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Abstract  29 

Muscle bulk in adult healthy humans is highly variable even after accounting for height, age and 30 

sex. Low muscle mass, due to fewer and/or smaller constituent muscle fibres, would exacerbate 31 

the impact of muscle loss occurring in aging or disease. Genetic variability substantially influences 32 

muscle mass differences, but causative genes remain largely unknown. In a genome-wide 33 

association study (GWAS) on appendicular lean mass (ALM) in a population of 95,545 middle-age 34 

(37-48 years) individuals from the UK Biobank we found 125 loci associated with ALM (P<5x10-8). 35 

We replicated associations for 64% of these loci (P<5x10-8) with ALM in a population of 193,688 36 

elderly (65-74 years) individuals. We also conducted a GWAS on skeletal muscle mass of 1,867 37 

mice from the LGSM advanced intercross line and found 23 quantitative trait loci. Five loci and nine 38 

positional candidates overlapped between the two species. In vitro studies of potential candidates 39 

identified CPNE1 and STC2 genes as novel modifiers of myogenesis. Collectively, these findings 40 

shed new light on the genetics of muscle mass variability in humans and identified new targets for 41 

the development of interventions preventing muscle loss. The overlapping genes between humans 42 

and the mouse model will facilitate understanding of the cellular mechanisms underlying muscle 43 

variability.  44 
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Introduction 45 

Skeletal muscle plays key roles in locomotion, respiration, thermoregulation, maintenance 46 

of glucose homeostasis and protection of bones and viscera. The loss of muscle due to aging, 47 

known as sarcopenia, affects mobility and can lead to frailty and deterioration of quality of life1. The 48 

risk of disability is 1.5 to 4.6 times higher in the sarcopenic elderly than in the age matched 49 

individuals with normal muscle mass2. However, lean mass, a non-invasive proxy for muscle mass, 50 

differs by more than two-fold between healthy adult individuals of same sex, age and height3. 51 

Therefore, we hypothesize that differential accretion of muscle mass by adulthood may influence 52 

the risk of sarcopenia and frailty later in life. 53 

Genetic factors contribute substantially to the variability in lean mass in humans, with 54 

heritability estimates of 40 – 80 %4. A continuous distribution of the trait and data obtained from 55 

animal models5-7 indicates a polygenic causality. However, thus far, genome-wide association 56 

studies (GWAS) have implicated fewer than a dozen genes, explaining only a small fraction of this 57 

heritability8; 9. A limited sample size in early studies10-14 and the effects of confounders such as 58 

subject age8, size of the skeleton and composition of lean mass have hindered detection of genes. 59 

The UK Biobank is a resource of demographic, phenotypic and genotypic data collected on 60 

~500,000 individuals15. It includes the arm and leg lean mass, body composition and morphometric 61 

information, providing a model for improving our understanding of the genetic basis for variability in 62 

muscle mass. Skeletal muscle mass, however, changes over the course of individual’s lifespan. It 63 

reaches a peak around mid-twenties and remains largely stable through mid-fourties, before 64 

succumbing to gradual decline, which accelerates after about 70 years of age16. There is a 65 

substantial degree of individual variability in the slope of muscle change across both the increasing 66 

and decreasing phases of the lifespan trajectory17. Both the trajectory itself and the slope of 67 

individual variability may impede identification of genes. 68 

The indirect estimates of lean mass impose limitations because muscle mass is not an 69 

exclusive contributor to this variable. Furthermore, the cellular basis of variability in muscle mass 70 

(i.e. if it is caused by the differences in the number of constituent muscle fibres, their size, or both) 71 

remains completely latent. Using the laboratory mouse circumvents a number of those limitations. 72 
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The mouse shares approximately 90% of the genome with humans18, and permits analyses of 73 

traits not amenable in humans, such as muscle mass6; 7; 19 and muscle fibre characteristics20; 21. 74 

The phenotypic differences between the LG/J and SM/J mouse strains make them particularly 75 

attractive for complex trait analyses22-24. LG/J mice were selected for large body size25, while SM/J 76 

mice were selected for small body size26. The F2 intercross derived from the LG/J and SM/J strains 77 

(LGSM)6; 27 and an advanced intercross line (AIL) of the LGSM (LGSM AIL) developed using a 78 

breeding strategy proposed by Darvasi and Soler28, led to multiple quantitative trait loci (QTLs) for 79 

muscle mass6; 27. However, these QTLs still encompass tens or even hundreds of genes and 80 

require further prioritising. We hypothesized that the detection power of a modest sample size of 81 

the LGSM AIL and the superior resolution of a human cohort will facilitate identification of the 82 

quantitative trait genes (QTGs) underlying muscle QTLs. 83 

The aim of this study was to identify the genomic loci and the underlying genes for 84 

variability in skeletal muscle mass and to assess their effects in the elderly. We addressed this in 85 

three stages: (1) we conducted a GWAS in a human cohort of middle-aged individuals from the UK 86 

Biobank, and tested the effect of the identified set of loci in an elderly cohort; (2) we conducted a 87 

GWAS on hindlimb muscle mass in a population of LGSM AIL mice. (3) In the final stage, we 88 

nominated candidate genes by comparing mouse and human loci and validated the myogenic role 89 

of selected candidates in vitro. 90 

Methods 91 

Stage one: Genome mapping in human populations 92 

UK Biobank cohort 93 

The population in this study consisted of 316,589 adult individuals of 37 to 74 years of age 94 

(project ID: 26746). We drew this cohort from the UK Biobank (UKB) project15; all participants 95 

recruited were identified from the UK National Health Service (NHS) records and attended a 96 

baseline visit assessment between 2006 and 2010. During the assessment, participants gave 97 

written consent, answered a questionnaire, and were interviewed about their health and lifestyle. 98 
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Blood samples and anthropometric measurements were collected from each participant. 99 

Assessments were conducted at 22 facilities in Scotland, England, and Wales. 100 

We divided the sample into middle-aged and elderly cohorts. The middle-aged cohort 101 

consisted of 99,065 adults ranging from 37 to 48 years of age; these individuals were not affected 102 

by sarcopenia. We excluded 3,520 participants that were reported to be ill with cancer, pregnant, 103 

or had undergone a leg amputation procedure, as well as individuals with discordant genetic sex 104 

and self-reported sex records. We retained a total of 95,545 adult individuals (51,394 females and 105 

44,151 males) for further analyses. 106 

The elderly cohort consisted of 217,524 adults ranging from 63 to 74 years of age. We 107 

selected this cohort to test if the effect of the genetic variants identified on middle-aged individuals 108 

could also influenced phenotypes later in life. We excluded 23,836 individuals based on the same 109 

criteria used for the middle-aged cohort. After exclusions, the elderly cohort included 193,688 110 

individuals of 63 to 74 years of age (100,463 females and 93,225 males) (Table S1). 111 

 112 

UK biobank traits 113 

We used the data for standing height (UKB field ID: 50), sitting height (UKB field ID: 114 

20015), whole body fat (UKB field ID: 23100), arm lean mass (UKB field ID: 23121 and 23125), 115 

and leg lean mass (UKB field ID: 23113 and 23117) measured as part of the UK Biobank project. 116 

