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Abstract 

The chromosome conformation capture (3C) technique and its variants have been employed 

to reveal the existence of a hierarchy of structures in three-dimensional (3D) chromosomal 

architecture, including compartments, topologically associating domains (TADs), sub-TADs and 

chromatin loops. However, existing methods for domain detection were only designed based 

on symmetric Hi-C maps, ignoring long-range interaction structures between domains. To this 

end, we proposed a generic and efficient method to identify multi-scale topological domains 

(MSTD), including cis- and trans-interacting regions, from a variety of 3D genomic datasets. 

We first applied MSTD to detect promoter-anchored interaction domains (PADs) from promoter 

capture Hi-C datasets across 17 primary blood cell types. The boundaries of PADs are 

significantly enriched with one or the combination of multiple epigenetic factors. Moreover, 

PADs between functionally similar cell types are significantly conserved in terms of domain 

regions and expression states. Cell type-specific PADs involve in distinct cell type-specific 

activities and regulatory events by dynamic interactions within them. We also employed MSTD 

to define multi-scale domains from typical symmetric Hi-C datasets and illustrated its distinct 

superiority to the-state-of-art methods in terms of accuracy, flexibility and efficiency. 
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Introduction 

Folding of mammalian chromosomes into the nucleus has increasingly been recognized as an 

important factor in gene regulation, cell fate decisions, evolution and so on1, 2, 3. However, how 

chromosomes fold into the nucleus is still obscure. The chromosome conformation capture (3C) 

technique and its variants such as Hi-C, ChIA-PET and capture Hi-C have been employed to 

uncover the chromatin loops and hierarchical chromatin structural domains in three-

dimensional (3D) genome architecture. Specifically, recent studies have revealed direct 

physical interactions, such as long-range chromatin contacts between enhancer and target 

genes4, actively co-regulated genes5 and Polycomb-repressed genes6. In addition, researchers 

have provided evidence for topologically associating domains (TADs) or sub-TADs7, 8, 9, 10, 11, 12. 

Furthermore, interactions between TADs at a variable distance result in active and inactive 

compartments, which are further subdivided into six different sub-compartments according to 

distinct patterns of histone modifications4, 13. Therefore, with the rapid accumulation of 3D 

genomic maps, developing efficient computational methods for detecting topological domains 

in chromosomal architecture is urgently needed. 

Several methods have been developed to address these issues. For example, Dixon et al. 

adopted a hidden Markov model (HMM) method based on the directionality index from Hi-C 

maps to detect TADs7. Lévy-Leduc et al. proposed a block-wise segmentation model for TAD 

detection and proved that maximization of the likelihood on the block boundaries is a one-

dimensional (1D) segmentation problem14. Similarly, Crane et al. developed an approach to 

transform the Hi-C contact matrix into an 1D insulation score vector for detecting topological 

structures15. Shin et al. employed an efficient and deterministic method to systematically identify 

TADs with a set of statistical measures to evaluate their quality16. However, these methods 

were only designed for detecting single-scale domains. 

Recently, a few methods have been designed to explore the hierarchical organization of 

chromosomal architecture from symmetric Hi-C maps. For example, Filippova et al. introduced 

a dynamic programing model to identify hierarchical domains by adjusting a single parameter17. 

Weinreb et al. proposed a matrix decomposition model to infer a hierarchy of nested TADs 

based on ideal empirical distributions18. Zhan et al. presented a method CaTCH to detect 
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hierarchical trees of chromosomal domains given a certain degree of reciprocal insulation from 

Hi-C maps19. However, these methods can only detect cis-interacting regions from Hi-C maps. 

Very recent studies have revealed that both cis- and trans-interacting DNA regions exist in 

the cell nucleus20. With the emerging higher resolution genome-wide interaction maps of 

chromatin such as promoter capture Hi-C maps21 and ChIA-PET maps22, many distal DNA 

fragments regulate their targets bypassing long chromatin regions have been observed. 

Therefore, how to develop a generic method to infer both cis- and trans-interacting regions from 

diverse types of 3D genomic data is still a grand challenge in computational biology. 

