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Abstract:15

Should we build our own phylogenetic trees based on gene sequence data, or can we simply use16

available synthesis phylogenies? This is a fundamental question that any study involving a17

phylogenetic framework must face at the beginning of the project. Building a phylogeny from18

gene sequence data (purpose-built phylogeny) requires more e�ort and expertise than subsetting19
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an already available phylogeny (synthesis-based phylogeny). If phylogenetic diversity estimates20

based on these two types of phylogenies are highly correlated, using readily available21

synthesis-based phylogenies is justi�ed for comparing phylogenetic diversity among communities.22

However, a comparison of how these two approaches to building phylogenetic trees in�uence the23

calculation of phylogenetic diversity has not been explicitly tested. We generated three24

purpose-built phylogenies and their corresponding synthesis-based trees (two from Phylomatic25

and one from the Open Tree of Life). We then used a simulation approach to generate 100026

communities with a �xed number of species per site and compared the e�ects of di�erent trees on27

estimates of phylogenetic alpha and beta diversity using Spearman’s rank-based correlation and28

linear mixed models. Synthesis-based phylogenies generally over-estimated phylogenetic diversity29

when compared to purpose-built ones. However, their resulting measures of phylogenetic diversity30

were highly correlated (Spearman’s r > 0.8 in most cases). Mean pairwise distance (both alpha and31

beta) is the index that is most robust to the di�erences in tree construction that we tested.32

Measures of phylogenetic diversity based on the Open Tree of Life showed the highest correlation33

with measures based on the purpose-built phylogenies. For comparing phylogenetic diversity34

among communities, our results justify taking advantage of recently developed and continuously35

improving synthesis trees such as the Open Tree of Life.36

Key words: alpha diversity, beta diversity, community phylogenetic structure, open tree of life,37

phylogenetic diversity, purpose-built phylogeny, synthesis tree.38

Introduction39

Phylogenies describe the evolutionary history of species and provide important tools to study40

ecological and evolutionary questions (Baum and Smith 2012). Recently, phylogenies have been41

used to better understand patterns of community assembly. The phylogenetic structure of42

ecological communities can lend insight into the processes by which local communities assemble43
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from regional species pools (Webb et al. 2002). For example, if closely related species are more44

likely to co-occur in the same habitats, we might suspect that these species share traits that allow45

them to have a positive growth rate under the environmental conditions in these habitats. To test46

whether closely related species are more or less likely to co-occur, one common approach is to47

calculate the phylogenetic diversity of communities and then compare the observed phylogenetic48

diversity with those expected by chance through di�erent null models. There is a growing body of49

literature using this community phylogenetic approach, documenting the phylogenetic structure50

of ecological communities across taxa and scales (Webb et al. 2002, Cavender-Bares et al. 2006,51

Helmus et al. 2007, Vamosi et al. 2009, Cardillo 2011, Smith et al. 2014, Li et al. 2017, Marx et al.52

2017).53

As an important facet of biodiversity, phylogenetic diversity (Faith 1992) also plays a crucial role in54

conservation biology by complementing more traditional taxonomic measures of biodiversity (e.g.,55

species richness). For example, two communities can have the same number of species but di�er56

drastically in their phylogenetic diversity depending on relatedness of the constituent species. The57

community with higher phylogenetic diversity, representing taxa more distantly related to each58

other, is expected to be more stable and productive given its greater evolutionary potential to59

adapt to changing environmental conditions (Forest et al. 2007, Maherali and Klironomos 2007,60

Lavergne et al. 2010). Therefore, all else being equal, a community with higher phylogenetic61

diversity should have higher conservation priority.62

The information gained from phylogenetic diversity analyses are only as good as the species63

composition data and the phylogenies from which they are generated. In this manuscript, we64

explore how tree generation a�ects these phylogenetic diversity metrics. Generally, ecologists and65

evolutionary biologists use two common approaches to build phylogenies for community66

phylogenetic analyses. The �rst approach is for a researcher to generate his/her own phylogenies67

for a set of target species based on gene sequence data. We refer to such phylogenies as68

purpose-built phylogenies. The second approach is to derive phylogenies based on available69
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synthesis trees, such as the Open Tree of Life1, or classi�cations, such as the Angiosperm70