Body composition measurements were taken using bioelectric impedance. We calculated leg 117 

length by subtracting sitting height from standing height (all measurements were recorded in cm). 118 

Because lean mass in the limbs primarily consists of skeletal muscle tissue, we used ALM as a 119 

proxy for muscle mass. We calculated ALM as the sum of the muscle mass of two arms and two 120 

legs. We checked that all traits were normally distributed by examining the QQ-plot and histogram 121 

of residuals from a simple linear model that included sex as a covariate. Residuals were normally 122 

distributed and we did not transform any of the traits.  123 

 124 
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UK biobank genotypes 125 

We obtained genotype data for all participants from the UKB v3 genotypes release29, which 126 

includes genotype calls from the Affymetrix UK BiLEVE Axiom array and the Affymetrix UK 127 

Biobank Axiom array. IMPUTE229 was used to impute genotypes from the UK10K and 1000 128 

Genomes Phase 3 reference panels 30, as described by Brycroft et al29. We kept all imputed 129 

genotype data (93,095,624 genetic variants (SNPs, Indels and structural variants)) for subsequent 130 

analyses in order to capture the effects of both common (MAF > 0.001) and rare variants (MAF < 131 

0.001). The software (BOLT-LMM v2.3.2) 31 we used to perform GWAS was developed for large 132 

data sets (i.e.: UK Biobank cohort) and it was only tested for human cohorts, which have different 133 

LD patterns from animals. For these two reasons, we used BOLT-LMM v2.3.2 for the analyses of 134 

human data only. Although we mainly focused on reporting the effects of common variants, we 135 

also reported rare variants associated with ALM as a supplemental table (Table S4). 136 

 137 

Appendicular lean mass GWAS 138 

We used BOLT-LMM (v2.3.2)32 to perform a GWAS for ALM in the middle-aged cohort. The 139 

linear mixed model (LMM) approach implemented in BOLT-LMM is capable of analysing large data 140 

sets while also accounting for cryptic relatedness between individuals. Specifically, BOLT-LMM 141 

calibrates the association statistics using a linkage disequilibrium (LD) score regression 142 

approach33; this allowed us to evaluate the impact of confounding factors on the GWAS test 143 

statistics33 and calibrate them accordingly. In the absence of confounding factors, p-values should 144 

not be inflated, and the LD score regression intercept should be equal to 133. The LD Score 145 

regression intercept in this study was 1.043 ± 0.007, suggesting minimal inflation of P values due 146 

to linkage between markers. After calibrating the test statistics, the mean 2 of the ALM GWAS 147 

was 1.27 and lambda (λGC) or genomic control inflation factor was 1.20 (Figure S1), which 148 

indicated polygenicity of the trait as described by Bulik-Sullivan and colleagues33.  149 

We also assessed population structure by running principal component analysis on the 150 

genotype calls. We included sex, leg length, whole body fat, and the first four principal components 151 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/370312doi: bioRxiv preprint 

https://doi.org/10.1101/370312
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

as fixed effects in the LMM used for the ALM GWAS. Sex was included to account for differences 152 

in muscle mass caused by increased testosterone levels in males34. Leg length and whole body fat 153 

were included because they are biologically related to muscle mass: longer bones result in longer 154 

muscles, while fat shares part of its developmental origin with skeletal muscle tissue35. 155 

Furthermore, each of these traits is correlated with muscle mass. An association was considered 156 

statistically significant if its P < 5 × 10-8 (α = 0.05). This threshold is the standard for GWAS of 157 

complex traits36; 37. 158 

We obtained variance components and SNP heritability estimates of ALM using BOLT-159 

REML32. The BOLT-REML method robustly estimates the variance of genotyped SNPs and fixed 160 

effects on the LMM. As described by Loh et al. 38, BOLT-REML partitions the SNP heritability 161 

across common alleles; hence, the additive variance is calculated as the cumulative variance of 162 

genotyped SNPs.  163 

 164 

Age effect on ALM GWAS 165 

 To examine the influence of varying age on the genomic loci associated with ALM repeated 166 

the analysis using a cohort with a wider age range. To achieve this we subset the middle-aged 167 

cohort by randomly selecting 44,727 individuals (37 to 48 years), and likewise, we selected a 168 

subset of 44,727 older individuals from the elderly cohort (63 to 74 years) to produce a mixed age 169 

population (n = 95,454) (Table S2). We used this population to execute a GWAS on ALM using 170 

BOLT-LMM, and included sex, age, leg length and whole body fat as fixed effects in our model. We 171 

compared the resulting loci (MAF>0.001) (Table S8) from this analysis to the ALM loci that we 172 

identified on the GWAS conducted exclusively in the middle-aged population of a similar sample 173 

size (n=95,454). This analysis was restricted to one iteration due demand for computational 174 

resources (~130h per GWAS). 175 

 176 
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Phenotypic variance explained by ALM loci  177 

We defined ALM genomic loci using the web-based platform Functional Mapping and 178 

Annotation of Genome-Wide Association Studies (FUMA GWAS39). A key feature of this tool is the 179 

identification of genomic regions based on the provided summary statistic of a GWAS depending 180 

on LD structure; this process is automated using pairwise LD of SNPs in the reference panel (1000 181 

genomes project phase 340) previous calculated by PLINK41. We provided to FUMA GWAS the 182 

summary statistic of our GWAS on ALM with the following parameters: 250kb window (maximum 183 

distance between LD blocks), r2 > 0.6 (minimum r2 for determining LD with independent genome-184 

wide significant SNPs used to determine the limits of significant genomic loci), MAF > 0.001 185 

(minimum minor allele frequency to be included in the annotation), P < 5 × 10-8 (threshold of 186 

significance associated variants). In addition, we then performed a stepwise conditional analysis 187 

using the software package GCTA42 to identified extra independent signals within 500kb window; 188 

this analysis was conducted only on statistically significant SNPs (P < 5 × 10-8) with MAF > 0.001. 189 

We refer to the identified regions and the independent signals as loci throughout the text. 190 

We used the top variant (based on the outcome from FUMA39 and GTCA42 software 191 

packages) (Table S5) of each locus identified to estimate the proportion of phenotypic variance 192 

explained by each locus. We estimated phenotype residuals using a model that included the fixed 193 

effects and principal components described above. We then regressed the residuals on the 194 

genotype of the top SNP in a linear model. We estimated the coefficients of determination and 195 

reported them as the proportion of phenotypic variance explained by each locus.  196 

 197 

Genetic effects in the elderly cohort 198 

We tested the combined effect of all 125 genome-wide significant ALM loci identified in the 199 

middle-aged cohort in the elderly cohort using the top SNP at each locus. We used PLINK241 to 200 

impute genotype dosages for each variant identified in the middle-aged GWAS in the elderly 201 

cohort. We then estimated a ‘genetic lean mass score’ for each individual using the following 202 

procedure. First, we estimated the contribution of each variant on the phenotype as a product of 203 
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the SNP effect size obtained from BOLT-LMM (β, calculated based on the reference allele) and the 204 

genotype dosage. Second, we calculated the ‘lean mass score’ for each individual as the sum of 205 

the products for all selected variants. We ranked the resulting distribution of lean mass scores in 206 

ascending order and partitioned it into five quantiles. We used ALM without any adjustment (raw 207 