To this end, we proposed a generic and efficient method to identify multi-scale topological 

domains (MSTD) from both asymmetric and symmetric 3D genomic datasets with a single 

adjustable parameter controlling domain scales. MSTD can detect long-range interacting 

domains such as those bewteen promoters and regulatory elements at variable distances, 

which can not been addressed directly by existing methods. We detected promoter-anchored 

interacting domains (PADs) from promoter capture Hi-C datasets across 17 primary blood cell 

types. We observed that the boundaries of these PADs can be well specified by one or the 

combination of a few epigenetic factors, indicating that these factors should play a key role the 

formation of genomic conformation. The analysis of the affinity relationship among cell types 

showed that PADs between functionally similar cell types have distinctly high conservation and 

consistent expression levels. Furthermore, dynamic PADs might perform specific cellular 

functions, while common ones take into account the underlying conditions of regular cell 

activities and participate in cell-specific regulatory events by dynamic interactions within each 

PAD. This suggests that PADs are important and basic units of genomic structure and function 

influencing gene regulation and cellular differentiation. We also employed MSTD to define multi-

scale domains from symmetric Hi-C datasets with distinctly superior accuracy and efficiency 

compared to existing methods. Interestingly, the conservation of TADs between cells during 

continuous differentiation cycles is significantly higher than those between interval cycles. Last 

but not least, TADs are strongly correlated with epigenetic and transcriptional features. 

Results 

Illustration of MSTD 
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MSTD was inspired by a fast density-based clustering method, which is designed for grouping 

data points23. Here we group the strong contact interactions, which form square or rectangle 

submatrices corresponding to domains defined in Methods (Figure 1). Given a symmetric or 

asymmetric matrix, Firstly, for each diagonal element for a symmetric matrix in Figure 1C or a 

non-zero element for an asymmetric matrix in Figure 1E, MSTD computes two indexes: (1) 

local density defined as the average of the interaction frequencies with a cutoff radius window 

(Figures S1B, C and Supplementary Methods), and (2) minimum distance of the elements that 

have higher density (MDHD) than the element, Note that local density of the clustering center 

element is locally or globally maximum, and its MDHD are much larger than those of its 

neighbors. Thus, MSTD determines clustering centers with high MDHD by an adjustable 

parameter, which controls domain scales. Next, the remaining elements are assigned to the 

same cluster with their MDHD elements layer-by-layer. Meanwhile, individual outlier elements 

with high MDHD and low local density (Figure 1D) and the elements associated with these 

outlier elements will not be assigned to any cluster. Finally, the boundaries for each cluster are 

defined as the outermost elements of the same class in all directions. 

Identifying PADs from asymmetric promoter capture Hi-C datasets 

Firstly, we applied MSTD to identify multi-scale PADs from promoter capture Hi-C maps 

across 17 human primary blood cell types (Figure 2A and Supplementary Methods)21. MSTD 

can not only find cis-interacting PADs within the continuous genome, but also identify trans-

interacting PADs between distal regulatory elements and target promoters (Figure 2A). The 

results below are based on parameter  100T
 for detecting PADs, unless noted otherwise. 

MSTD costs only about 7.3 minutes for each chromosome (Table S1). Also, the size of the 

most of PADs detected by MSTD is in the range between 200kb and 2Mb (Figure S2A), as 

suggested by TADs from symmetric Hi-C maps in previous studies8, 15. Moreover, we noted 

that the same chromosome of different cell types obtains very similar number of PADs, 

especially between functionally similar cell types (Figure S2B), and average interaction 

frequency of intra-PADs is significantly higher than that of inter-PADs across 17 human 

primary blood cell types (Figure 2B), indicating that PADs relate to cell activities distinctly. 

Epigenetic features is a good predictor of PADs 

We defined the boundaries and centers of PADs along promoter interacting region (PIR) 
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axis (Supplementary Methods) and found that epigenetic features show strong relevance to 

these PIRs’ regions compared with random ones (Figure 3, Figure S3-S5). Specifically, for 

monocytes cell type, the promoter mark H3K4me3 is strongly enriched in the boundaries of 

PADs (even more than twice that of intra-PADs) and the transcribed region mark (H3K36me3) 

is enriched in the regions slightly deviating from boundary regions, indicating that the 

boundary elements of PADs are significantly associated with promoters (Figure 3A). 

Meanwhile, the enhancer marks (H3K4me1, H3K27ac) are also enriched around topological 

boundaries, which might be related with chromatin loops in the boundary regions (Figure 3A). 

