R} / C t_{\text {actin }}$ ratios are given for the target allele in the interaction, calculated from the mean of $C t_{S C R} / C t_{\text {actin }}$ ratios across the two earliest developmental stages (buds below 1mm, see Figure 1). The positions of the targets are given relative to the beginning of the closest exon of $S C R$ for targets upstream from the gene or in the intron), and relative to the stop codon for downstream targets. R: Recessive; D: dominant; H: homozygote.


Relative Expression




Relative Expression



Relative Expression






Figure S2















bioRxiv preprint doi: https://doi.org/10.1101/370239; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Frequency



Table S1. SCR samples analysed for each S-locus genotype, showing the number of biological and clone replicates over the four developmental stages sampled. "Allele 1" refers to the first allele noted in the genotype (for example in the S1S2 genotype, "allele 1 " is S1 and "allele 2 " is $S 2$ ).

|  | number of | number of expression measure |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | renlicates | allele 1 | allele 2 | actin |
| S1S1 | $2^{\text {S }}$ | 48 | 48 | 48 |
| S1S2 | 1 | 12 | 12 | 12 |
| S1S3 | 2 | 24 | 24 | 24 |
| S1S4 | 3 | 36 | 36 | 36 |
| S1S10 | $1^{\$}$ | 24 | 24 | 24 |
| S1S12 | 3 | 36 | 36 | 36 |
| S1S13 | 2 | 24 | 24 | 24 |
| S1S20 | $3^{\text {f }}$ | 60 | 60 | 60 |
| S1S29 | 3 | 36 | 36 | 36 |
| S2S2 | 2 | 24 | 24 | 24 |
| S2S3* | 2 | 18 | 18 | 18 |
| S2S10 | 2 | 24 | 24 | 24 |
| S2S12 | 2 | 24 | 24 | 24 |
| S2S13 | 2 | 24 | 24 | 24 |
| S2S20 | 2 | 24 | 24 | 24 |
| S2S29 | 2 | 24 | 24 | 24 |
| S3S3 | 2 | 24 | 24 | 24 |
| S3S4 | 1 | 12 | 12 | 12 |
| S3S12 | 2 | 24 | 24 | 24 |
| S3S20* | 3 | 30 | 30 | 30 |
| S3S29 | 1 | 12 | 12 | 12 |
| S4S10 | 1 | 12 | 12 | 12 |
| S4S12 | 2 | 24 | 24 | 24 |
| S4S13 | 2 | 24 | 24 | 24 |
| S4S20 | 2 | 24 | 24 | 24 |
| S4S29 | 1 | 12 | 12 | 12 |
| S10S12 | 1 | 12 | 12 | 12 |
| S10S13 | 2 | 24 | 24 | 24 |
| S10S20 | 2 | 24 | 24 | 24 |
| S10S29 | 1 | 12 | 12 | 12 |
| S12S13 | 4 | 48 | 48 | 48 |
| S12S20 | 4 | 48 | 48 | 48 |
| S12S29 | 2 | 24 | 24 | 24 |
| S13S20 | 4 | 48 | 48 | 48 |
| S13S29 | 1 | 12 | 12 | 12 |
| S20S20 | 4 | 48 | 48 | 48 |
| S20S29 | 3 | 36 | 36 | 36 |

*: only the stages C and D were sampled for one of the biological replicates
\$: two clone replicates per biological replicate
$£$ : two of the three biological replicates are represented by two clone replicates
bioRxiv preprint doi: https://doi.org/10.1101/370239; this version posted July 19, 2018. The copyright holder for this preprint (which was

Table S2: SRK samples analysed for each S-locus genotype, showing the number of biological and clone replicates over the four developmental stages sampled. The alleles are named accordingly to the Table S1.

|  | number of expression measure |  |  |
| :---: | :---: | :---: | :---: |
|  | allele 1 | allele 2 | actin |
| S1S1 | 12 | - | 11 |
| S1S2 | 10 | - | 12 |
| S1S3 | 11 | - | 12 |
| S1S10 | 9 | 12 | 11 |
| S1S12 | 11 | 12 | 12 |
| S1S13 | 11 | - | 12 |
| S1S20 | 8 | - | 9 |
| S1S29 | 10 | - | 9 |
| S3S3 | 12 | - | 12 |
| S3S4 | 8 | - | 12 |
| S3S12 | 12 | 11 | 12 |
| S3S20 | 12 | - | 12 |
| S3S29 | 12 | 12 | 12 |
| S4S10 | 12 | 12 | 12 |
| S4S12 | 12 | 9 | 9 |
| S4S13 | 8 | - | 12 |
| S4S29 | 12 | 11 | 12 |
| S10S2 | 12 | - | 12 |
| S10S12 | 11 | - | 12 |
| S10S13 | 12 | - | 12 |
| S10S20 | 12 | - | 12 |
| S10S29 | 12 | 12 | 12 |
| S12S20 | 12 | - | 12 |
| S12S29 | 11 | 12 | 12 |
| S29S2 | 12 | - | 12 |