ALM) because estimates of effects size already accounted for sex, whole body fat and leg length 208 

differences. However, since the raw ALM did not meet the assumption of normality, we used a 209 

Kruskal-Wallis test (non-parametrical) to evaluate the difference in the median of the phenotypes 210 

between the quantiles, and a Wilcoxon test (non-parametrical) for pairwise comparisons between 211 

quantiles. We conducted five replicates of a negative control test that consisted on randomly 212 

selecting a subset (n = 125) of non-significant SNPs in the middle-aged cohort and generating 213 

‘lean mass score’ as described above for the elderly cohort, this set of SNPs had MAF > 0.001. 214 

We also aimed to replicate the individual variants effects on the ALM of the elderly cohort. 215 

We checked normality of ALM in the elderly cohort as described for the middle-aged cohort. We 216 

tested a subset of genetic variants (n=17,988,060) selected based on their MAF > 0.001 and we 217 

used the same LMM, fixed covariates, and genome-wide significance threshold (P < 5 × 10-8) as 218 

described for the middle-aged cohort. We conducted a Fisher’s exact test to evaluate if overlapping 219 

loci between the middle-aged and elderly cohorts were significantly different from random. The null 220 

hypothesis was rejected at P < 0.05 (two-tailed). 221 

 222 

Genomic regions tagged by loci 223 

We used the ‘biomaRT’ package in R43; 44 to retrieve gene and regulatory element 224 

annotations at the genomic position of each statistically significant SNP (P < 5 × 10-8) and 225 

Polyphen 2 and SIFT45; 46 to predict the functional consequences of each SNP. We retrieved 226 

additional information about the positional candidate genes and their expression levels from 227 

Ensembl47 (release 94 - October 2018) and the Gene Tissue Expression Project (GTEx) portal48 228 

(See Web Resources). 229 

 230 
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Stage two: LGSM AIL mouse cohort and GWAS 231 

We used three LGSM AIL mouse cohorts for the second stage of this study (n = 1,867). 232 

The LGSM AIL was initiated by Dr. James Cheverud at Washington University in St. Louis 49. 233 

Cohort 1 included 490 mice (253 males and 237 females) from LGSM F34. Phenotype data was 234 

collected from these mice between 80-102 days of age. Cohort 2 consisted of 506 male mice from 235 

F50-54. Cohort 3 includes 887 mice (447 males and 440 females) from F50-56; with age 64 to 111 236 

days of age. Mice were housed at room temperature (70 - 72°F) at 12:12 h light-dark cycle, with 1-237 

4 same-sex animals per cage and with ad libitum access to standard lab chow and water. 238 

 239 

Mouse traits and genotypes 240 

We collected muscle phenotypes after the animals were sacrificed and frozen. We 241 

dissected four muscles and one long bone (tibia or femur) from each mouse at the Pennsylvania 242 

State University (n = 584) and the University of Aberdeen (n = 1,283). The dissection procedure 243 

involved defrosting the carcasses and removing the muscles (TA, EDL, gastrocnemius and soleus) 244 

and tibia from the hind limbs under a dissection microscope. We weighed the muscles to 0.1-mg 245 

precision on a Pioneer balance (Pioneer, Ohaus) and measured bone length (mm) using an 246 

electronic digital calliper (Powerfix, Profi). We quantile normalized all LGSM AIL traits before 247 

mapping QTLs. 248 

Cohort 1 was genotyped using a custom SNP genotyping array50. These SNPs (n=2,965) 249 

were evenly distributed along the autosomes (mm8, build 36). The median distance between 250 

adjacent SNPs was 446 Kb, and the maximum was 18 Mb. Cohort 2 was genotyped at 75,746 251 

SNPs (73,301 on the autosomes and 2,386 on X and Y) using the MEGA Mouse Universal 252 

Genotyping Array (MegaMUGA; mm9, build 37); we retained 7,168 autosomal SNPs for 253 

subsequent analyses. The median distance between adjacent SNPs was 126.9 Kb and the 254 

maximum distance was 15 Mb for all chromosomes except for chromosomes 8, 10, and 14, which 255 

had distances of 19, 16, and 16 Mb, respectively. We used a conversion tool in Ensembl to convert 256 

SNP positions from mm8 (build 36) and mm9 (build 37) to mm10 (build 38). Cohort 3 genotypes 257 
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were obtained from Gonzales and colleges51. These genotypes were generated using genotyping 258 

by sequencing. This approach has been recently used and described in detail19. Only autosomal 259 

SNPs known to be polymorphic in the LG/J and SM/J founder strains (n=523,027; mm10, build 38) 260 

were retained for subsequent analyses. We combined the genotype data from Cohorts 1-3 using 261 

PLINK v.1.9 and imputed missing genotypes using BEAGLE v.4.152. For these steps, we used a 262 

reference panel obtained from Heather Lawson’s whole genome sequencing data of the LG/J and 263 

SM/J strains53. Dosage estimates (expected allele counts) were extracted from the output and 264 

used for the GWAS; these estimates captured the degree of uncertainty from the imputation 265 

procedure. To ensure the quality of the genotype data, we excluded SNP genotypes with MAF < 266 

0.20 and dosage R2 < 0.70 (dosage R2 corresponds the estimated square correlation between the 267 

allele dosage and the “true allele dosage” from the genetic marker, and is used as a measure of 268 

imputation quality). After applying these filters, we retained 434,249 SNPs. 269 

 270 

Mouse association analyses 271 

The population structure can potentially lead to a rise of false positive associations54; 55. The 272 

LMM approach is used to map QTLs while dealing with confounding effects due to relatedness50; 56; 273 

57. We used the LMM method implemented in the software GEMMA (genome-wide efficient mixed-274 

model association)58 to analyse the mouse phenotypes. The LMM method implemented in the 275 

software GEMMA (genome-wide efficient mixed-model association)58 was used for the association 276 

analysis of all the phenotypes. In our LMM model we include the genotypes, a set of fixed effects 277 

described later in this section, and a polygenic effect to deal with the population structure.  278 

The polygenic effect is a random vector which was derived from a multivariate normal 279 

distribution with mean zero and a n × n covariance matrix σ2λK; where n is the number of samples. 280 

The relatedness matrix K was defined by the genotypes. The two parameters, σ2 and λ, were 281 

estimated from the data by GEMMA; they represent the polygenic and residual variance 282 

components of the phenotypic variance, respectively. 283 

 284 
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Relatedness matrix and proximal contamination 285 

We used the genotype data to estimate the relatedness matrix K, which was part of the 286 

covariance matrix. Although genotype-based and pedigree-based K matrices yield very similar 287 

results59; 60, we have shown that in general, genotype-based estimates are more accurate59; 61-63. 288 