Phylogeny Group (APG IV et al. 2016), by pruning or sampling, respectively, from the resource so71

that the phylogeny contains only the target species. We refer to such phylogenies as72

synthesis-based phylogenies. To a certain extent, one can argue that a synthesis tree could be a73

purpose-built tree for a larger set of species, but the sources for deriving the synthesis-based trees74

vary in scope, methodology, assumptions, and content (see Materials and Methods for further75

description of source trees for synthesis-based phylogenies). From a researcher perspective, a76

purpose-built phylogeny is a major undertaking but o�ers potential to utilize taxonomic and77

phylogenetic expertise often needed in order to successfully construct trees. Synthesis trees, as78

compilations of peer-reviewed phylogenetic hypotheses, o�er an immediately available, but79

typically less customizable output to researchers. We thus use these two terms (purpose-built and80

synthesis-based) to categorize the underlying methods and researcher cost-bene�ts to obtain81

phylogenies.82

Generating a purpose-built tree requires more e�ort and expertise than subsetting a83

well-developed phylogeny or sampling from a classi�cation. Generally, purpose-built trees are84

constructed by using newly generated sequence data and then combining those data with data85

already available on GenBank; although in many cases the researcher may simply use what is in86

GenBank. The �rst step requires gathering tissue for taxa of interest either from �eld or museum87

collections, extracting DNA from these tissue samples, and then identifying, amplifying, and88

sequencing appropriate loci. The gene regions selected are typically based on the taxa of interest89

and discipline-accepted standards. Resulting sequences are aligned in programs like MUSCLE90

(Edgar 2004). Sequences are also commonly sourced entirely or as an addition to sequence data91

already in databases like GenBank with the help of computational pipelines such as PHLAWD92

(Smith et al. 2009). Appropriate models of evolution for phylogenetic estimation are determined93

using programs like PartitionFinder (Lanfear et al. 2012) such that each gene region in a set of94

concatenated sequences can be treated separately. The most appropriate models of nucleotide95

1https://tree.opentreeo�ife.org/opentree
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evolution are used to estimate phylogenies in Maximum Likelihood (ML) and/or Bayesian96

Inference (BI) frameworks in programs like RAxML (Stamatakis 2014), MrBayes (Ronquist and97

Huelsenbeck 2003), and BEAST (Drummond and Rambaut 2007). Depending on the desired98

application, it may be necessary to impose topological constraints to ease phylogenetic inference99

or fossil constraints to scale branch lengths to time. Statistics for clade support are calculated using100

bootstrap or jack-kni�ng techniques in an ML framework, and posterior probabilities in BI.101

Despite the fact that multiple software programs are available to help automate these processes102

(e.g., phyloGenerator (Pearse and Purvis 2013), SUPERSMART (Antonelli et al. 2017)), many103

decisions at di�erent steps must be made based on expert knowledge (e.g., Which genes to select?104

How to select models? Which software program to use? How to estimate divergence time?).105

Because of the e�ort, expertise, and cost required to generate purpose-built phylogenies, many106

community phylogenetic studies use a second approach: deriving phylogenies from available107

synthesis trees. Over the past few decades, tremendous advances in computational tools and108

increasingly available genetic sequence data have led to vastly improved phylogenies for plants109

(Zanne et al. 2014), birds (Jetz et al. 2012), �shes (Rabosky et al. 2013), and mammals110

(Bininda-Emonds et al. 2007, Fritz et al. 2009). Such advances in phylogenetics have facilitated the111

synthesis of all available information to make a comprehensive tree of life on Earth (Hinchli� et al.112

2015). With these available synthesis trees and software programs such as Phylomatic (Webb and113

Donoghue 2005), ecologists can derive phylogenies for the species or communities they are114

interested in with less e�ort and limited cost. When di�erent studies use the same synthesis tree to115

derive their phylogenies, their phylogenetic diversity results are comparable. Importantly, this may116

not be the case if they use purpose-built phylogenies. In addition, these approaches may avoid117

some issues when generating phylogenies from sequence data such as taxon sampling e�ects (Park118

et al. 2018). However, the tractability of phylogenies based on synthesis trees often comes with the119

cost of decreased resolution (e.g., increase in polytomies) of the resulting phylogenies compared120

with purpose-built ones; such trees also have taxonomic gaps, which are often �lled using existing121

classi�cations to become comprehensive.122
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Previous studies have demonstrated that most phylogenetic diversity metrics are robust to123

terminal polytomies (Swenson 2009, Patrick and Stevens 2014, Boyle and Adamowicz 2015). These124

studies, however, used simulated phylogenies or compared di�erent posterior purpose-built125

phylogenies. Therefore, they provided little practical advice about selecting between purpose-built126

and synthesis-based phylogenies for ecological studies. In this study, we compared phylogenetic127

diversity metrics calculated from purpose-built phylogenies and corresponding phylogenies128

derived from three commonly used sources. It is important to note that we do not treat the129

purpose-built phylogenies as a gold standard and we recognize that sampling bias of both taxa and130

genes, combined with variation introduced through the tree-building process (e.g., tree131

reconstruction methods, assessment of support, etc.), can compromise the accuracy of132

purpose-built phylogenies. However, these issues – and others – apply also to the source trees133

used for synthesis-based phylogenies, although perhaps at di�erent scales. Our aim here is to134

quantify the in�uence of the two tree construction techniques on measures of phylogenetic135

diversity that are commonly employed in the rapidly growing �eld of community phylogenetics.136