Table S3: Dominance relationships between alleles from the different genotypes included in this study as determined by controlled crosses.

| pollen genotype | pistil phenotype | number of compatible crosses | dominance phenotype in pollen | reference | dominance phenotype in pistil | reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S1S1 | - | - | - | Durand et al. 2014 | - | - |
| S1S2 | [S1] | - | S2>S1 | Llaurens et al. 2008 | S2>S1 | Llaurens et al. 2008 |
| S1S2 | [S2] | - |  | Llaurens et al. 2008 |  |  |
| S1S3 | [S1] | - | S3>S1 | Durand et al. 2014 | - | - |
| S1S3 | [S3] | - |  | Durand et al. 2014 |  |  |
| S1S4 | [S1] | - | S4>S1 | Durand et al. 2014 | S4>S1 | Llaurens et al. 2008 |
| S1S4 | [S4] | - |  | Durand et al. 2014 |  |  |
| S1S10 | [S1] | - | NA | - | - | - |
| S1S10 | [S10] |  |  | - |  | - |
| S1S12 | [S1] | - | S12>S1 | Durand et al. 2014 | S12>S1 | Llaurens et al. 2008 |
| S1S12 | [S12] | - |  | Durand et al. 2014 |  |  |
| S1S13 | [S1] | - | S13>S1 | Durand et al. 2014 | - | - |
| S1S13 | [S13] | - |  | Durand et al. 2014 |  |  |
| S1S20 | [S1] | - | S20>S1 | Durand et al. 2014 | S20>S1 | Llaurens et al. 2008 |
| S1S20 | [S20] | - |  | Durand et al. 2014 |  |  |
| S1S29 | [S1] | - | NA | - | - | - |
| S1S29 | [S29] | - |  | - |  | - |
| S2S3 | [S2] | - | NA | - | - | - |
| S2S3 | [S3] | - |  | - |  |  |
| S2S4 | [S2] | - | S4>S2 | Llaurens et al. 2008 | S4>S2 | Llaurens et al. 2008 |
| S2S4 | [S4] | - |  | Llaurens et al. 2008 |  |  |
| S2S10 | [S2] | - | NA | - | - | - |
| S2S10 | [S10] | - |  | - |  |  |
| S2S12 | [S2] | - | S12>S2 | Llaurens et al. 2008 | S12>S2 | Llaurens et al. 2008 |
| S2S12 | [S12] | - |  | Llaurens et al. 2008 |  |  |
| S2S13 | [S2] | - | NA | - | - | - |
| S2S13 | [S13] | - |  | - |  | - |
| S2S20 | [S2] | - | NA | - | - | - |
| S2S20 | [S20] | - |  | - |  | - |
| S2S29 | [S2] | 0/5 | S2>S29 | This study | - | - |
| S2S29 | [S29] | 4/7 |  | This study |  | - |
| S3S4 | [S3] | - | S4>S3 | Durand et al. 2014 | - | - |
| S3S4 | [S4] | - |  | Durand et al. 2014 |  | - |
| S3S10 | [S3] | - | S10>S3 | Durand et al. 2014 | - | - |
| S3S10 | [S10] | - |  | Durand et al. 2014 |  | - |
| S3S12 | [S3] | - | S12>S3 | Durand et al. 2014 | - | - |
| S3S12 | [S12] | - |  | Durand et al. 2014 |  | - |
| S3S13 | [S3] | - | S13>S3 | Durand et al. 2014 | - | - |
| S3S13 | [S13] | - |  | Durand et al. 2014 |  | - |
| S3S20 | [S3] | - | S20>S3 | Durand et al. 2014 | - | - |
| S3S20 | [S20] | - |  | Durand et al. 2014 |  | - |
| S3S29 | [S3] | - | S29>S3 | - | - | - |
| S3S29 | [S29] | - |  | - |  | - |
| S4S10 | [S4] | - | S4>S10 | Durand et al. 2014 | - | - |
| S4S10 | [S10] | - |  | Durand et al. 2014 |  | - |
| S4S12 | [S4] | - | S12>S4 | Durand et al. 2014 | S12>S4 | Llaurens et al. 2008 |
| S4S12 | [S12] | - |  | Durand et al. 2014 |  |  |
| S4S13 | [S4] | - | S13>S4 | Durand et al. 2014 |  | - |
| S4S13 | [S13] | - |  | Durand et al. 2014 |  | - |
| S4S20 | [S4] | - | S20>S4 | Durand et al. 2014 | S20>S4 | Llaurens et al. 2008 |
| S4S20 | [S20] | - |  | Durand et al. 2014 |  |  |