The transcribed region mark (H3K36me3) and the enhancer marks (H3K4me1, H3K27ac) 

demonstrate significant changes between intra-PADs and inter-PADs, suggesting PADs play 

key roles in active gene regulation and expression (Figure 3A). Meanwhile, the repressive 

mark (H3K27me3) is enriched in topological boundaries, which can be associated with the 

formation of repressive domains. Interestingly, the signals of H3K9me3 in inter-PADs are 

slightly higher than those in the intra-PADs, and both of which are significantly lower than 

random ones, revealing that PADs can segregate the spread of the heterochromatin (Figure 

3A). Thus, multiple epigenetic features can identify different functional PAD boundaries. We 

also observed that multiple epigenetic features (except the heterochromatin mark) are 

enriched around the regions with high interaction intensity (PAD centers) (Figure 3A). 

Furthermore, we guess that one or the combination of several epigenetic features contributes 

to the formation of PADs, which can be associated with different functional units (Figure 3B). 

For example, H3K27ac tends to combine H3K4me3 or H3K4me1 to mark active boundaries 

of PADs, while H3K27me3 tends to mark repressive boundaries alone (Figure 3B). Therefore, 

histone modifications and DNase signal seem to be a good predictor of PADs and different 

functional units may have different strategies to specify chromatin domains. 

PADs can well capture the hematopoietic tree structure 

The distribution of PADs among different cell types should reflect the affinity relationship of 

the 17 blood cell types. We regarded that the PADs are conserved between different cell 

types if their boundaries are adjacent (Supplementary Methods) and noted that 40%-70% of 

PADs are conserved between the same type of cells, yet only 30%-50% of PADs are 

conserved between the different type of cells, indicating the conservation and dynamics of 
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chromatin structure during cell development and differentiation (Figure S6A). Furthermore, 

we derived five distinct classes based on the overlapping ratio of their PADs, which is highly 

consistent with the hematopoietic tree24, suggesting dynamic chromatin structures contribute 

to gene cellular functions (Figure 4A). The expression level of genes within these PADs 

distinguishes them into high (low) co-expressed ones and divided them into four categories 

of cell types consistent with hematopoietic tree, indicting these PADs play important roles in 

gene expression and regulation (Figures 4B, 4C and Methods)24. Interestingly, the gene sets 

tend to be very diverse across cell types within high and low co-expressed PADs respectively, 

indicting their underlying dynamical characteristics (Figure 4D). The above results reveal that 

the gradual change of the chromosomal structures (e.g., PADs) regulate the expression level 

of specific genes, which in turn promote the occurrence of cell development and 

differentiation. Therefore, it is important to distinguish these cell-specific PADs compared with 

stable ones for understanding the formation mechanism and cellular functions of PADs. 

Next, we identified 693 lymphoid-specific, 426 myeloid-specific and 3808 common PADs 

according to the occurrence features among 17 human primary blood cell types to explore 

their cellular functions (Supplementary Methods). We further obtained 308 lymphoid-specific, 

195 myeloid-specific and 1380 common PADs, whose pairwise chromatin regions containing 

more than one marker genes (Supplementary Methods and Table S2). Among those PADs, 

MSTD pioneered the discovery of 180 trans-PADs without any overlap between their pairwise 

chromatin regions (Figure 5, Figures S7-S14 and Tables S3 and S4). 

For example, we found two interesting trans-PADs within the same region of genome -- 

one myeloid-specific PAD and a common PAD shared by 16 cell types (except aCD4) (Figure 

5 and Figures S7 and S8). For the myeloid-specific PAD, we can see that active TSS and 

transcription states occupies the pairwise chromatin regions of this PAD based on the 

ChromHMM annotations and active markers including H3K4me3, H3K27ac and DNase are 

significantly enriched in them too, which may suggest the chromatin loops within this PAD 

bring active promoters into the same nuclear space to initiate transcription25. Moreover, E2F, 

p53 motifs and E2F, E2F1 motifs are enriched in the upstream and downstream regions of 

this PAD, which contain genes related to innate immune response of myeloid tissues 

(upstream: HIST1H2BC, downstream: HIST1H2BJ and HIST1H2BK) (Table S3 and S4)26. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 16, 2018. ; https://doi.org/10.1101/370338doi: bioRxiv preprint 

https://doi.org/10.1101/370338
http://creativecommons.org/licenses/by-nc-nd/4.0/


This suggests that the chromatin loops among this myeloid-specific PAD play a special role 

in the cooperation between E2F1 and p53 to specifically activate innate immune response 

genes in myeloid tissues, which could promote the occurrence of apoptosis27.  