Materials and Methods137

Purpose-built phylogenies138

We collected three “purpose-built” phylogenies from published and unpublished sources. The �rst139

purpose-built phylogeny is for 540 plant taxa in the globally critically imperiled pine rockland140

ecosystem in South Florida, USA (Trotta et al. 2018). The second phylogeny consists of 1,064 alpine141

plant taxa in France (Marx et al. 2017). The third purpose-built phylogeny has 1,548 plant species142

with distributions in Florida, USA (Allen et al. in review). All three phylogenies were estimated143

from sequence data and were time-calibrated (i.e., chronograms). When using time-calibrated144

phylogenies, phylogenetic diversity measures the amount of evolution in time-units, and this is the145

measure we focus on here. For details about phylogeny building processes, see the Appendix.146
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Commonly available phylogenies147

For each of the three purpose-built phylogenies, we generated four phylogenies based on di�erent148

sources with which to compare phylogenetic alpha and beta diversity. The �rst two were149

generated using Phylomatic v4.2 (Webb and Donoghue 2005) using two di�erent backbone trees:150

R20120829 (APG III 2009) and zanne2014 (Zanne et al. 2014). We call the �rst phylogeny151

tree_apg and the second one tree_zanne. The phylogeny tree_zanne has branch lengths152

because the backbone tree zanne2014 was inferred from seven gene regions for >32k plant species153

and was time-calibrated using ‘congrui�cation’ (Eastman et al. 2013). In contrast, the phylogeny154

tree_apg has no branch lengths and is based, not on the result of a phylogenetic analysis per se,155

but on a series of phylogenetic analyses as summarized by the Angiosperm Phylogeny Group III156

(2009). APG classi�cation now updated as APG IV (2016), but Phylomatic uses APG III. To add157

branch lengths, we used the bladj algorithm in Phylocom (Webb et al. 2008) to convert the tree to158

a chronogram using a set of the minimum node ages given by Wikström et al. (2001).159

The third phylogeny was derived from the Open Tree of Life (Hinchli� et al. 2015), a recent160

comprehensive phylogeny for ~ 2.3 million named species of life, including all eukaryotes, Archaea,161

and Bacteria. This phylogeny, which we call tree_otl, is a supertree constructed from available162

source trees, with missing species added based on taxonomy; this resulting tree therefore contains163

many polytomies and also did not include branch lengths. To calculate branch lengths, we �rst164

identi�ed descendants for each of the internal nodes in tree_otl and then searched for their165

divergence time in the TimeTree of Life database (Kumar et al. 2017). The TimeTree database was166

compiled based on 3,163 studies and 97,085 species (as of October 10, 2017). For a pair of species167

included in this database, we extracted their average divergence time from all previous studies.168

Using the divergence date of internal nodes from the TimeTree database, we then determined169

branch lengths of tree_otl using Phylocom (Webb et al. 2008) and its bladj function. Recently,170

an updated phylogeny with branch lengths for seed plants based on the Open Tree of Life was171

published (Smith and Brown 2018); however, we did not use this seed plant phylogeny as a source172
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because it contains only seed plants, and our purpose-built phylogenies also contain other clades173

of vascular plants.174

The fourth phylogeny was a random coalescent phylogeny generated using the rcoal function175

from the R package ape (Paradis et al. 2004). The random tree was then scaled to have a root age176

that was the average root age of tree_apg, tree_zanne, and tree_otl. Results based on the177

random phylogeny should not correlate with those based on other phylogenies.178

Not every species from the purpose-built phylogenies was found in all of the synthesis phylogenies.179

For the pine rockland phylogeny, 514 out of 540 species (95.2%) were found in all phylogenies. For180

the alpine plant phylogeny, 994 out of 1064 species (93.4%) were found in all phylogenies. For the181

Florida �ora phylogeny, 1472 out of 1548 species (95.1%) were found in all phylogenies. Therefore,182

we pruned the purpose-built phylogenies to have the same species as their corresponding183

synthesis tree. In practice, one could insert species that were missing from the derived phylogeny184

as polytomies in the same genus, so that all species could be included in the analysis.185