| S 4 S 29 | $[\mathrm{~S} 4]$ | - |  |
| :---: | :---: | :---: | :---: |
| S 4 S 29 | $[\mathrm{~S} 29]$ | - | $\mathrm{S} 4>\mathrm{S} 29$ |
| S 10 S 12 | $[\mathrm{~S} 10]$ | $5 / 5$ |  |
| S 10 S 12 | $[\mathrm{~S} 12]$ | $0 / 5$ | $\mathrm{~S} 12>\mathrm{S} 10$ |
| S 10 S 13 | $[\mathrm{~S} 10]$ | - |  |
| S 10 S 13 | $[\mathrm{~S} 13]$ | - | $\mathrm{S} 13>\mathrm{S} 10$ |
| S 10 S 20 | $[\mathrm{~S} 10]$ | - |  |
| S 10 S 20 | $[\mathrm{~S} 20]$ | - | $\mathrm{S} 20>\mathrm{S} 10$ |
| S 10 S 29 | $[\mathrm{~S} 10]$ | $1 / 5$ |  |
| S 10 S 29 | $[\mathrm{~S} 29]$ | $3 / 3$ | $\mathrm{~S} 10>S 29$ |
| S 12 S 13 | $[\mathrm{~S} 12]$ | - |  |
| S 12 S 13 | $[\mathrm{~S} 13]$ | - | $\mathrm{S} 13>\mathrm{S} 12$ |
| S 12 S 20 | $[\mathrm{~S} 12]$ | - |  |
| S 12 S 20 | $[\mathrm{~S} 20]$ | - | $\mathrm{S} 20>S 12$ |
| S 12 S 29 | $[\mathrm{~S} 12]$ | - |  |
| S 12 S 29 | $[\mathrm{~S} 29]$ | - | $\mathrm{S} 12>\mathrm{S} 29$ |
| S 13 S 20 | $[\mathrm{~S} 13]$ | - |  |
| S 13 S 20 | $[\mathrm{~S} 20]$ | - | $\mathrm{S} 13=\mathrm{S} 20$ |
| S 13 S 29 | $[\mathrm{~S} 13]$ | - |  |
| S 13 S 29 | $[\mathrm{~S} 29]$ | - | $\mathrm{S} 13>\mathrm{S} 29$ |
| S 20 S 29 | $[\mathrm{~S} 20]$ | - |  |
| S 20 S 29 | $[\mathrm{~S} 29]$ | - | $\mathrm{S} 20>S 29$ |

Durand et al. 2014
Durand et al. 2014
This study
This study
Durand et al. 2014
Durand et al. 2014
Durand et al. 2014
Durand et al. 2014
This study
This study
Durand et al. 2014

Table S4: qPCR primer sequences for each SCR and SRK alleles studied.

|  |  | 5' Primer Sequence 3' |
| :---: | :---: | :---: |
| SCR01 | F | AAGTGGAAGCTTGGACGAGA |
|  | R | AAAAGTCGTATCTGCGATTG |
| SCRO2 | F | GTCTTTCCTTATAAGCCATGG |
|  | R | GGGGACCCAAGAGATTATGC |
| SCRO3 | F | CACATAAAAGAATCATGAAGTCTGC |
|  | R | AATGACAGTGGCAAAGTCGC |
| SCRO4 | F | GACGTGTTGTTTTGTTCATGGG |
|  | R | GGCGAGAGGGTCTGAAATTC |
| SCR10 | F | CTCATTGTTTTCTTCACAAGCC |
|  | R | GCGAATGTAAAGATGTTGATGGGG |
| SCR12 | F | CGCTTGTTTTGTGTCACG |
|  | R | GCTTTTAACAGAAACCAGGG |
| SCR13 | F | AGACGTGCTACATTGTTCATAGT |
|  | R | GAGACGGAAACTACAACTGCA |
| SCR20 | F | GACATAGAAGTTCAGAAGGCGC |
|  | R | TGCCGCTGTCAAGTTAATAGAG |
| SCR29 | F | CATGTCTTTGCTTATAAGCC |
|  | R | GCTGGTCGTCGATATTGCCG |
| SRK01 | F | TCAGATTGGCGGCTTCTGAG |
|  | R | TGGAAACAGAAGCAAGCAAGG |
| SRK03 | F | AGGAATGTGAGGAGAGGTGC |
|  | R | GGGCAACAACAACAGTAGGA |
| SRK04 | F | CGGAGAGTTTCGAGATATCCG |
|  | R | GGGTGGTAATGTCAAGTGGG |
| SRK10 | F | ACTTGGGCTGGAAGAATGTG |
|  | R | AGGAAACACAAGCGAGCAAG |
| SRK12 | F | ATGGATGCGATTGTGGACAG |
|  | R | CATTGGTTTGGTAGTTGGAATCA |
| SRK29 | F | CCGAAATTATGCTGCCGATGG |
|  | R | CTTGTGAGTTTCATCATGTACTGGT |