We constructed the relatedness matrix as K = XX′/p, where X is the genotype matrix of entries 289 

xijand n × p dimensions, p is the number of SNPs. 290 

The relatedness matrix K was estimated taking into account the potential problem of 291 

proximal contamination60, which involves loss of power due to including genetic markers in multiple 292 

components of the LMM equation. Furthermore, because of LD, markers in close proximity to the 293 

genetic marker that is being tested can also lead to deflation of the P values61. To avoid this 294 

problem, the K matrix was estimated by excluding from the calculations the SNPs within the 295 

chromosome that was analysed, therefore, K matrix was slightly different for each chromosome.  296 

 297 

Genetic and fixed effects 298 

We did not include non-additive effects in the LMMs used for GWAS in the LGSM AIL. Our 299 

previous studies6 suggest that musculoskeletal traits in this population are mostly influenced by 300 

additive loci, and by ignoring dominance effects we avoid introducing an additional degree of 301 

freedom, hence potentially avoiding a decrease of power to detect QTLs. 302 

To analyse the muscle weights of the combined data, we used four fixed effects in the 303 

LMM: sex, dissector of the samples, age, and long bone length. We selected these variables after 304 

using a linear model to estimate their effect on the four muscles; only statistically significant effects 305 

were included (P < 0.01). Sex and dissector were included as binary variables; whereas age and 306 

long bone were included as continuous variables. Including long bone length allowed us to capture 307 

genetic effects associated with variation in muscle weight per se (as opposed to genetic effects on 308 

bone length) 19. In other words, failing to include long bone as a covariate would yield QTLs that 309 

are more likely to be genetic contributors to general growth of the skeleton instead of specifically 310 

muscle. We used two bones for the long bone variable, for cohort 1 femur, and for cohorts 2 and 3 311 
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tibia. Based on personal communication with Dr. Cheverud, the femur and tibia bones were found 312 

to be positively and highly correlated (r > 0.8) in LGSM AIL (F34). We did not include generation (r 313 

= 1) and bone type of each cohort (r = 1) as fixed effects since the dissector variable functioned as 314 

a proxy for these two variables. Body weight was not used as a fixed effect because muscle weight 315 

accounts for a considerable amount of the body weight. 316 

 317 

SNP heritability 318 

To estimate the SNP heritability or proportion of phenotypic variance explained by all 319 

genotypes, we used the n × n realized relatedness matrix K, which was constructed using all the 320 

available genotypes. We extracted the SNP heritability from the QTL mapping outputs; GEMMA 321 

provides an estimate of the heritability and its standard error58. The SNPs available to estimate the 322 

heritability do not capture all genetic causal variants, hence the SNP heritability underestimate the 323 

true narrow sense heritability. 324 

 325 

Threshold of significance and QTLs intervals 326 

The p-values estimated from the likelihood ratio test statistic performed by GEMMA were 327 

transformed to –log10 p-values. We calculated a threshold to evaluate whether or not a given SNP 328 

significantly contributes to a QTL. We estimated the distribution of minimum p-values under the null 329 

hypothesis and selected the threshold of significance to be 100(1 –  𝛼)th percentile of this 330 

distribution, with 𝛼 = 0.05. In order to estimate this distribution, we randomly permuted phenotypes 331 

1,000 times, as described previously 6; 7; 19; 64. We did not include the relatedness matrix in the 332 

permutation tests due to computational restrictions, and because, past studies have found that 333 

relatedness does not have a major effect on the permutations test6; 7. 334 

We estimated QTL intervals in three steps. 1) We used Manhattan plots to identify the top 335 

SNP within each statistically significant region (SNP with highest –log10 p-values), which we refer to 336 

as the peak QTL position. 2) We transformed P values from each analysis to LOD scores (base-10 337 

logarithm of the likelihood ratio). 3) We applied the LOD interval function implemented in the r/qtl 338 
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package65 to the regions tagged by each peak SNP, and obtained the QTL start and end positions 339 

based on the 1.5 LOD score interval. 1.5 LOD intervals are commonly used to approximate the ~ 340 

95% confidence interval of mouse QTLs 5; 66. The 1.5 LOD interval estimation is comparable to the 341 

95% CI in the case of a dense marker map67; hence, its coverage depends on the location of the 342 

peak QTL marker relative to the adjacent genotyped markers. We estimated the direction of the 343 

QTL effect by calculating the phenotypic mean of each allele based on the peak SNP of each QTL. 344 

We adjusted the phenotypic means and standard errors by fitting the fixed effects used in the 345 

association analyses to a linear model. 346 

We explored the QTL intervals to identify genes that potentially affect muscle mass and 347 

bone length. We retrieved the genomic location of all genes located within the intervals using the 348 

BioMart database through the ‘biomaRT’ package implemented in R43; 44.  349 

 350 

Gene validation using siRNA in C2C12 myoblasts 351 

To validate efficiency of siRNA-mediated gene knockdown, the C2C12 cells were lysed and RNA 352 

isolated using RNeasy mini kit (QIAGEN) following manufacturers recommendations. 353 

Concentration was assessed using NanoDrop (Thermo Scientific) spectrophotometer and ~1.5 µg 354 

of RNA was applied to 1.5% agarose gel to validate its integrity. The cDNA was synthesised using 355 

random primers (Invitrogen) and SuperScript II reverse transcriptase (Invitrogen). Quantitative 356 

PCR for expression of the target Cpne1 (F: 5’-GGACTGAACGTGTTCGCAAC-3’, R: 5’-357 

ACACGGCTGTCCTTTAGCTC-3’), Sbf2 (F: 5’-AGCCTGGTGTTGGTATCCAG-3’, R: 5’-358 

GTCTCCTGCACCCAAGGAAA-3’) and Stc2 (F: 5’-TGACCCTGGCTTTGGTGTTT-3’, R: 5’-359 

GACTTTCCCTGGGCATCGAA-3’) genes and the reference Actb (F: 5’-360 

GGTGGGAATGGGTCAGAAGG-3’, R: 5’-GTACATGGCTGGGGTGTTGA -3’) gene was carried 361 

out in duplicates on LightCycler 480 II (Roche) using SYBR green Master mix (Roche), 10 ng 362 

cDNA and 0.5 µM forward and reverse primer. Quantification of gene expression was performed 363 

using the comparative Ct method68. 364 
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C2C12 myoblasts, validated for differentiation, were seeded on 8-chamber slide (Lab-Tek II), batch 365 

1, and 13 mm diameter Thermanox Plastic coverslips (Thermo Fisher Scientific), batch 2, at 100 366 

cells/mm2 in high glucose growth medium (D5671, Sigma), containing 10% foetal calf serum and 367 

2% glutamine. Next day the cells were washed with PBS and transferred to differentiation medium 368 

(D5671, Sigma) supplemented with 10 nM siRNA and Lipofectamine RNAiMAX (Invitrogen) as per 369 

manufactures protocol. We used the following siRNAs (Life Technologies): negative control #1, 370 

s113938 and 93494 (Cpne1), 151885 and 151886 (Stc2), s115441 and s115442 (Sbf2). The 371 

treatment achieved expression knockdown by 55-70%. The differentiation medium with 10nM 372 

siRNA and Lipofectamine RNAiMAX were replaced once, after 3 days of incubation. After 6 days of 373 

incubation, cells were fixed in 4% paraformaldehyde (PFA). We examined 8 cultures for Stc2 and 374 