Generation of community assemblages186

For each purpose-built phylogeny, we simulated 1000 presence/absence site-by-species matrices.187

Each matrix has 30 sites, with species within each site randomly selected from the phylogeny tips188

representing the species pool. We �xed species richness of each site to be 50 to remove any e�ects189

of species richness on the phylogenetic diversity measures. Without setting all sites to have the190

same number of species, results based on di�erent phylogenies will correlate with each other. For191

example, it is likely that results from tree_random will be highly correlated with results from192

other phylogenies (Appendix Fig. A1). This is because most phylogenetic diversity metrics193

correlate with species richness, which, in turn, will lead to correlations among them and confound194

the comparisons of e�ects of phylogeny per se on the measurement of phylogenetic diversity.195

Removing the constraint of using the same species richness does not a�ect our results and196
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conclusions (Appendix Fig. A1, A2). In our current setting, the maximum total number of species197

across 30 sites is 30 × 50 = 1500, which is similar to the number of tips in the largest purpose-built198

phylogeny in our study. We selected species from the species pool randomly because previous199

studies demonstrated that di�erent approaches to species selection give similar results (Swenson200

2009).201

Phylogenetic diversity measurements202

For each site-by-species matrix, we calculated alpha and beta phylogenetic diversity for each of the203

phylogenies using indices that are commonly used in community phylogenetic studies. For204

phylogenetic alpha diversity, we used Faith’s PD (PD), mean pairwise distance (MPD), and mean205

pairwise distance between the closest relatives (MNTD). PD calculates the sum of the branch206

lengths of all species present in an assemblage (Faith 1992). We did not include the root of the207

phylogeny when calculating PD. MPD calculates the average pairwise distance between all species,208

and MNTD calculates the average pairwise distance between the closest relatives in an assemblage209

(Webb et al. 2002). We selected these three metrics for phylogenetic alpha diversity among the210

myriad of metrics available because they are most commonly used and represent di�erent but211

complementary information about phylogenetic structure of communities (Miller et al. 2017,212

Tucker et al. 2017).213

For phylogenetic beta diversity, we applied UniFrac (Unif), inter-assemblage MPD (MPD_beta),214

inter-assemblage MNTD (MNTD_beta), and phylogenetic community dissimilarity (PCD) to all215

possible unique combinations of assemblage pairs. Unif is derived from the Jaccard dissimilarity216

index and calculates the total branch length unique to each assemblage relative to the total branch217

length of all species in a pair of assemblages (Lozupone and Knight 2005). Therefore, it measures218

the fraction of evolutionary history unique to each assemblage. MPD_beta and MNTD_beta were219

derived from MPD and MNTD, respectively, but instead of comparing species within the same220

assemblage, they compare species from two di�erent assemblages (Webb et al. 2008). PCD221
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measures pairwise phylogenetic dissimilarity between assemblages by asking how much of the222

variance of values of a hypothetical trait among species in one assemblage can be predicted by the223

values of species from another. PCD is independent of species richness of the pair of assemblages224

and has relatively higher statistical power than other common metrics (Ives and Helmus 2010).225

As PD and MNTD are both correlated with species richness (Miller et al. 2017), null models that226

retain species composition while randomly shu�ing tips of the phylogeny are commonly used to227

standardize phylogenetic diversity results. Despite the fact that MPD is independent of species228

richness, its variance changes relative to species richness (Miller et al. 2017). Therefore, null229

models are also frequently applied to MPD. Using the null model, standardized e�ect size (SES) for230

each metric can be calculated as SES =
Xobs−mean(Xnull )

sd(Xnull )
, where Xobs is the observed value, and Xnull231

are the n values calculated based on null models. Recently, analytic solutions for the SES of232

phylogenetic alpha diversity metrics were developed (Tsirogiannis and Sandel 2016). The analytic233

solutions eliminate the need for computationally expensive simulations used to calculate SES234

values, especially for studies in high-diversity systems. In our simulations, because all sites have235

the same species richness, we expected that the SES values based on the analytic solutions would236

have the identical results as the observed phylogenetic diversity values for the statistical analyses237

we conducted (correlation and linear mixed models, see the Statistical analyses section below). Our238

simulations con�rmed this expectation (Appendix Fig. A3-A6). No analytic solutions for the SES of239

Unif, MNTD_beta, and PCD are available. However, the pairwise beta diversity metrics share the240

same core formula with their corresponding alpha diversity metrics. We thus expect that the241

results based on SES of these beta diversity metrics will be the same as those based on the observed242

diversity values in our simulations. Given the similarity in results between raw and standardized243

phylogenetic alpha diversity measures and the large computational burden of calculating SES for244

phylogenetic beta diversity metrics, we did not include the results for SES in this study.245
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Statistical analyses246