[^0]bioRxiv preprint doi: https://doi.org/10.1101/370239; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

bioRxiv preprint doi：https：／／doi．org／10．1101／370239；this version posted July 19，2018．The copyright holder for this preprint（which was not certified by peer review）is the author／funder，who has granted bioRxiv a license to display the preprint in perpetuity．It is made available under aCC－BY－NC－ND 4.0 International license．

| L8－ | 80 I－ | xozourad | ع0－马06L8．$\tau$ | S．9I | ¢ $\varepsilon$ .9 | פษษกפกפษกกวกกษกกษฺษกกวกว ｜｜x｜0｜｜｜｜｜｜｜x｜｜｜｜｜｜｜｜～ <br>  | ¢ .8 | 726xe7 Vnप्ds | y | ع0Ч甘 |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ちてST－ | Sbst－ |  | โ0－gてT6を・て | SI | ，$\varepsilon$ |  | ，s | 726 те7 | H | 20Y＊ |  |  |
|  |  |  |  |  | ，9 | ษว－กกกกษวองอกษษวอษษกวษษ | －$\varepsilon$ | ＊nys |  |  | ESJTW ${ }^{-}$204\％ |  |
| $6 \varepsilon-$ | 6S－ | xo7ouroxd |  | 6 T | ，$\varepsilon$ | ＊ษפกษกวษกกวกกฺกกษฺษกกวกว <br> ～｜｜｜｜｜x｜｜｜｜｜｜｜｜｜｜｜｜｜｜～～ | 19 | 726 тe7 | y | IOY\＃ |  |  |
|  |  |  |  |  | ，S | อกวษกษวกษษอษษวษษกวกษษอกอ | －$\varepsilon$ | bNYS |  |  | L88TエTW ${ }^{-}$20Y\％ | Z0Ч甘 |
| 626 | 016 | шеәл7sumop | て0－马ロを86＊ | SI | ，$\varepsilon$ | ＊פษ <br> ～｜｜｜｜｜－｜｜－｜｜｜｜｜｜x｜｜｜｜｜～～ | 19 | 726 тe7 | a | 624＊ |  |  |
|  |  |  |  |  | ，S |  | ．$\varepsilon$ | vNY |  |  | 6とてもさせTW－T0Y＊ |  |
| 9 L | ¢s | uoxə | T0－\＃0 L L－$冖$ | G．9I | ，$\varepsilon$ |  ｜｜｜｜x｜｜｜｜｜x｜｜｜｜｜O｜｜｜～～ | ．s | $726 \pm$ ¢ | a | OZप\＃ |  |  |
|  |  |  |  |  | ，9 | กกอกษกววอกกกกกอวองอษกองก | －$\varepsilon$ | \＃nys |  |  |  |  |
| T96 1 | $0 ヵ 6 \tau$ | шеәт7sumop | 20－96680＊て | S．$¢ \tau$ | ，$\varepsilon$ |  | ．s | 7 7．ххе7 | $\square$ | $\varepsilon \tau Ч \cup$ |  |  |
|  |  |  |  |  | ，S |  | －$\varepsilon$ | bNys |  |  | 6とてもさせTW－T0Y\％ |  |
| ЂGS | 0¢ร | шеәх7sumop | 20－す602T・て | G．$\quad$ T | ，$\varepsilon$ |  | ．s | $726 \pm$ т | $\square$ | てTU＊ |  |  |
|  |  | 2 |  |  | ，G |  | －$\varepsilon$ | \＃NY |  |  |  |  |
| โ ¢ | $\varepsilon 0 \tau$ | uoxə | ワ0－马く8ャ8・て | G．GT | ，$\varepsilon$ |  | ．s | 726 те7 | $\square$ | 0 TY甘 |  |  |
|  |  |  |  |  | ，S |  | ，\＆ | ＊Nys |  |  |  |  |
| ع6п－ | LTS－ | xozouroxd | T0－ษ86てて・T | ¢T | ，$\varepsilon$ | กษกэกษว－กว－กษกษกกกーวกกกวษกกก | 1s | 726те7 | $\square$ | БOY＊ |  |  |
|  |  |  |  |  | ，S |  | －$\varepsilon$ | \＃NYs |  |  |  |  |
| 987－ | SOS－ | xo7ourad | て0－ษとLも8・て | SI | ，$\varepsilon$ | กกกษกวกอกกกกกอวกกกกอก－กกกก <br> ～～～～｜｜－｜।｜｜｜｜｜｜｜｜｜－｜－｜｜｜｜ | 19 | 726 те7 | व | ع0प甘 |  |  |
|  |  |  |  |  | ，9 |  | ．$\varepsilon$ | vNys |  |  |  |  |
| LLI－ | 96 T－ | uoxzut | โ0－ษยร0¢• $\tau$ | G•EI | ，$\varepsilon$ |  <br> ～｜｜－｜｜0｜｜｜｜｜｜－｜｜｜｜｜－｜｜～～ | ．s | $726 \pm$ т | a | 20Y＊ |  |  |
|  |  |  |  |  | ，9 | 甘กפ－गษפכ | ，\＆ | tnys |  |  |  |  |
| T8S－ | 865－ | xozouroxd | て0－』てもをし「 |  | ，$\varepsilon$ | L゙ว | ．s | 726 те7 | H | IOY\＃ |  |  |
|  |  |  |  | bT |  |  |  |  |  |  |  |  |
|  |  |  |  |  | ，S |  | ，$\varepsilon$ | bnys |  |  |  | IOY\％ |
| O7 uroxi |  |  |  |  |  |  |  |  |  |  |  |  |
| ```uoțT+Tsod 7ә6ле7 ə\Lambdaтキセโәエ``` |  | иот7eว0t 7ә6те7 | $\begin{gathered} \text { uȚ70e7ว / } \\ \text { צวS7D } \end{gathered}$ | әлоэs |  | иот̣プеォәұuT <br>  |  |  | әdK70uәч əoueu țuop | әтәтโе рәұәблеұ | ォosxnつәxd <br>  | әтәTTE 6uт̣əə6ォセ7 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |



| $\begin{aligned} & \text { N } \\ & \text { N } \\ & 0 \end{aligned}$ | $\underset{\omega}{\stackrel{\rightharpoonup}{c}}$ | $\stackrel{\text { 空 }}{\sim}$ | $\begin{gathered} \text { 苟 } \\ \stackrel{0}{2} \end{gathered}$ |  | $\begin{gathered} \mathbb{O} \\ \stackrel{0}{0} \\ 0 \end{gathered}$ | $\begin{aligned} & \text { N } \\ & \stackrel{0}{\circ} \\ & \sim \end{aligned}$ | $\stackrel{\text { N }}{\substack{0 \\ \hline}}$ | $\underset{\substack{\text { N} \\ \stackrel{y}{6} \\ \hline}}{ }$ | 劳 | $\underset{\omega}{\stackrel{\rightharpoonup}{己}}$ | $\underset{\sim}{\text { 空 }}$ | 劳 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\square$ | $\square$ | $\square$ | $\square$ | T | $\square$ | T | T | $\square$ | $\square$ | $\square$ | $\square$ |



| AACUAACCAAUGAGCAUUUUCA <br> ｜l｜｜｜｜｜｜｜｜｜x｜－－｜｜｜｜～～ UUGAUUGGUUACAC－－AAAAAA |
| :---: |
| AACUAACCAAUGAG－CAUUUUCA |
| ｜｜｜｜｜｜｜｜｜｜｜｜0－｜－｜｜｜｜～～ |
| UUGAUUGGUUACUUAG－AAAACU |
| UUUAA－ACG－CUUAUU－GGUUAGUGU |
|  |
| AAAUUAUUCAGAAUAAGCCAAUCAGA |
| AAUCUAA－CA－AGAA |
| ～｜｜｜－｜｜｜｜－｜ |
| AACUU－GAUUAGUAUCUUAGUCACAA |
| UUUAAA－CGCUUAU |
| ｜｜｜｜｜｜－｜｜x｜｜｜｜－｜－－｜－｜｜｜ |
| AUUUUAGCCAAUAUAUGCUC |
| GUGAAUCUAACAAGAAUCAUACUC |
| ｜o｜｜｜｜｜｜｜x｜｜｜｜｜｜｜｜o｜～～～ |
| CGCUUAGAUAGUUCUUAGUGUAAU |
| UACAAGUUCCAUUAUAUAAU |
| ｜l｜l｜l｜l｜l｜l｜l｜｜x｜ |
| AUGUUCAAGGUAAUAUAUGAGCUU |
| AGUUCCAUUAUAUAAUC－GAAGAAA |
| ｜｜｜｜｜｜｜｜｜x｜｜x｜｜｜－o |
| UCAAGGUAAUUUACUAGUUUUCUUU |
| AUACGAAAGUACAGA－－AAAAAAAG |
| ｜｜｜｜0｜｜｜｜｜｜｜－｜－－｜｜｜｜｜｜～ |
| UAUGUUUUCAUGU－UGGUUUUUUUA |
| CA－AGUU－CCAUUAUAUAAUCGAAG |
| ｜｜｜－｜｜｜｜－｜｜－｜｜｜｜｜｜x｜｜－｜｜｜～ |
| UGUGUCAAUGG－AAUAUACUA－CU |
| AAAA－AAG－GUUCAGUACAAUUUC |
| ｜｜｜｜－｜｜｜－｜｜｜｜x｜｜｜x |
| UUUUCUUCACAAGCCAUAUUAAAG |
| ACAAGUUCCAUUAUAUAAUCGAAG |
| ｜｜｜｜｜｜｜｜｜｜｜｜l－｜－x｜｜－｜｜｜｜ |
| UGUUCAAGGUAAU－U－CUA－CUUC |
| AGUUCCAUUAUAUAA－U－CGAAGAAA |
|  |
| UCAAGGUAAUAUAUUAACACUUUUUU |
| AUACGAAAGUACAGAA－AAA－－AAAG |
| ｜｜｜－｜｜｜｜x｜｜｜｜｜｜l－｜｜｜－－｜｜｜ |
| UAU－CUUUAAUGUCUUGUUUAAUUU |




