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ABSTRACT 

Modeling the development of organisms and diseases has been of interest for decades. Often, 

complex systems of development or signaling pathways can be explained and modeled to a high 

degree of accuracy with only a few simplifying assumptions. Complex systems such as pattern 

development, bacterial growth, and tumor formation can be modeled numerically using a reaction 

diffusion model with relatively few factors and still give accurate results, allowing exploration of 

equilibrium and non-equilibrium solutions. Here, applications of numerical diffusion to 

morphogenesis and bacterial growth are presented for the test cases of leopard spots and Ben-

Jacob bacterial fractals, with wide-reaching implications for biological modeling. 

INTRODUCTION 

The Diffusion Equation 

The diffusion equation has been used for decades to model processes from Brownian motion to 

population ecology. A particular focus has been placed on morphogenesis, or how a spherically 

symmetric egg becomes a bilateral organism. However, challenges arise when developing 

analytical solutions to coupled differential equations involving dozens of complicated biological 

factors and natural sources of randomness. Given the rise of computational power, numerically 

modeling diffusion poses a potential avenue for numerically modeling organismic growth and 

development. 

Given a collection of small particles and a heterogeneous concentration profile, over time the 

particles will be pushed by random thermal fluctuations into a more uniform profile, yielding 

change in concentration that scales with the diffusion constant, D.  

𝜕𝐶

𝜕𝑡
= 𝐷 ∇2𝐶 

Generalizing this to two dimensions, the continuous concentration profile at a given timepoint is 

defined by Green’s function, G(x,t), with constant n representing the number of timesteps and t 

the increment per timestep. 

𝐺(𝑥, 𝑡) =
1

√4𝜋𝑛𝐷𝑡
exp [−

𝑥2

4𝜋𝑛𝐷𝑡
] 

METHODS 

Diffusion Numerically 
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A discretized, two-dimensional version of this model was implemented in Matlab using a matrix 

that keeps track of to location of each diffusing species at each timepoint, and update subsequent 

timepoint based on the previous timepoint, the diffusion constant, and a discretized version of the 

Laplacian from the diffusion equation.  This discretized Laplacian will take all the concentration 

from a given point, divide it into four parts (a two-dimensional grid square has four neighbors), 

and move all the concentrations “next door.”  In other words, regions with many particles will 

“lose” their particles to surrounding regions with fewer particles.  

Adding Reaction and Growth 

Many physical phenomena are limited by diffusion, but are also influenced by the secretion or 

absorption of certain particles, independent of diffusion itself.  In this case, the diffusion equation 

is modified for the change in concentration with respect to time to incorporate these outside factors.  

In general, 

𝜕𝐶

𝜕𝑡
= 𝐷 ∇2𝐶 + 𝐹(𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

where F is some function of xi’s, the local concentrations of factors. In other words, this equation 

represents the diffusion of factors away from a position, combined with processes that regenerate 

or absorb the product at discrete positions. 

In addition to diffusing factors, larger, more static objects 

are relevant when considering biological systems.  These 

objects can interact with diffusing factors in a variety of 

ways – secreting them, absorbing them, dividing or dying.  

Adding interactions is challenging analytically, but facile 

numerically. To do so, the Matlab model defines a set of 

equations for how objects interact with factors in solution, 

and keeps track the locations and concentrations of each 

item at every discretized timepoint.  

System Validation 

As a basis for this model, a 2D Laplacian operator in Matlab was verified to produce the expected 

concentration profile for a diffusing point source.  The concentration profile after 1000 timesteps 

is shown in Figure 1.  

RESULTS AND DISCUSSION 

Animal Morphology 

How do animals get their shapes? Although dozens of signaling pathways from Fgf to Bmp are 

involved [1], Alan Turing proposed that complex pattern formation can be described by a reaction 

diffusion system with only two factors and minor random fluctuations [2]. Turing solved this 

Figure 1: System Validation 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted December 13, 2018. ; https://doi.org/10.1101/370304doi: bioRxiv preprint 

https://doi.org/10.1101/370304


Figure 2: Example Steady States. Used systems with 1000 randomly located point pairs.  In the left image, a 

= 100000, b = -100001, c = 100001, d = -1000002.  In the right image a = 5, b = -6, c = 6, and d = 7. 

system by linearizing around the steady state, which prevents understanding of system behavior 

over long or divergent timeframes.  