We have two primary goals. First, we want to test the correlation between phylogenetic diversity247

values calculated from purpose-built phylogenies and those calculated from synthesis phylogenies.248

Second, we want to investigate whether phylogenetic diversity calculated from synthesis249

phylogenies over- or under-estimates phylogenetic diversity when compared to purpose-built250

phylogenies. For the �rst goal, we calculated the average Spearman’s rank-based measure of the251

correlation between phylogenetic diversity values from all phylogenies across the 1000252

simulations. We used rank-based correlation because it is the relative phylogenetic diversity, not253

the absolute one, that we are interested in. For the second goal, we used Linear Mixed Models254

(LMMs) with phylogenetic diversity values from the purpose-built phylogeny as the response255

variable, the phylogenetic diversity values from one of the synthesis phylogenies as the predictor,256

and the simulation dataset as the random term. We scaled the diversity values to have mean zero257

and standard deviation one before �tting the models. We also forced the regression line through258

the origin. If the slope of the regression line is signi�cantly di�erent from zero, then phylogenetic259

diversity based on purpose-built phylogenies and synthesis phylogenies is highly correlated.260

Furthermore, if the slope is higher/lower than one, then the phylogenetic diversity based on the261

synthesis phylogenies under-/over-estimates phylogenetic diversity. For pairwise beta diversity,262

because of the large number of samples across all 1000 simulations ((302 ) × 1000 = 435,000), we263

randomly selected 100 simulations on which to conduct LMMs. In addition, for pairwise beta264

diversity, because one site can be compared with all other sites, the beta diversity values are not265

independent. To account for this, we included datasets, site1 within each dataset (the �rst site in266

the site pair), and site2 within each site (the other site in the site pair) as random terms in the267

LMMs (cf. Li and Waller 2017). The work�ow of this study is outlined in Fig. 1. All analyses were268

conducted with R v3.4.3 (R Core Team 2017).269

11

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/370353doi: bioRxiv preprint 

https://doi.org/10.1101/370353
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 1: Work�ow to assess e�ects of commonly used synthesis phylogenies on phylogenetic
diversity estimations. Abbreviations: APG, Angiosperm Phylogeny Group; OTL, Open Tree of
Life; PD, Faith’s Phylogenetic diversity; MPD, Mean pairwise distance; MNTD, Mean nearest taxon
distance; Unif, Unifraction; PCD, Phylogenetic community dissimilarity.
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Results270

Alpha diversity271

Phylogenetic alpha diversity (PD, MPD, and MNTD) values calculated with di�erent phylogenies272

(tree_purpose, tree_apg, tree_zanne, and tree_otl) were highly correlated. The median273

Spearman’s correlation of the 1000 simulations was larger than 0.63 across all comparisons (p <274

0.05 for all simulations and comparisons; Fig. 2). In most cases, the median Spearman’s correlation275

was larger than 0.85, especially for PD and MPD. Therefore, PD and MPD were more robust to276

varying the source of the phylogeny than MNTD. Across all comparisons, diversity values based277

on tree_otl showed the highest correlations with those based on tree_purpose, with an average278

correlation across all comparisons of 0.902. As expected, diversity values based on the random279

phylogeny tree_random were not correlated with diversity values based on other phylogenies,280

with median Spearman’s correlations close to zero (Fig. 2).281

The slopes of linear mixed models (LMM) were all less than one (Table 1), suggesting that diversity282

values based on synthesis phylogenies generally over-estimated the diversity values based on the283

purpose-built phylogenies. The PD metrics based on the Open Tree of Life phylogeny (tree_otl)284

had estimates closest to those calculated from the purpose-built phylogenies (Table 1).285

Beta diversity286

The phylogenetic beta diversity results (Un�, MPD_beta, MNTD_beta, and PCD) show a similar287

pattern to the alpha diversity results. Beta diversity of community pairs based on di�erent288

phylogenies was also highly correlated, with the median Spearman’s correlation from the 1000289

simulations greater than 0.69 across all comparisons (Fig. 3). Overall, phylogenetic beta diversity is290

more sensitive to the source of the phylogeny than alpha diversity. MPD_beta is the most robust291

beta diversity metric to the source of the phylogeny, followed by MNTD_beta, Unif, and PCD.292