| $\underset{\infty}{\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\circ}}}$ | $\stackrel{\text { à }}{ }$ | $\begin{aligned} & 1 \\ & \text { G } \\ & \text { on } \end{aligned}$ | $\stackrel{\infty}{\oplus}$ | $\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{\sim}{\bullet} \end{aligned}$ | $\stackrel{1}{\sim}$ | $\stackrel{\rightharpoonup}{\bullet}$ | $\cdots$ | $\underset{\omega}{1}$ | $\stackrel{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{-}}$ | $\stackrel{N}{N}$ | $\stackrel{\vdots}{\circ}$ | 心 | ¢ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \text { N } \end{aligned}$ | ${ }_{\infty}^{\infty}$ | $\begin{aligned} & 1 \\ & 心 \\ & \stackrel{\leftrightarrow}{6} \end{aligned}$ | $\stackrel{\rightharpoonup}{-}$ | $\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{\bullet}}$ | $\triangleright$ | G | $\stackrel{\infty}{\sim}$ | $\stackrel{1}{\omega}$ | ய̈ | $\underset{\sim}{\sim}$ | $\begin{aligned} & 1 \\ & \substack{1 \\ \infty} \end{aligned}$ | $\stackrel{1}{\omega}$ | $\stackrel{\stackrel{1}{\omega}}{\omega}$ |

bioRxiv preprint doi: https://doi.org/10.1101/370239; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.



|  |
| :---: |
|  |
|  |
|  |
| *Э**กอก |
|  |
|  |
|  |
| \||||x||||||||||||||||nก⿹勹* |
|  |  |
|  |
| ~\||||।||||||||||x||||| |
|  |
|  |
| \||||||||||O||||x||x||||||| |
|  |
|  |
| \|||||||||||x|||||||x||| |
| จกกดววฺกกษกกกอวะอษกอวกวอ |
|  \|||||--|||||-|--||||||||||~ กกกวก--กกกกก-ว--กกกกกกควษกษก |
|  |  |
|  |  |
|  |
|  |
|  |
|  |
| \||||||||||0||O|||x|||||| |
|  |
|  <br>  <br>  |
|  |  |
|  |  |
|  |
|  |
|  |
|  |
| \||||x|||||O||||x||||||||| |
|  |
|  \||-||||||||-||||||-||-||| |
|  |  |
|  |
|  \||o|||x||x|||||||||||||| <br>  |
|  |  |
|  |  |


| $\omega$ |  | N | $\cdots$ | $\infty$ | 6 | $\cdots$ | $\stackrel{\square}{\square}$ | $\cdots$ |  | $\stackrel{\square}{\square}$ |  | $\stackrel{\rightharpoonup}{ }$ | $\omega$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\checkmark$ |  | $\bigcirc$ | ir | $\bigcirc$ | is | is | $j$ | or |  | $\infty$ |  | $\checkmark$ | i |
| $\infty$ |  | $\stackrel{\square}{\circ}$ | $\stackrel{\rightharpoonup}{\bullet}$ | $\checkmark$ | G | $\bigcirc$ | $\stackrel{\square}{\square}$ | $\stackrel{\rightharpoonup}{\bullet}$ |  | ${ }^{\circ}$ |  | $\stackrel{\rightharpoonup}{\bullet}$ | $\bigcirc$ |
| $\stackrel{\rightharpoonup}{\omega}$ | $\underset{\sim}{2}$ | 웅 | $\stackrel{\perp}{\infty}$ | $\stackrel{\text { ® }}{ }$ | G | ¢ | $\stackrel{\rightharpoonup}{*}$ | $\stackrel{\rightharpoonup}{\bullet}$ | 2 | $\stackrel{\square}{\square}$ | z | 6 | $\infty$ |
| ${ }_{\text {[] }}$ |  | (1) | [1] | [1 | (1) | [1 | ${ }_{\text {-1 }}$ | [1 |  | स |  | (x) | [1 |
| 1 |  | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  | 1 |  | 1 | 1 |
| $\stackrel{\bigcirc}{\ominus}$ |  | $\stackrel{\text { ¢ }}{ }$ | $\bigcirc$ | $\stackrel{\square}{\square}$ | $\stackrel{\text { N }}{ }$ | N | $\stackrel{\bigcirc}{\ominus}$ | $\stackrel{\square}{\square}$ |  | $\bigcirc$ |  | $\stackrel{\square}{\circ}$ | N |