12 for the remaining genes (equally divided between the two siRNAs) and negative control that 375 

were generated in two batches on separate occasions. 376 

Cells were washed in PBS, fixed in 4% PFA for 15 min, PBS washed again and permeabilized for 377 

6 min with 0.5% Triton X-100 in PBS. The cells were then blocked for 30 min in blocking buffer 378 

(10% foetal calf serum in PBS) and incubated overnight at 4 ºC with primary anti-myosin heavy 379 

chains antibody (Monoclonal Anti-Myosin skeletal, Fast, Clone My-32, Mouse Ascities Fluid, 380 

M4276, Sigma-Aldrich) diluted (1:400) in PBS. After three washes in 0.025% Tween-20 in PBS at 381 

room temperature, secondary donkey anti-mouse IgG H&L antibody (ab150109, abcam) 382 

conjugated to fluorescent dye (Alexa Fluor 488) in PBS (1:400) were applied and incubated for 90 383 

minutes. Following three washes in 0.025% Tween-20 in PBS cells were incubated in 300 nM 384 

DAPI in PBS for 15 min. After that cells were covered by coverslip using Mowiol 4-88 (Sigma-385 

Aldrich), sealed with nail polish and stored at 4 C in the dark. 386 

Slides were scanned using Axioscan Z1 slide scanner (Zeiss) using X20 magnification objective. 387 

The entire 0.7 cm2 chamber of a slide or a coverslip was imaged using the wavelength spectrum 388 

band of 353-465 nm and 493-517 nm and exposure time 4 ms and 100 ms for DAPI and Alexa 389 

Fluor, respectively, at 50% Colibri 7 UV-free LED light source intensity. Alexa Fluor and DAPI 390 

channel images of a rectangle area free of artefacts and covering at 14-91% of a chamber of batch 391 

1 and 70% of a coverslip of batch 2 were exported separately for analyses with Fiji69. Note that the 392 
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rectangle area of the majority of batch 1 samples (88%), covered more than 40% of the cell 393 

culture. The exclusion of small coverage images (14-31%) from the statistical analyses described 394 

below, showed results comparable to the analysis of all samples; therefore, we reported 395 

significance values (P values) corresponding to the statistical analysis of all samples. 396 

Three indices characterising the effect of treatment on myogenesis were quantified in an unbiased, 397 

automated analyses of the entire exported area: 1) percentage of fluorescent in the Alexa Fluor 398 

channel, reflecting the level of myosin expression, and 2) the longest-shortest-path reflecting the 399 

length and number of myotubes (Figure S4). The longest-shortest-path analysis was carried out 400 

using the analyse skeleton plugin70 and the shortest path calculation function71 implemented in 401 

Fiji69. We carried out the images analyses on a Linux computer and we allocated 190 GB of RAM 402 

memory for these analyses. The myotube threshold was set at 103.97 µm for batch 1 and 191.63 403 

µm for batch 2, i.e. the mean (batch 1: 54.34 µm, batch 2:100.95 µm) plus 3 standard deviations 404 

(batch 1: SD = 16.54 µm, batch 2: SD = 30.23 µm) of the length of mononucleated and myosin 405 

expressing myocytes (n=35) measured in the negative control #1 cells. The myotube length 406 

variable did not follow normality, therefore quantile normalization was applied to the variable. All 407 

statistical analyses were adjusted for the image area of each sample and batch of cells, by fitting a 408 

linear model on the three indices investigated; all subsequent statistical analyses were conducted 409 

on the residuals, which met the assumptions of normality and homoscedasticity of residuals. Effect 410 

of gene knockdown on these indices was assessed using an ANOVA test to confirm the presence 411 

of a statistically significant knockdown effect. After, a T-test was carried out to evaluate the mean 412 

differences between the control group and the gene knockdown groups. In addition, we evaluated 413 

the myosin expressing area (as percentage of the total) present within in each knockdown versus 414 

control groups with an ANOVA test. 415 

 416 

Data availability 417 

The human data used for this study can be obtained upon application to the UK biobank project15. 418 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/370312doi: bioRxiv preprint 

https://doi.org/10.1101/370312
http://creativecommons.org/licenses/by-nc/4.0/


18 
 

Results 419 

Over 100 genomic loci associated with appendicular lean mass in humans 420 

The appendicular lean mass (ALM) ranged from 11.8 to 41.6 kg and 15.3 to 42.5 kg in healthy 421 

middle age females and males, respectively (Table 1). SNP heritability estimates indicated that 422 

35% of phenotypic variability was due to genetic factors. The GWAS analysis revealed 6,150 423 

autosomal variants (MAF > 0.001) associated (P < 5 x 10-8) with ALM (Figure 1). The associated 424 

variants tagged 293 genes and 385 regulatory elements. We used the Functional Mapping and 425 

Annotation of Genome-Wide Association Studies (FUMA GWAS39) to define genomic regions 426 

containing the associated variants, and we identified 77 of them that were on average 0.24 Mb 427 

long. Furthermore, we conducted a stepwise conditional analysis that partitioned some of the 428 

genomic regions and yielded 48 additional independent signals. We refer to the identified regions 429 

and the independent signals as loci throughout the text. In total, we identified 125 loci for ALM 430 

(Table S5) which indicates that ALM is influenced by multiple genetic elements. The LD score 431 

intercept that we estimated during this ALM GWAS (1.043 ± 0.007) provides further evidence for 432 

polygenicity. Cumulative effects of these loci explained 14.28% of SNP heritability.  433 

 434 

64% of the same loci affect appendicular lean mass in older adults  435 

Consistent with the aging effect on skeletal muscle, the ALM in the cohort of elderly 436 

declined by 4 and 8% in comparison to the middle-age cohort of females and males, respectively 437 

(P < 2×10-16). We then used a ‘genetic lean mass score’ (see Methods for details) to test if the 438 

identified 125 loci contributed to ALM variability in the elderly population. The genetic lean mass 439 

score had a statistically significant overall effect (χ2 = 583.6, df = 4, P = 5.46×10-125) on ALM 440 

variability in the elderly population (Figure 2). On average, individuals with the highest genetic lean 441 

mass score had 0.90 kg, or 4%, more ALM compared to those with the lowest scores (Figure 2). 442 

We also found that in some instances negative control iterations resulted in statistically significant 443 

(P < 0.05) effects (Table S3), however the ALM differences between groups on the negative 444 
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controls were modest and in the opposite direction of what would be expected (Type III error) 445 

(Figure S3). 446 

We also asked if the variants identified in the middle-aged cohort were associated with ALM 447 

in the elderly. A GWAS in the elderly cohort replicated 4,984 variants based on their P value (P < 5 448 