13

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 27, 2018. ; https://doi.org/10.1101/370353doi: bioRxiv preprint 

https://doi.org/10.1101/370353
http://creativecommons.org/licenses/by-nc-nd/4.0/


0.84

0.96 0.84

0.91 0.8 0.92

0.01 0 0.01 0.03

0.88

0.99 0.87

0.96 0.88 0.95

0.05 0.04 0.04 0.06

0.76

0.88 0.78

0.78 0.72 0.8

0 −0.01 0 0.01

0.85

0.93 0.79

0.9 0.78 0.88

−0.02 −0.03 0 −0.03

0.95

0.94 0.85

0.99 0.95 0.95

0 0 −0.01 0

0.7

0.86 0.63

0.78 0.63 0.74

−0.01 −0.02 −0.02 −0.01

0.9

0.85 0.83

0.88 0.85 0.92

0.01 0.02 0 0.01

0.95

0.89 0.86

0.94 0.91 0.97

0 0 −0.02 −0.01

0.84

0.81 0.78

0.78 0.77 0.82

0.02 0.01 0.02 0.02

Pine (540 sp) Alpine (1064 sp) FL (1548 sp)

P
D

M
P

D
M

N
T

D

tre
e_

pu
rp

os
e

tre
e_

ap
g

tre
e_

ot
l

tre
e_

za
nn

e

tre
e_

pu
rp

os
e

tre
e_

ap
g

tre
e_

ot
l

tre
e_

za
nn

e

tre
e_

pu
rp

os
e

tre
e_

ap
g

tre
e_

ot
l

tre
e_

za
nn

e

tree_apg

tree_otl

tree_zanne

tree_random

tree_apg

tree_otl

tree_zanne

tree_random

tree_apg

tree_otl

tree_zanne

tree_random

−1.0

−0.5

0.0

0.5

1.0
Correlation

Median correlation based on 1000 simulations

Figure 2: Median correlations of phylogenetic alpha diversity values based on di�erent phylogenies.
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Table 1: Slopes based on linear mixed models (LMMs). Within the model, the response variable is the
phylogenetic alpha diversity values based on the purpose-built phylogeny; the predictor is the phy-
logenetic alpha diversity values based on one of the synthesis phylogenies (tree_apg, tree_zanne,
tree_otl, and tree_random). Therefore, slopes less than one indicate overestimations. Numbers
within parentheses are the 95% con�dence intervals for the slopes.

index dataset tree_apg tree_zanne tree_otl tree_random

PD Pine (540 sp) 0.843 (0.837, 0.849) 0.917 (0.913, 0.922) 0.971 (0.969, 0.974) -0.001 (-0.013, 0.01)
PD Alpine (1064 sp) 0.854 (0.848, 0.86) 0.915 (0.91, 0.919) 0.937 (0.933, 0.941) -0.022 (-0.034, -0.01)
PD FL (1548 sp) 0.92 (0.916, 0.924) 0.891 (0.886, 0.896) 0.871 (0.865, 0.876) 0.006 (-0.005, 0.018)
MPD Pine (540 sp) 0.891 (0.885, 0.896) 0.972 (0.969, 0.974) 0.996 (0.995, 0.997) 0.047 (0.036, 0.059)
MPD Alpine (1064 sp) 0.957 (0.954, 0.96) 0.997 (0.997, 0.998) 0.941 (0.937, 0.945) 0.004 (-0.008, 0.015)
MPD FL (1548 sp) 0.962 (0.958, 0.965) 0.95 (0.946, 0.953) 0.895 (0.889, 0.9) -0.002 (-0.014, 0.009)
MNTD Pine (540 sp) 0.78 (0.773, 0.788) 0.787 (0.78, 0.794) 0.897 (0.892, 0.902) 0.006 (-0.006, 0.017)
MNTD Alpine (1064 sp) 0.713 (0.705, 0.721) 0.794 (0.787, 0.801) 0.874 (0.869, 0.88) -0.016 (-0.028, -0.004)
MNTD FL (1548 sp) 0.856 (0.85, 0.862) 0.797 (0.79, 0.804) 0.831 (0.824, 0.837) 0.03 (0.018, 0.041)

Again, PD metrics based on tree_otl showed the highest correlation with metrics based on the293

purpose-built tree, followed by tree_zanne and tree_apg. Beta diversity values based on294

tree_random did not correlate with values based on any other phylogeny.295

The slopes of LMMs were generally less than one (Table 2), suggesting over-estimates of beta296

diversity from the synthesis-based phylogenies compared with the purpose-built phylogenies.297