For the lymphoid and myeloid common PAD, the pairwise chromatin regions contain 

several genes from histone families (H1, H2A, H2B, H3, and H4), which regulates circulating 

iron and mediates the regulation of lymphocyte and leukocyte (such as activation, cell-cell 

adhesion, immune response, antigen processing and presentation) (Figure 5 and Table S3)26. 

Furthermore, we identified 529 common and 40 dynamic chromatin loops between lymphoid 

and myeloid tissues from high-density chromatin loops of this PAD (p-value<0.01) 

(Supplementary Methods). Surprisingly, we found all of dynamic chromatin loops occur in 

lymphoid tissues and these dynamics interacting regions contains BTN3A2 gene involved in 

the adaptive immune response of lymphoid tissues (Figure S6B and Table S3)26. Thus, this 

PAD might participate in the underlying functions of regular activities of blood cells while 

enforce the adaptive immune response in lymphoid tissue. It can be seen that the upstream 

region of the common PAD contains that of the myeloid-specific PAD, and compared with the 

common PAD, the myeloid-specific PAD performs specific cellular functions by dynamic 

interactions with the different remote-region (Figure 5). 

Another example is a lymphoid-specific PAD, which is characterized by a handful of active 

marks (Supplementary Methods and Figure S9). Both chromatin regions of this PAD contain 

more than one motifs associated with lymphocyte (Table S4). Specifically, GATA3 motif is a 

transcriptional activator, which binds to the enhancer of the T-cell receptor alpha and delta 

genes and Nur77 motif participate in modulating apoptosis in developing thymocytes28. Both 

GATA3 and Nur77 motifs are enriched in the upstream regions of this PAD, while TFE3 and 

SPIB motifs are enriched in its downstream regions. Previous studies have showed that 

TFE3 motif regulates T-cell-dependent antibody in aCD4 cell type and thymus-dependent 

humoral immunity, and SPIB motif is a lymphoid-specific enhancer28. In addition, Dontje et 

al. revealed that Delta-like1-induced Notch1 signaling pathway directs T cells and 

plasmacytoid dendritic cells decision by controlling the levels of GATA3 and SPIB29. More 

interestingly, within the genome region of the PAD, RC3H2 gene participates in T cell 

activation and differentiation involving in immune response and PTGS1 gene is related 
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to blood pressure and circulation (Table S3)26. Thus, this PAD could perform lymphoid-

specific functions by T cell specific marker gene expression, which are regulated by GATA3, 

SPIB and other transcription factors corporately (e.g. TEF3 and Nur77) (Supplementary 

Methods). 

Identifying multi-scale topological associated domains from symmetric 

Hi-C datasets 

We next applied MSTD onto Hi-C datasets of mouse cortex cell binned at 40kb resolution7. 

MSTD can detect a few of larger topological domains with T
 increasing, indicating the 

existence of a hierarchy of structural domains (Figure 6A, Figures S15A and B). The average 

of contact frequency within a domain is significantly higher than that between domains and both 

of them decrease as the domain scale increasing (Figures S15C-E). Interestingly, inflection 

points appeared along parameter T
 between 5 and 10 for the two statistic measurements 

evaluating the quality of domains, which might be related to the presence of topologically 

associating domains (TADs) (Figures S15E and F). 

Comparison between MSTD and previous methods for identifying TADs 

Previous studies suggested that the size of TADs should be between 200kb and 2Mb, which 

is used as one of the quality evaluation indicators8, 15. MSTD achieves remarkably higher 

consistency for all three cell lines compared with those of other methods with similar median 

of domain size at 7T   (Table S5 and Methods). For example, we discovered 2965 

qualified TADs, while DI, TopDom and HicSeq detect 1993, 1982, 2714 ones in Neuron cell 

line. Moreover, MSTD obtains TADs with smaller variance in domain scale (Figure 6B and 

Figure S16A). 

Furthermore, MSTD shows superior performance than other three methods in terms of 

PCC and DIFF (Figure 6C, Figure S16D and Supplementary Methods), indicating that MSTD 

can detect more accurate TADs with coherent contact profiles. For a fair comparison, we 

employed the same number of domain boundaries of the top rank in terms of PCC and DIFF 

scores. MSTD generally shows much significant performance for all the three cell lines in the 

most cases (Figures S17 and S18). MSTD supposes that domain centers are surrounded by 

elements with lower local density and that they are relatively far away from the higher density 
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elements. Thus, MSTD can well identify more consistent local density areas, which coincides 

well with compacted and elongated domain conformations in biology23, 30. 