To model this numerically, the following system of two dummy morphogens, A and B, was used:  

• Suppose the diffusion coefficients of A and B are 0.5 and 4.5 in arbitrary units.  Also 

suppose that the change in concentrations over time is given by: 

𝜕𝐴

𝜕𝑡
= 𝐷 ∇2𝐴 + 𝑎𝐴 + 𝑏𝐵 + 𝑒 

𝜕𝐵

𝜕𝑡
= 𝐷 ∇2𝐵 + 𝑐𝐴 + 𝑑𝐵 + 𝑓 

• Initialize a uniform system at a steady state: 

𝐴 = 𝐵 = 1, 𝑎 + 𝑏 + 𝑒 = 𝑐 + 𝑑 + 𝑓 = 0 

• Define the numerical value of a small random perturbation:   

𝜖 = 0.01 

• Randomly generate pairs of fluctuations (these represent elements being thermally bounced 

“back and forth”), where the first element in the pair has concentrations A1, B1, and the 

second has concentrations A2, B2, yielding 

𝐴1 = 1 + 3 ⋅ 𝜖, 𝐴2 = 1 − 3 ⋅ 𝜖, 𝐵1 = 1 −  𝜖, 𝐵2 = 1 + 𝜖 

By varying a - d and altering the locations of pairs relative to each other, many morphologies are 

attainable.  

Varying the values a - d results in changes in the density of heterogenous defects/lines in the steady 

state – higher values of coefficients result in more dense patterns (see Figure 2).  This means the 

difference between an animal with very complicated patterns everywhere and one with larger 

spots/defects may be faster reaction rates of morphogens in the more complex animal.   

 

a b
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Pair location has little effect – if each point is randomly located (i.e. the A1 defect is not next to 

the A2 defect), the same patterns are produced as when each point in the pair is one apart  

This model helps demonstrate the failure of the linearization approximation (i.e. long-term stability 

even with predicted short-term non-equilibrium perturbations).  Turing’s approximation is useful 

for some patterns, but over time some smaller aspects of these patterns disappear – this is why it 

is useful to numerically model the full timescale of pattern formation in order to observe the 

ultimate behavior at equilibrium (see Figure 3). 

   

 

These pattern formations are more than just mathematical curiosities – by varying the number of 

random defects, constants, and locations of initial defects (as organisms do during development), 

patterns resembling giraffe spots and even drosophila embryo segmentation appear (Figures 4, 5).  

 

 

Figure 3: Time Dependence. Left: short-term linear approximation, as predicted by Turing’s model. Left: true 

steady-state. 

Figure 4: Animal Morphologies. “Giraffe Spots” (a-b) and “Drosophila Segments” (c). 
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Modeling Bacteria in Non-Equilibrium Growth 

While reaction diffusion on its own leads to interesting conclusions, it is instructive to incorporate 

growth into the model, given that cells do not exist in a static environment and divide under 

favorable conditions. Ben-Jacob observed interesting growth regimes when growing bacteria on 

agar with different peptone concentrations [3, 4].  Using the numerical model, the real patterns of 

Figure 5 can be modeled mathematically using reasonable physical constants.  

 

Figure 5: Empirical bacteria patterns [4].  Different growth regimes result from varying peptone 

concentrations of 0.1, 1, 3, and 10 g/l, respectively (a-d). 

To model bacterial growth, assume each pixel represents one bacterium. Since a bacterial radius 

is about 5 micron, a pixel is approximated as a single 10x10 micron bacteria. Each bacterium has 

a certain uptake rate of nutrients, and will divide when the nutrient concentration exceeds a 

threshold; each resulting bacterium will have half the nutrients of the initial bacteria.  In this model, 

there is no diffusion of bacteria themselves.  

In addition, note that the expected length of diffusion is described by the following equation:   

< Δ𝑥2 > = 2𝑛𝐷Δ𝑡 

For reasonable physical constants, set D = 10-7 cm2/s and Δ𝑥 to the size of a bacterium (10 

microns), yielding a timestep of 5 seconds. Additionally, let the amount of nutrients a bacterium 

needs before division be 3E-12 grams. Finally, test a range of peptone concentrations from 1E-6 

to 2E-6 g/cm2. 

 

Figure 7: Modeled bacteria patterns. Labeled by peptone concentration (g/cm2). 
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Then numerical model reproduces the four growth regimes observed by Ben-Jacob’s group – at 

low peptone concentration, there is a circle in the center, and small radial branching.  At 

intermediate peptone concentration, there is radial branching and fractal-like growth on these 

branches.  At high peptone concentration, there is radial “finger” growth, and at very high peptone 

concentrations, a uniform bacterial blob grows. This suggests that bacterial growth is diffusion 

limited and can be modeled as such, in close agreement with reported experimental data.   

CONCLUSION 

Conclusions 

Complex systems of development or signaling pathways can be explained and modeled to a high 

degree of accuracy with a few simplifying assumptions, as demonstrated by the test cases of 

leopard spot morphogenesis and Ben-Jacob bacterial growth. As a result, diffusion-limited models 

have the potential to drive and explain advancements in developmental biology. Beyond biological 

applications, this numerical model has application to non-equilibrium and steady-state solutions 

to physical systems from fluid flow to heat transfer. 
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