However, slopes for MPD_beta values based on tree_otl were all greater than one, suggesting298

that beta PD metrics were under-estimated when compared to those calculated from the299

purpose-built trees. Metrics based on tree_zanne for the �ora of Florida dataset were also300

under-estimated (Table 2). For the other beta diversity metrics (i.e., Unif, MNTD_beta, and PCD),301

tree_otl generally gave results closer to those based on the purpose-built trees than did the other302

synthesis-based phylogenies.303

Discussion304

We examined how di�erent phylogenies, purpose-built and synthesis-based, in�uenced305

phylogenetic alpha and beta diversity measures commonly used in community phylogenetic306
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Figure 3: Median correlations of phylogenetic beta diversity values based on di�erent phylogenies.
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Table 2: Slopes based on linear mixed models (LMMs). Within the model, the response variable
is the phylogenetic beta diversity values based on the purpose-built phylogeny; the predictor
is the phylogenetic beta diversity values based on one of the synthesis phylogenies (tree_apg,
tree_zanne, tree_otl, and tree_random). Therefore, slopes less than one indicate overestima-
tions, and slopes greater than one are underestimates. Numbers within parentheses are the 95%
con�dence intervals for the slopes.

index dataset tree_apg tree_zanne tree_otl tree_random

Unif Pine (540 sp) 0.823 (0.816, 0.83) 0.791 (0.785, 0.797) 0.87 (0.866, 0.875) 0.054 (0.04, 0.067)
Unif Alpine (1064 sp) 0.806 (0.798, 0.815) 0.87 (0.863, 0.876) 0.895 (0.89, 0.9) 0.063 (0.052, 0.074)
Unif FL (1548 sp) 0.871 (0.865, 0.877) 0.792 (0.785, 0.8) 0.815 (0.809, 0.822) 0.065 (0.052, 0.078)
MPD_beta Pine (540 sp) 0.343 (0.336, 0.35) 0.967 (0.959, 0.975) 1.249 (1.234, 1.263) 0.011 (0.004, 0.017)
MPD_beta Alpine (1064 sp) 0.801 (0.794, 0.807) 0.977 (0.975, 0.98) 1.12 (1.104, 1.137) 0.002 (-0.002, 0.006)
MPD_beta FL (1548 sp) 0.788 (0.78, 0.797) 1.347 (1.331, 1.363) 1.815 (1.787, 1.842) -0.003 (-0.007, 0.001)
MNTD_beta Pine (540 sp) 0.855 (0.846, 0.864) 0.854 (0.846, 0.862) 0.931 (0.926, 0.937) 0.049 (0.038, 0.061)
MNTD_beta Alpine (1064 sp) 0.891 (0.883, 0.9) 0.948 (0.941, 0.955) 0.94 (0.935, 0.945) 0.062 (0.051, 0.073)
MNTD_beta FL (1548 sp) 0.788 (0.782, 0.793) 0.759 (0.752, 0.765) 0.752 (0.746, 0.758) 0.035 (0.024, 0.045)
PCD Pine (540 sp) 0.855 (0.847, 0.864) 0.836 (0.827, 0.846) 0.876 (0.869, 0.884) 0.083 (0.07, 0.095)
PCD Alpine (1064 sp) 0.824 (0.816, 0.832) 0.909 (0.9, 0.918) 0.905 (0.898, 0.911) 0.076 (0.065, 0.088)
PCD FL (1548 sp) 0.805 (0.798, 0.812) 0.755 (0.747, 0.763) 0.727 (0.718, 0.735) 0.052 (0.039, 0.066)

analyses. We found two main results. First, the synthesis phylogenies generally over-estimated307

phylogenetic diversity compared with purpose-built phylogenies. This is not surprising because308

synthesis phylogenies generally have higher proportions of polytomies than purpose-built ones,309

which, in turn, leads to larger distances between species within these polytomies. This result310

agrees with Boyle and Adamowicz (2015) and Qian and Zhang (2016) but contradicts Swenson311

(2009), who found that phylogenies with more polytomies under-estimated phylogenetic diversity.312

Second, phylogenetic diversity values calculated from synthesis trees were highly correlated with313

those based on purpose-built phylogenies, even if they were over-estimated. These results hold for314

both alpha and beta diversity and for phylogenies with di�erent numbers of tips. While our study315

focuses on plants, we expect that our results will generalize to any taxonomic group. Therefore,316

phylogenies derived from synthesis trees can provide similar results to purpose-built phylogenies317

while saving e�ort and time when quantifying and comparing phylogenetic diversity of318

communities.319

One main reason for this conclusion is that, as ecologists and conservation biologists, we mostly320

care about the relative diversity among communities instead of their absolute diversity. For321
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example, for a set of communities within one region, we may be interested in which communities322

have the highest/lowest phylogenetic diversity. The absolute phylogenetic diversity of each323

community does not mean much without comparing it to other communities. Because324

phylogenetic values based on di�erent phylogenies are highly correlated with each other, the325