× 10-8) and allelic effect (beta); moreover, the replicated variants tagged 64% of the ALM loci of the 449 

middle-aged cohort (two tailed Fisher test P value < 2.2  10-16). Overall, the set of genomic loci in 450 

the elderly cohort appeared similar to that of the middle-aged adults, with the exception of an 451 

approximately 5 Mb region on chromosome 5 (Figure S2). This region showed a very strong 452 

association with the ALM variability in older adults (lowest P value = 3.10  10-55, beta = 0.12 ± 453 

0.01 kg), and had a modest albeit significant association with the ALM of middle-aged individuals 454 

(lowest P value = 3.30  10-11) with an effect size of beta = 0.07 ± 0.01 kg. 455 

 456 

23 QTLs contribute to muscle weight variability in LG/J and SM/J strain-457 

derived advanced inter-cross lines.  458 

We examined the weight of four hindlimb muscles of the LGSM AIL (F34 and F50-F56): tibialis 459 

anterior (TA), extensor digitorium longus (EDL), gastrocnemius and soleus. The LGSM AIL 460 

muscles showed extensive individual variability (Table 2); furthermore, the SNP heritabilities of the 461 

TA, EDL, gastrocnemius and soleus muscles were 0.39, 0.42, 0.31 and 0.30, respectively (Table 462 

2). The genome mapping of LGSM AIL muscles yielded 23 QTLs (P < 6.45 × 10-06). The TA, EDL 463 

and gastrocnemius QTLs explained more than the 50% of the SNP heritability of each trait (Table 464 

S6). The soleus muscle phenotypic variability explained by QTLs was 23% of its SNP heritability. 465 

Three QTLs were shared between the four muscles (chromosome 7, 11 and 13; (Figure 3); the 466 

QTL on chromosome 13 resulted in the strongest association (EDL P = 2.95 × 10-21), with its peak 467 

position at 104,435,003 bp, and the percentage of phenotypic variance explained by this locus was 468 

5.2%; the SM/J allele conferred increased muscle mass (Figure 3). Furthermore, six QTLs were 469 
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shared between two or three muscles, while fourteen identified QTLs were only associated with 470 

one specific muscle (Figure 3). 471 

The mapping resolution was comparable to that attained in the previous study in the LGSM 472 

AIL cohort51. On average, mouse QTLs were 2.80 Mb long (based on the 1.5 LOD interval) and 473 

encompassed 2,259 known genes (Table S7). The median number of genes per QTL was 55; 474 

more than half of the mouse QTLs enclosed a modest number of genes, however, seven QTLs 475 

contained more than 100 genes each, and a single QTL located on chromosome 7 as many as 644 476 

genes (Table S6). Although all mouse QTLs identified in the LGSM AIL contained polymorphic 477 

SNPs, at least seven QTLs covered long genomic regions characterised as identical by descent 478 

(IBD) between the LG/J and SM/J strains53. 479 

 480 

Interspecies overlap between appendicular lean mass loci and muscle weight 481 

QTLs  482 

The ALM mainly consists of the skeletal muscle of the extremities; however, other tissues 483 

also contribute. To test the hypothesis that ALM-associated genetic variants primarily affect the 484 

skeletal muscle mass, we overlaid the mouse and human findings. This analysis identified five 485 

syntenic regions associated with ALM in humans and muscle mass in mice. This analysis 486 

permitted us to shorten the list of positional candidates. Assuming the same causative entity for an 487 

overlapping mouse and human locus, these five loci harbour only nine homologous genes. 488 

Encouragingly, four of these five genomic loci replicated in the ALM of the elderly cohort.  489 

 490 

Selected candidate genes 491 

In selection of the candidate genes we focused on the five most robust loci highlighted by 492 

both mouse and human GWAS. Out of the nine genes within these five loci (Table 3), we 493 

prioritised the most relevant genes for further testing based on the following information. 494 
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STC2 495 

The STC2 gene had the largest effect size on the ALM in our analyses (beta = 0.877 ± 0.13 496 

kg). The minor allele (A) of a missense SNP (rs148833559 (A/C) was associated with the increase 497 

in ALM. Prediction tools (SIFT46, PolyPhen72, CADD73, and REVEL74) suggested that the 498 

rs148833559 SNP was likely to have a detrimental consequence on STC2 protein structure. 499 

Furthermore, STC2 is expressed in human skeletal muscle48.  500 

SBF2 501 

The SBF2 gene is expressed in skeletal muscle48 and its expression in skeletal muscle is 502 

associated with a cis-eQTL48. In addition, within the QTL containing the SBF2 gene, we found that 503 

the majority of genetic variants associated with ALM were located within SBF2. 504 

CPNE1 505 

Although little is known about CPNE1, it is an intriguing candidate because a premature 506 

stop variant (rs147019139) within the gene was associated with an increase in ALM. Furthermore, 507 

Cpne1 was implicated as a positional candidate gene for muscle mass by previous GWAS 508 

conducted in outbred (CFW) mice5. 509 

 510 

Novel modifiers of in vitro myogenesis 511 

We used siRNA-mediated gene knockdown in C2C12 cells to test if candidate genes 512 

affected myogenic differentiation. The STC275, CPNE1 (identified as a positional candidate by 513 

previous research conducted in CFW mice5) and SBF2 (linked to an aggressive type of Charcot-514 

Marie-Tooth disease76) genes were prioritised for this assay. We assessed indices of myogenic 515 

differentiation (the number and length of the myotubes, and expression of myosin) of C2C12 cells. 516 

In total, 34,989 myotubes were identified and measured in 44 cell cultures (see Methods for 517 

details). The gene knockdown had a significant effect on myotube length, with Cpne1 (P = 0.001, 518 

95% confidence interval = 0.019-0.068, effect size = 0.024) and Stc2 (P = 0.015, 95% confidence 519 

interval= 0.007-0.066, effect size = 0.017) showing an increase in length compared to the control 520 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted May 13, 2019. ; https://doi.org/10.1101/370312doi: bioRxiv preprint 

https://doi.org/10.1101/370312
http://creativecommons.org/licenses/by-nc/4.0/


22 
 

cells (Figure 4). There was no significant difference for the Sbf2 gene. The pattern of the effect on 521 

myosin expressing area was similar to that of myotube length, however, it did not reach statistical 522 

significance (P = 0.21). The number of myotubes was also unaffected. 523 

 524 

Discussion 525 

The key findings of the present report are as follows: i) we identified a set of over 100 loci 526 

associated with ALM, a substantial expansion in comparison to previous human studies. ii) There 527 

is a substantial overlap of the genetic effects between middle aged and elderly subjects. iii) 528 

Integration of mouse and human GWAS indicates that skeletal muscle is the primary component 529 

affected by the ALM loci, facilitates prioritisation of candidate genes, and helps prediction of their 530 

effect on cellular mechanisms. iv) In vitro validation of two genes, CPNE1 and STC2, as novel 531 

modifiers of muscle mass in humans. 532 

In total, we mapped 125 loci that collectively explain 14.27% of the SNP heritability of ALM. 533 