MSTD is friendly to users in parameter selections with very short computing time. Specifically, 

users can set an adjustable parameter T
 to control the domain scale (Figure S15 and 

Supplementary Methods). Meanwhile, MSTD takes about 5.04 minutes, while TopDom takes 

about 7.85 minutes, DI takes about 27.5 minutes and HicSeg spends 55.4 minutes 

approximately for detecting TADs of all chromosomes of three cell lines (mouse ESC, NPC and 

Neurons) in same computer environment (inter core 3.4GHz and 24G RAM) (Figure 6D). 

TADs show distinct biological conservation and specificity among ESC, 

NPC and Neurons 

Previous studies have shown that TADs are conserved between cell types7, 31. We observed 

the average of common boundary ratio (CBR) is about 50%-80% and the average of TADs 

overlap ratio (TOR) is approximately 35%-70% during cell differentiation, which is similar with 

previous studies (Dixon et al., 2012) (Supplementary Methods and Figure S19). Interestingly, 

the conservation between cells during continuous differentiation cycle is significantly higher 

than those between the interval cycles. It will be useful to further investigate the result and 

extend it to specific functional and evolutionary events32. 

TADs are strongly correlated with epigenetic patterns and expressed 

features 

The conservation of TADs during cell differentiation promotes us to explore the mechanisms 

of TADs formation. Recent studies showed that a common property of CTCF and highly 

active housekeeping genes may create insulating force of TAD boundaries31, 33. Intriguingly, 

architectural protein CTCF is indeed highly enriched at TAD boundaries in mouse ES and 

cortex cells (Figure 7A and Figure S20), and housekeeping exons and genes tend to be 

located in the boundary region of human ES cell (Figure 7B). Furthermore, H3K4me3, 

H3K9ac and RNA Polymerase II are significantly enriched and H3K36me3 is slightly enriched 

in the boundary regions of TADs for mouse ES and cortex cells, indicating the formation of 

TADs is indeed promoter-related31. Meanwhile, we found that transcription start sites (TSS) 

and expressed genes (FPKM>3) are also enriched around TAD boundaries (Figures 7A and 
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7B). Those observations reveal that factors associated active promoters and gene bodies 

can contribute to the formation of TADs boundaries (Figure 7A and Figure S20). Moreover, 

enhancer-marks (H3K4me1, H3K27ac and EP300) show a bimodal distribution around TAD 

boundaries (Figure S20). These peaks are located at 100kb-200kb away from the TADs 

boundaries, which may be associated with domains of gene co-regulation patterns31. 

H3K4me1 has a different bimodal patterns between mouse ES and cortex cells, which may 

be attributed to H3K4me1 marks sequences with region of DNA methylation loss in human 

mesenchymal stem cells (Figure S20)34. Interestingly, open chromatin mark (DNase signal) 

shows a significant enrichment in TAD boundaries of mouse ESC cell and a three peaks 

distribution around TADs boundaries of cortex cell (Figure 7A and Figure S20). In addition, 

inactive chromosome mark (H3K27me3) shows a slight peak in TADs boundaries for mouse 

ESC cell but not for cortex cell, which may be due to the responsibility of H3K27me3 for the 

repression of genes involved in cellular development and differentiation (Figure 7A and 

Figure S20)35. Finally, H3K9me3 is the mark of heterochromatin and shows no enrichment in 

both mouse ES and cortex cells (Figure 7A and Figure 20). 

Discussion 

The chromosome conformation capture (3C) and its variants produce billions of read pairs 

that are used to draw genome-wide chromatin contact maps for multiple tissues and species. 

The accumulation of these data poses unprecedented challenges to computational biologists. 

Different tools have been developed to detect domains from symmetric Hi-C maps36. 

However, these methods pay no attention to interaction structures between domains (trans-

domains) directly. MSTD begin to explore a variety of chromatin structures, including multi-

scale TADs, PTADs and PADs from diverse chromatin contact maps, especially promoter 

capture Hi-C maps. Exploring a variety of chromatin structures will help to better understand 

the formation of spatial chromatin architecture and distinguish cellular function units. 