bioRxiv preprint doi：https：／／doi．org／10．1101／370239；this version posted July 19，2018．The copyright holder for this preprint（which was not certified by peer review）is the author／funder，who has granted bioRxiv a license to display the preprint in perpetuity．It is made available under aCC－BY－NC－ND 4.0 International license．
$\stackrel{\stackrel{\rightharpoonup}{\stackrel{~}{~}} \stackrel{+}{\omega}}{\stackrel{\omega}{\omega}}$

|  |  | $\pm$ |  | $\pm$ | $\pm$ | $\pm$ | $\pm$ | $\pm$ | $\pm$ | P | S | 边 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ？ | ？ | 官 | ？ | ？ | ？ | 官 | ？ | ？ | 5 | ： | $\stackrel{\rightharpoonup}{\circ}$ | $\stackrel{\rightharpoonup}{\circ}$ |
| $\stackrel{\rightharpoonup}{\omega}$ | $\stackrel{\sim}{\sim}$ | N | $\stackrel{\rightharpoonup}{\sim}$ | N | $\stackrel{\rightharpoonup}{\sim}$ | $\stackrel{\rightharpoonup}{N}$ | N | $\stackrel{\sim}{N}$ | N |  |  |  |
|  | 1 |  | I |  | I | 1 | I |  | I |  | 3 | 3 |
| 3． | 3 | 3． | 3 | 3． | 家 | 3． | 3． | 3 | 3 | － | $\stackrel{\text { H．}}{\sim}$ | $\stackrel{\text { H }}{\square}$ |
| $\stackrel{\square}{0}$ | $\stackrel{H}{\square}$ | $\stackrel{H}{ }$ | $\stackrel{\leftrightarrow}{\square}$ | $\stackrel{\square}{\square}$ | $\stackrel{\leftrightarrow}{3}$ | $\stackrel{H}{ }$ | $\stackrel{ }{\square}$ | $\stackrel{ }{\square}$ | $\checkmark$ | $\xrightarrow{+}$ | $\stackrel{\square}{\square}$ | $\xrightarrow{\square}$ |
| $\omega$ | $\sigma$ | $\stackrel{N}{\omega}$ | $\omega$ |
|  |  |  |  |  |  |  |  |  |  | $\checkmark$ | ${ }_{6}$ | ${ }_{0}$ |



| $\underset{\sim}{\pi}$ | $\begin{aligned} & \text { + } \\ & \stackrel{\sim}{\mu} \\ & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$ | $\begin{aligned} & \text { M } \\ & \sum_{D}^{D} \end{aligned}$ | $\begin{aligned} & \text { + } \\ & \stackrel{1}{\mu} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{+} \end{aligned}$ | $\begin{aligned} & 0 \\ & \underset{y y}{D} \\ & \hline \end{aligned}$ | $$ | $\begin{aligned} & \text { N } \\ & \sum_{i}^{\pi} \end{aligned}$ | + <br> $\stackrel{+}{\mu}$ <br>  <br>  <br> + <br> + | $\begin{aligned} & \text { M } \\ & \sum_{D}^{0} \end{aligned}$ | + <br> $\stackrel{+}{\mu}$ <br>  <br>  <br> + <br> + | $\begin{aligned} & 0 \\ & \sum_{D}^{0} \\ & \hline \end{aligned}$ | $$ | $\begin{aligned} & \text { N } \\ & \sum_{i \boxtimes}^{\pi} \end{aligned}$ | $$ | $\begin{aligned} & \text { M } \\ & \sum_{D}^{\pi} \end{aligned}$ |  | $\begin{aligned} & \text { M } \\ & \underset{y y}{刃} \end{aligned}$ | + <br> $\stackrel{+}{\mu}$ <br>  <br>  <br> + <br> + | $\begin{gathered} 0 \\ \sum_{i}^{\pi} \end{gathered}$ | $\begin{aligned} & \text { + } \\ & \stackrel{\rightharpoonup}{\mu} \\ & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{+} \\ & \hline \end{aligned}$ | $\begin{aligned} & 0 \\ & \sum_{D}^{D} \\ & \hline \end{aligned}$ | + <br> $\stackrel{+}{\mu}$ <br>  <br>  <br> + <br> + | $\begin{aligned} & 0 \\ & Z_{i}^{0} \end{aligned}$ | + $\stackrel{+}{\mu}$ $\stackrel{1}{2}$ $\stackrel{1}{0}$ + + | $\begin{aligned} & 0 \\ & \sum_{i}^{\pi} \end{aligned}$ | $\begin{aligned} & \text { + } \\ & \stackrel{\mu}{\mu} \\ & \stackrel{0}{0} \\ & + \\ & \hline \end{aligned}$ | $\begin{aligned} & \infty \\ & 0 \\ & \sum_{i}^{\infty} \end{aligned}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\omega$ | $\cdots$ | $\omega$ | u | $\omega$ | G | $\omega$ | $\cdots$ | $\omega$ | $\because$ |