The most recent report, a meta-analysis of 47 independent cohorts (dbGAP), comparable in 534 

sample size but ranging in subjects aged 18-to-100 years, reported five significant associations 535 

with lean body mass8. Even fewer associations were detected in the earlier, small sample size 536 

studies10; 12-14; 77. However, our results indicate that ALM is a truly polygenic trait in humans. We 537 

hypothesize that multiple factors contributed to the improved locus detection in the present GWAS. 538 

We restricted subjects’ age to a narrow range, 37 to 48 years, minimising the effects of the 539 

developmental and aging-related processes on phenotypic variance. The skeletal muscle is a 540 

dynamic tissue reaching its peak mass by late 20s, then a trend of decline emerges after 40s and 541 

accelerates about two decades later1. An estimated 30-50% decline in muscle mass can be 542 

expected between 40 and 80 years of age78. These developmental and aging-related changes are 543 

not linear in progression and therefore would hamper detection of loci even if accounted for in a 544 

linear model. We tested the age effect hypothesis in a randomly generated data set of a similar 545 

size (n=95,454) which was equally divided between middle-aged and older individuals. A GWAS 546 

on ALM in this dataset identified ~ 13% fewer loci (Table S8) compared to solely middle-aged 547 
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adults. This analysis also captured the five loci identified by Zillikens and colleagues8, suggesting 548 

that the effects of these loci might be less sensitive to the age differences. Hence, our results 549 

support the notion of age effect, which is likely to have a large impact with increasing age range. In 550 

addition, unlike Zillikens and colleagues8, the data set we used was systematically collected as 551 

described by the UK Biobank project15 and we only employed BIA measurements of lean mass. 552 

Furthermore, we used a LMM to test the effects of > 17 million variants (MAF > 0.001), and our 553 

analysis was adjusted for a different set of fixed effects than in previous research8; 10; 12; 14. Hence, 554 

a combination of a homogeneous age group, the optimised genomic coverage and the method 555 

used to conduct this association analysis contributed to improved detection of loci in the present 556 

study. 557 

The analyses presented here shed light into the complex genetic mechanisms behind the 558 

appendicular muscle mass of humans. In the past, concern was expressed about the 559 

reproducibility of association analyses of complex traits; however, an increasing number of human 560 

GWAS have shown that their findings are remarkably reproducible79. The present study provides 561 

further support for the reliability of association studies, demonstrating replication of 64% of ALM 562 

loci in the elderly cohort. Furthermore, we show that the genetic profile characterised by depletion 563 

of ALM-increasing alleles leads to a lower ALM in elderly individuals (Figure 2). Hence, it is 564 

conceivable that genetic architecture predisposing individuals to lower muscle mass may lead to 565 

elevated risk of sarcopenia1.  566 

Combining two experimental models, mouse and human, facilitated prioritization of 567 

candidate genes for functional validation. To establish the association between the QTGs 568 

underlying the identified loci and the muscular phenotype, we focused on the overlapping human 569 

and mouse results. Integration of results from these two species permitted circumvention of the 570 

limitations imposed by the individual models. While human GWAS often identify associated loci 571 

containing single genes, it is often unclear which tissue is most relevant to the phenotype. Although 572 

mouse QTLs often contain multiple positional candidate genes, mice can be used as experimental 573 

models to identify loci specifically associated with skeletal muscle. In this study, we used a mouse 574 

model to show that the association with skeletal muscle mass was specifically related to 575 
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differences in the cross-sectional area of the constituent muscle fibres, rather than to the number 576 

of muscle fibres in the muscle. This is because between the two founders of the LGSM AIL, the 577 

LG/J strain compared to the SM/J strain shows over 50% larger cross-sectional area of muscle 578 

fibres, but no difference in the number of fibres in soleus muscle21. Hence, it is conceivable that the 579 

QTGs of the majority of the overlapping loci affected muscle mass specifically via the hypertrophy 580 

of muscle fibres. Such prioritization between the two cellular mechanisms of muscle mass 581 

variability is important because genes specifically influencing cross-sectional area of muscle fibres 582 

can be targeted pharmacologically to prevent and reverse atrophy of muscle fibres in aging 583 

muscle80.  584 

In an effort to validate the specific QTGs and to establish the causality of their effects on 585 

skeletal muscle, we tested the siRNA-mediated knockdown effect on myogenesis in vitro. A 586 

knockdown of two genes, CPNE1 and STC2, increased the length of the myotubes, implicating an 587 

upregulation of myogenic differentiation. We interpret this in vitro observation as consistent with the 588 

allelic effect of the locus identified in human GWAS. A nonsense allele within CPNE1 was 589 

associated with an increase in ALM in both middle age and elderly populations (Table S9). The 590 

gene encodes for Copine 1, a soluble calcium-dependent membrane-binding protein81 that up to 591 

date had not been implicated in morphology or function of skeletal muscle. An allele of the second 592 

validated gene, STC2, was predicted to have a damaging effect on protein, and was also 593 

associated with an increase in ALM. This effect was consistent with overexpression results in a 594 

mouse model, showing that transgene animals had substantially reduced muscle mass75. The 595 

gene encodes Stanniocalcin 2, a homodimeric glycoprotein hormone abundantly expressed in 596 

skeletal and cardiac muscle82, although mechanisms of its effects on skeletal muscle remain 597 

unclear. Collectively these analyses revealed two novel modifiers of myogenesis, which were 598 

shown for the first time to be associated with muscle mass variability in humans. 599 

In conclusion, the present study capitalised on the advantages of integrating human and 600 

mouse GWAS with in vitro validation of causative genes. Our results revealed over 100 genomic 601 

loci contributing to ALM in middle-aged humans. The effects of the majority of these loci persist in 602 

the elderly population. Integration of human and mouse data also highlighted novel candidate 603 
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genes affecting skeletal muscle mass in mammals. Two genes, CPNE1 and STC2 appear to be 604 

novel modifiers of in vitro myogenesis. 605 
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 866 

Figure legends 867 

Figure 1. Map of genome associations with the appendicular lean mass (ALM) of humans. 868 

Genome wide association study (GWAS) on the ALM of middle-aged adults from the UK Biobank. 869 

Significance level is presented on the vertical axis, while the chromosomal position of each genetic 870 

marker is shown on the horizontal axis. Red line across the plot represents the genome wide 871 

threshold of significance (P < 5 x 10-8). This plot shows the association of variants with MAF > 872 

0.001.  873 

 874 

Figure 2. Genetic lean mass score affects the appendicular lean mass (ALM) in elderly humans. 875 

The plot shows the ALM (kg) of the elderly cohort on the vertical axis. The elderly cohort was 876 

ranked by genetic lean mass score and clustered in five quantiles (Q1 to Q5) (horizontal axis). The 877 

average genetic lean mass score ( standard error) of each quantile is shown in parenthesis below 878 

the horizontal axis. The overall quantile effect of the genetic lean mass score on ALM was tested 879 

with Kruskal-Wallis test and the resulting P value is presented on the top of horizontal line above 880 

the bars. The ALM median differences between the groups were tested using a Wilcoxon test; the 881 

significance level of each comparison is presented above the horizontal lines with a holm adjusted 882 