Meanwhile, 3D genomic maps of higher resolution will contribute to the presentation of 

landscape in the nucleus clearly and accurately. 

We believe that the identification of multi-scale cis- and trans-domains will provide insights 

into local chromatin structure and promote the construction of 3D genomic model. Meanwhile, 
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the analysis combining a variety of functional factors gradually explain cellular functions and 

biological processes of these structural units. With the development of new technologies, 

more diverse chromatin data will be generated for solving unknown biological problems. For 

examples, single cell Hi-C maps provide an opportunity to study the conservation and 

heterogeneity from cell to cell, revealing more granular cellular functions and biological 

processes in cell cycle37, 38. MSTD is a very flexible and powerful framework, which is 

expected to be applied to such new data in near future. 

Methods 

Materials 

We first downloaded a comprehensive catalog of capture Hi-C datasets of 31253 annotated 

promoters and 230525 unique promoter-interacting regions (PIRs) in 17 human primary blood 

cell types21. The datasets detect 698187 high-confidence unique promoter interactions, of 

which 9.6% are promoter-promoter interactions and 90.4% are promoter-PIR interactions. The 

17 cell types are from different nodes of the hematopoietic tree, which can be roughly divided 

into two categories, including 9 lymphoid cell types (Megakaryocytes (MK), Erythroblasts (Ery), 

Neutrophils (Neu), Monocytes (Mon), Endothelial precursors (Endp), Macrophages M0 (Mac0), 

Macrophages M1 (Mac1), Macrophages M2 (Mac2)) and 8 myeloid cell types (Naive B cells 

(nB), Total B cells (tB), Fetal thymus (FetT), Naive CD4+ T cells (nCD4), Total CD4+ T cells 

(tCD4), Non-activated total CD4+ T cells (naCD4), Activated total CD4+ T cells (aCD4), Naive 

CD8+ T cells (nCD8), Total CD8+ T cells (tCD8)). We collected available histone modification 

ChIP-seq datasets, including H3K4me3, H3K4me1, H3K27ac, H3K36me3, H3K9me3, 

H3K27me3, H3K9ac and DNase-seq datasets for seven cell types (Neu, Mon, FetT, nCD4. 

tCD4, nCD8, tCD8) from the Roadmap Epigenetics project 

(http://egg2.wustl.edu/roadmap/web_portal/). In addition, we collected available RNA-seq 

datasets for 8 cell types (MK, Ery, Neu, Mon, Mac0, Mac1, Mac2, nCD4) from21. 

We also collected two sets of Hi-C maps. The first dataset includes mouse cortex, ES and 

human ES cell types7. For mouse cortex and ES cell types, we collected ChIP-seq datasets 

from the ENCODE project (http://www.genome.ucsc.edu/ENCODE/), including the 

architectural protein CTCF, seven histone modifications (H3K4me3, H3K9ac, H3K36me3, 
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H3K4me1, H3K27ac, H3K27me3, H3K9me3), RNA Polymerase II, EP300, DNase-seq and 

RNA-seq data from39. For human ES cell type, we obtained human housekeeping genes from33 

and TSS of protein coding genes of hg19 RefSeq in GENCODE database. The second dataset 

contains proliferating mouse embryonic stem cells (ESC), intermediate neuronal precursor cells 

(NPC) and post-mitotic neurons (Neurons) Hi-C datasets through different differentiation 

periods, binned at 50kb resolution from32. 

Definition of chromatin domains for Hi-C and promoter capture Hi-C 

datasets 

Generally, Hi-C maps are summarized as a symmetric matrix A  with bins of a fixed width (e.g. 

40kb). Considering the symmetry of Hi-C matrix, in which     , 1 ,1i jA i n j n  represents 

the interacting frequencies between bins i  and j , we first define the diagonal blocks 
kD  of 

high intensity with relative strong interactions as the topologically associating domains (TADs) 