AUAUCCAAAA－AUAAAGGA－－UUGAU



AAAUCAAAA－CUAAAAGGACGUUGAU



AAUCAAAACUUAAAGGAUGUUGAUA



AAUCAAAACCAAAAGGAUGUUGAUA


| UCUUUGCUUAUAAGCCAUGUUCAA |
| :--- |



｜｜｜｜｜｜｜｜｜｜｜｜｜x｜｜｜｜｜｜｜x｜｜｜




$\because$
N


bioRxiv preprint doi: https://doi.org/10.1101/370239; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

bioRxiv preprint doi: https://doi.org/10.1101/370239; this version posted July 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

| $\infty$ | N |
| :--- | :--- |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |
| 0 | 0 |

$\infty$
0
0
0
0
0
0
0
0
0
0


|  | $\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { s } \\ & \stackrel{\rightharpoonup}{0} \\ & 1 \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$ | $\sim$ <br> 0 <br> 0 <br> 0 <br> 0 <br>  | $\begin{aligned} & \text { U } \\ & \stackrel{\Delta}{\Delta} \\ & \vdots \\ & \stackrel{0}{\Delta} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$ | 02 <br> 0 <br> 0 <br> 1 <br> 0 <br> 0 | $\begin{aligned} & \sim \\ & \stackrel{\Delta}{\circ} \\ & i \\ & i \\ & \stackrel{N}{\Delta} \\ & \forall \end{aligned}$ | $\begin{aligned} & \sim \\ & 0 \\ & 0 \\ & 0 \\ & i \\ & \vdots \\ & \vdots \end{aligned}$ |  | $\begin{aligned} & \text { u } \\ & \text { o } \\ & 0 \\ & \text { o } \\ & \text { IN } \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { u } \\ & \stackrel{\rightharpoonup}{0} \\ & \text { í } \\ & \stackrel{1}{n} \\ & 0 \end{aligned}$ | $\begin{aligned} & \tilde{0} \\ & \tilde{0} \\ & 0 \\ & 10 \\ & 0 \end{aligned}$ | $\begin{aligned} & \text { 』 } \\ & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{0} \\ & \stackrel{1}{0} \\ & 0 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\square$ | * | ग | \% | \% | \% | \% | \% | $\checkmark$ | $\checkmark$ | $\square$ | 田 | $\square$ |
|  | $\begin{array}{cc} \stackrel{+}{\sim} & 0 \\ \underset{N}{0} & 0 \\ \stackrel{0}{0} & 0 \\ + & \end{array}$ |  |  |  | $$ |  |  | $\begin{array}{ll} \stackrel{+}{\sim} & 0 \\ \underset{N}{N} & 0 \\ \stackrel{0}{0} & 0 \\ + & 0 \end{array}$ |  |  |  | $$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underline{\omega}$ | $\cdots$ | $\stackrel{\omega}{\square}$ | $\cdots$ | $\stackrel{\omega}{\sim}$ | $\underline{\omega}$ | $\cdots$ | $\underline{\omega}$ | $\underline{\omega}$ | $\underline{\omega}$ | $\stackrel{\omega}{0}$ ¢ | $\underline{\omega}$ | $\stackrel{\omega}{\omega}$ |
| $\stackrel{H}{G}$ | $\stackrel{H}{G}$ | ద̆ | $\stackrel{H}{*}$ | $\stackrel{\rightharpoonup}{\checkmark}$ | $\stackrel{\square}{\infty}$ | $\stackrel{\rightharpoonup}{\checkmark}$ | $\stackrel{\rightharpoonup}{\checkmark}$ | $\stackrel{\rightharpoonup}{\omega}$ | $\stackrel{\rightharpoonup}{\triangleright}$ | $\stackrel{\rightharpoonup}{\triangleright}$ | $\stackrel{\rightharpoonup}{\sigma}$ | G |


[^0]:    