information available for community phylogenetic questions does not di�er much between326

approaches. Even though such synthesis phylogenies may over-estimate absolute phylogenetic327

diversity for communities, the relative phylogenetic diversity among communities will be similar328

to those calculated from typically better resolved but less accessible phylogenies. Based on the329

information provided by relative values of phylogenetic diversity, the potential improved330

resolution of purpose-built trees for calculating the absolute PD may not be worth the e�ort for331

community phylogenetic questions.332

Our �nding that phylogenetic diversity metrics are relatively insensitive to the phylogenies from333

which they are derived has been supported by other recent studies. For example, using simulated334

fully bifurcating and gradually unresolved phylogenies, Swenson (2009) found that phylogenetic335

diversity measures are generally robust to the uncertainty of the phylogenies, especially if the336

uncertainty is concentrated in recent nodes of the phylogeny. Using multiple posterior337

phylogenies of bats, Patrick and Stevens (2014) rearranged branches across these phylogenies and338

also found that phylogenetic diversity measures are robust to the phylogenies from which they are339

calculated. More recently, Cadotte (2015) transformed a phylogeny with di�erent evolution models340

and found that phylogenetic diversity measures are insensitive to the branch lengths of the341

phylogeny; getting the topology right is more important when calculating phylogenetic diversity.342

Qian and Zhang (2016) found similar phylogenetic diversity values of the angiosperm tree �ora of343

North America based on phylogenies derived from Zanne et al. (2014) and Phylomatic (Webb and344

Donoghue 2005). These studies, however, only focused on alpha diversity. Our study extends the345

literature by also examining the e�ects of phylogenies on beta diversity. We found the same346

pattern for beta diversity and alpha diversity. Taken together, a general pattern emerges:347

community phylogenetic alpha and beta diversity metrics are robust to reasonably good modern348
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phylogenies.349

Why are phylogenetic diversity values from purpose-built and synthesis phylogenies highly350

correlated? There are two possible reasons. First, both purpose-built and synthesis phylogenies351

likely share a similar systematic backbone and empirical resources such as genes, taxonomies, and352

expert knowledge. This guarantees that phylogenetic diversity based on these phylogenies will not353

be dramatically di�erent. Second, phylogenetic diversity metrics aggregate (by summing or354

averaging) all information into one value for each site, which could help bu�er most uncertainty355

and further mask most of the di�erences between di�erent phylogenies.356

Our results should encourage ecologists to increasingly include phylogenetic analyses in357

community ecology studies given the growing accessibility of synthesis phylogenies and the358

robustness of phylogenetic diversity measures based on them. However, our results should not359

discourage the construction of purpose-built phylogenies, which are clearly valuable for many360

ecological and evolutionary questions. This is especially the case for purpose-built trees361

constructed from local DNA samples. The sequencing of species in a given community can yield362

data for species that have never been sequenced before. These new sequences can then be363

incorporated into synthesis trees, improving their resolution for future research. Direct364

sequencing of samples collected for a community is also important when the community contains365

un-described (Pons et al. 2006) or cryptic species (Hebert et al. 2004). Furthermore, for many366

taxonomic groups, synthesis trees are not available or are far too poorly sampled, and constructing367

purpose-built trees is the only approach possible for community phylogenetic analyses.368

Conclusion369

Community phylogenetics is rapidly becoming an important component of community ecology,370

macroecology, and biodiversity conservation (Webb et al. 2002, Vamosi et al. 2009). For371

calculations and comparisons of phylogenetic diversity of communities, an important question372
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arises: can we derive phylogenies from already-available synthesis trees, or should we generate373

our own purpose-built phylogenies? Our results suggest that phylogenies derived from common374

synthesis trees over-estimate phylogenetic diversity metrics when compared to purpose-built trees,375

but values of phylogenetic diversity are highly correlated with purpose-built metrics. Particularly,376

the Open Tree of Life, which includes all major phylogenetic groups (e.g. plants, birds, �shes,377

mammals, fungi, Archaea, Bacteria, etc.), produced the most similar values of phylogenetic378

diversity when compared to metrics derived from purpose-built trees. Furthermore, a recently379

updated Open Tree of Life phylogeny for seed plants has branch lengths calculated based on380

molecular data (Smith and Brown 2018). With new data and studies continuously being integrated381

into synthesis trees such as the Open Tree of Life, these resources are poised to continue to382

improve rapidly. As a result, for comparing phylogenetic diversity among communities, we383

recommend taking advantage of recent well-developed products such as the Open Tree of Life.384

Data Accessibility385

All phylogenies and R code used will be uploaded to �gshare upon acceptance.386
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