P value. 883 
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 884 

Figure 3. Muscle weight QTLs identified in mice of the LGSM AIL and density plot of the 885 

genotypes. The circle plot (A) shows from the outer to the inner ring the GWAS of the TA, EDL, 886 

gastrocnemius and soleus muscle weights. Chromosomal position of each SNP is shown in the 887 

outer black circle of the plot; chromosome names are shown outside as “Chr”. Dots within each 888 

chromosome space represent the association (–log10 P value) of each SNP tested. Dotted blue 889 

lines represent the genome-wide threshold (P < 6.45 × 10-06) of significance, and red dots above 890 

the genome-wide threshold are significantly associated SNPs. (B) Plots of the allelic effect of the 891 

Skmw34, Skmw55 and Skmw46 QTLs on the EDL muscle mass. These QTLs were identified for 892 

the four muscles investigated. Vertical axis represents the residual muscle mass adjusted for sex, 893 

age, dissector and long bone length, and the horizontal axis shows the genotypes (LG/J 894 

homozygote, heterozygote and SM/J homozygote). Bellow the horizontal axis, the number of 895 

individuals with a given genotype is provided. The violin shapes within the plot area represents the 896 

distribution of individuals with the genotypes. Box whiskers represent minimum and maximum 897 

values distance between a whisker and the top or bottom of the box contains 25% of the 898 

distribution, the box captures 50% of the distribution, and the bold horizontal line represents the 899 

median. Pairwise comparison P value (t-test) is shown above horizontal lines at the top of the 900 

plots.  901 

 902 

Figure 4. Gene knockdown effect on C2C12 myotube length. 903 

This figure shows the gene knockdown effect of the Cpne1, Sbf2 and Stc2 genes on myotube 904 

length. The overall effect of the gene knockdown on myotube length was tested using ANOVA and 905 

the resulting P value was 0.00017 (F3, 34985 =6.63). Vertical axis represents the myotube length 906 

(quantile normalised) residuals (adjusted for area analysed and batch of cells), and the horizontal 907 

axis shows control and knockdown gene groups. Boxes represent the distribution of the myotube 908 

length for each group. Box whiskers represent minimum and maximum values within 1.5-fold 909 

interquartile range above the 75th percentile and below the 25th percentile; the box captures 50% of 910 

the distribution, and the bold horizontal line represents the median value of the myotube length 911 
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normalized residuals distribution for each knockdown group. Each red dot represents a single cell 912 

culture sample for each knockdown group. Statistically significant t–test P-values between control 913 

and knockdown genes are presented above horizontal lines. Effects without a statistically 914 

significant difference between the control and gene knockdown are presented as “ns”. Cpne1 and 915 

Stc2 knockdown groups were not different from each other (P > 0.05). Sbf2 gene knockdown 916 

differed from Cpne1 (P = 0.002) and Stc2 (P = 0.043). 917 

 918 

Tables 919 

Table 1. Summary of the middle-aged cohort 920 

Trait N MIN MAX AVERAGE SD SNP heritability ± SE 

ALM (kg) Females = 51,238 11.80 41.60 20.02 2.61 0.36 ± 0.003 

Males = 43,996 15.30 54.50 30.00 3.99 

Arm lean mass (kg) Females = 51,248 1.00 5.10 2.29 0.32 0.32 ± 0.003 

Males = 44,007 1.40 7.10 3.83 0.58 

Leg lean mass (kg) Females = 51,258 4.50 16.60 7.76 1.00 0.36 ± 0.003 

Males = 44,020 6.20 20.00 11.25 1.43 

Leg (cm) Females = 51,228 36.00 113.00 76.56 4.33 0.59 ± 0.010 

Males = 43,967 40.00 122.00 83.80 4.73 

WBF (kg) Females = 51,239 5.00 109.80 25.68 10.70 0.33 ± 0.006 

Males = 43,793 5.00 88.50 21.08 8.24 

Column description from left to right: 1) Trait, 2) Number of records, 3) Minimum value within the 921 

distribution of each trait, 4) Maximum value within the distribution of each trait, 5) Average value of 922 

each trait, 6) Standard deviation, 7) SNP heritability of the ALM across sex. All summary statistic 923 

values were calculated for each sex group. ALM: appendicular lean mass. WBF: whole body fat. 924 

 925 

Table 2. Summary of the LGSM AIL muscle traits 926 

Trait N MIN MAX AVERAGE SD SNP heritability ± SE 

TA (mg) Females =    675 26.60 57.20 42.22 5.34 0.39 ± 0.03 

Males     = 1,186 31.60 70.80 50.11 6.73 
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EDL (mg) Females =    675 4.60 10.40 7.52 0.94 0.42 ± 0.03 

Males     = 1,184 5.90 13.30 9.31 1.30 

Gastrocnemius (mg) Females =    675 64.00 133.00 93.15 10.68 0.31 ± 0.03 

Males     = 1,187 70.20 174.90 119.32 16.32 

Soleus (mg) Females =    671 3.20 10.30 6.34 1.18 0.30 ± 0.03 

Males     = 1,187 4.00 13.50 7.78 1.64 

Column description from left to right: 1) Trait, 2) Number of records, 3) Minimum value within the 927 

distribution of each trait, 4) Maximum value within the distribution of each trait, 5) Average or mean 928 

value of each trait distribution, 6) Standard deviation of the mean, 7) SNP heritability for each trait 929 

across sex. Summary statistic values were calculated for each sex group.930 
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Table 3. Syntenic regions between human and mouse QTLs and positional candidate genes 931 

Human locus 

peak pos 

Mouse QTL peak pos 

(syntenic to human) 

Elderly 

cohort P 

Gene 

symbol 

Human gene name Differential expression in 

mouse Soleus 

Differential expression 

in mouse TA 

5:64602788 13:104435003 n/a ADAMTS6 ADAM metallopeptidase with 

thrombospondin type 1 motif 6  

0.440 0.641 

5:172755066 11:31680504 9.0010-11 STC2 stanniocalcin 2  0.969 0.981 

6:32038550 17:34968724 1.9010-10 STK19 serine/threonine kinase 19  0.432 0.319 

   TNXB tenascin XB  0.630 0.541 

9:119309525 4:65415188 1.7010-08 PAPPA pappalysin 1  n/a 0.893 

   ASTN2 astrotactin 2  0.014 0.745 

11:10303939 7:110986447 3.5010-19 SBF2 SET binding factor 2  0.762 0.893 

   ADM adrenomedullin  n/a 0.280 

   AMPD3 adenosine monophosphate 

deaminase 3  

0.064 0.110 

Column description from left to right: 1) ALM Human locus peak position as “chromosome: base pair position”, 2) LGSM QTL peak position as 932 

“chromosome: base pair position” (syntenic to human), 3) Elderly cohort P value, 4) Human gene symbol, 5) Human gene name, 6) Adjusted P value 933 

of differential expression between the soleus muscle of the LG/J and SM/J mouse strains24, 7) Adjusted P value of differential expression between the 934 

TA muscle of the LG/J and SM/J mouse strains24935 
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