(Figure 1A), 

                          
     2 1 2 2 1 2, : , , 1, , ,k k k k kD i j b i b b j b k K              

where 
2 1 2,k kb b  (


  2 1 21 k kb b n ) represent the true TAD boundaries of the 

thk  TAD and 

K  is the number of TADs. We further define the non-diagonal blocks 
lN  as pairwise 

topologically associating domains (PTADs) (Figure 1B), 

                           
     1 1 2 2

2 1 2 2 1 2 1, : , , 1, , ,l l l l lN i j b i b b j b l L              

where 

1 1

2 1 2,l lb b  ( 
  1 1

2 1 21 l lb b n ) and 

2 2

2 1 2,l lb b  ( 
  2 2

2 1 21 l lb b n ) denote the boundaries of 

two distinct chromatin regions forming the 
thl  PTAD and L  is the number of PTADs. In this 

study, we denote promoter capture Hi-C map as an asymmetric rectangular contact matrix B , 

in which     , 1 ,1i jB i n j m  represents interaction frequencies between promoters and 

PIRs. As a special type of PTADs, we define the special non-diagonal blocks 
xS  as promoter-

anchored interacting domains (PADs) from promoter capture Hi-C map (Figure S1A), 

                           
     1 1 2 2

2 1 2 2 1 2 1, : , , 1, , ,x x x x xS i j b i b b j b x X 

where 

1 1

2 1 2,x xb b  ( 
  1 1

2 1 21 x xb b n ) and 

2 2

2 1 2,x xb b  ( 
  2 2

2 1 21 x xb b m ) represent respectively 

the boundaries of promoters and PIRs forming the x th PAD and X  is the number of PADs. 
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MSTD 

MSTD was inspired by a fast density-based clustering method, which is designed for grouping 

data points23. Here we group the strong contact interactions, which form square or rectangle 

submatrices corresponding to domains defined as above (Figure 1). Given a symmetric or 

asymmetric matrix A , where     , 1 ,1i jA i n j m  denotes the interaction frequencies 

between bin i  and j . Firstly, for each element  ,i j  (a diagonal element (i.e., i j ) for a 

symmetric matrix in Figure 1C or a non-zero element for an asymmetric matrix in Figure 1E), 

MSTD computes two indexes: (1) local density  ij w  defined as the average of the interaction 

frequencies with a cutoff radius window w  (Figures S1B, C and Supplementary Methods), 

and (2) minimum distance  ij  of the elements that have higher density (MDHD) than the 

element  ,i j , 

                        
 

 


   min , ,( , ) , ,
kl ij

ij ijd i j k l Max                          

where    , ,( , )d i j k l  is the distance between the element ( , )i j  and element ( , )k l . We 

search for a MDHD element of the element ( , )i j  in the range of Max . Note that local density 

ij  of the clustering center element is locally or globally maximum, and its  ij  are much larger 

than those of its neighbors. Thus, MSTD determines clustering centers by an adjustable 

parameter T
(  ij > T

), which control domain scales. Next, the remaining elements are 

assigned to the same cluster with their MDHD elements layer-by-layer. Meanwhile, individual 

outlier elements with high   and low   (Figure 1D) and the elements associated with these 

outlier elements will not be assigned to any cluster. Finally, the boundaries for each cluster are 

defined as the outermost elements of the same class in all directions. If the elements whose 

local density is significantly lower than their centers’, this element is removed from this cluster. 

Definition of high (low) co-expressed PADs 

We first defined high (low) expression genes for a given cell type if their expression level is 

higher (lower) than their corresponding median of gene expression level across all available 

cell types. For each domain detected by MSTD, we defined a domain to be high- (low-) co-
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expressed domain by evaluating the difference between the number of high (low) expression 

genes in the genome region of this domain and the average number of high (low) expression 

genes in cyclically permutated genomes with the same number of genes as the domain region, 

which is weighted by its standard deviation (p-value<0.05). 

Parameter selection for MSTD and other methods 

In order to compare MSTD with three popular methods including DI7, TopDom16 and HicSeg14 

for identifying TADs, we next applied these four methods onto Hi-C datasets of mouse 

embryonic stem cells (ESC), intermediate neuronal precursor cells (NPC) and post-mitotic 

neurons (Neurons) through different differentiation periods (ESC-NPC-Neurons), binned at 50 

kb resolution32. Since DI has been generally accepted to detect TADs in a number of existing 

studies, here we regard the size range of its TADs (from 700kb-1200kb) as the standard scale. 

In order to get a similar domain scale for a fair comparison, we set the adjustable parameters 

window=12 for TopDom, and   7T
 for MSTD, respectively. For HicSeg, we set the maximum 

number of boundary points (Maxk=chromosome length/850kb) and data distribution (distrib=’G’) 

respectively. Based on the above parameter settings, all four methods identify TADs with nearly 

identical domain scales (Table S5). 

Data and software availability  

MSTD (version 0.0.2) is free, open source software under MIT License (OSI-compliant), is 

implemented in python3.6, and is freely available at https://github.com/zhanglabtools/MSTD or 

http://page.amss.ac.cn/shihua.zhang/software.html.  

All datasets in this manuscript are public datasets. Their available link addresses are placed on 

Supplementary information.  
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Figure legends 

 

Figure 1. Illustration of MSTD for detecting TADs and PTADs in a symmetric and 

asymmetric matrix respectively. (A, B) Examples of TADs 
 1 2, , , KD D D

 and PTADs
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 1 2, , , LN N N
. The color depth represents the density of domains. (C) MSTD computes two 

indexes including local density and minimum distance of higher density (MDHD) for each 

diagonal element k  in the symmetric matrix. (D) The decision graph of clustering results for 

(C). Clustering centers are marked by big dots with different colors. Starting with the centers, 

the remaining diagonal elements are assigned to the class of their MDHD element layer-by-

layer. The clustering boundaries are defined to be the outermost elements of the same class in 

the two directions. (E) MSTD computes two indexes similar to (C) for each non-zero element 

k  in the asymmetric matrix. (F) The decision graph of clustering results for (E). For the 

asymmetric matrix, MSTD employs all non-zero elements and defines the clustering boundaries 

in four directions. Noise elements were colored by black. 
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Figure 2. Illustration of PADs detected from promoter capture Hi-C datasets. (A) Examples 

of PADs detected by MSTD with 100T   (blue) and 200T  (red). (B) Comparison of the 

average contact frequency of intra-PADs and inter-PADs in 17 human primary blood cell types 

with 100T  . 
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Figure 3. PADs are relating to epigenetic factors. (A) Enrichment analysis of seven 

epigenetic factors around boundaries and centers of PADs along PIRs in the human monocytes 

cell type. The observed and random signals are marked with red and gray colors, respectively. 

(B) Hierarchical clustering of boundaries of PADs according to their epigenetic factors. 
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Figure 4. PADs can well capture the hematopoietic tree structure with distinct expression 

features. (A) Hierarchical clustering of the 17 cell types in terms of overlapping ratio of their 

PADs. Five clusters are marked by different colors. (B) The expression level of genes within 

high (low) expression level and other domains. (C) Hierarchical clustering of the eight cell types 

in terms of the correlation of z-score of PADs expression levels. (D) The genes of high (low) 

expression domains are marked by red and green respectively across eight cell types. 
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Figure 5. Illustration of a myeloid-specific PAD and a common PAD. Both PADs appears 

within the same genomic region using monocytes cell type as an example (chr6:26001891-

27865483). Chromatin modification signals of seven epigenetic factors are shown in the 

monocytes cell type. The PADs connected with red arcs and blue arcs are a myeloid-specific 

one and a common one respectively. The image is drawn based on WashU epigenome browser 

with RefSeq gene annotations. 
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Figure 6. Illustration of multi-scale domains determined by MSTD from Hi-C datasets. (A) 

Multi-scale topological domain examples detected by MSTD with different MDHD thresholds 

(i.e., 3,10,20T  ) of chr19: 2350-2500 bins of Hi-C maps in the mouse cortex cell (40kb 
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resolution). (B) The size distribution of TADs detected by DI, TopDom, HicSeg, MSTD in three 

mouse cells (p-value<7.9 × 10−19, F-test). (C) Quality evaluation of TADs detected by the four 

methods in three cells using PCC measurements (p-value<3.0 × 10−3 except one case, T-test). 

The dark horizontal lines in boxes represent mean. The box surrounding each mean indicates 

the middle part of the data, which is the range from the 15th to 85th percentile. (D) Computing 

time of the four methods for domain detection across mouse ESC, NPC and Neurons cells. 
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Figure 7. TADs are strongly related to epigenetic patterns and expression features. (A) 

The enrichment analysis of architectural protein CTCF, histone modifications, RNA Polymerase 

II, DNase-seq, EP300 elements and expressed genes around the boundaries of TADs identified 

by MSTD in mouse ES cell. (B) The enrichment analysis of housekeeping (HK) exons, HK 

genes and TSS of protein coding genes of hg19 RefSeq in GENCODE database in the 

boundaries of TADs identified by MSTD in human ES cell. 
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