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The gut microbiome is now widely recognized as a dynamic ecosystem that plays an 10 
important role in health and disease1. While current sequencing technologies make it 11 
possible to estimate relative abundances of host-associated bacteria over time2, 3, the 12 
biological processes governing their dynamics remain poorly understood. Therefore, as in 13 
other ecological systems4, 5, it is important to identify quantitative relationships describing 14 
global aspects of gut microbiota dynamics. Here we use multiple high-resolution time series 15 
data obtained from humans and mice6-8 to demonstrate that despite their inherent 16 
complexity, gut microbiota dynamics can be characterized by several robust scaling 17 
relationships. Interestingly, these patterns are highly similar to those previously observed 18 
across diverse ecological communities and economic systems, including the temporal 19 
fluctuations of animal and plant populations9-12 and the performance of publicly traded 20 
companies13. Specifically, we find power law relationships describing short- and long-term 21 
changes in gut microbiota abundances, species residence and return times, and the 22 
connection between the mean and variance of species abundances. The observed scaling 23 
relationships are altered in mice receiving different diets and affected by context-specific 24 
perturbations in humans. We use these macroecological relationships to reveal specific 25 
bacterial taxa whose dynamics are significantly affected by dietary and environmental 26 
changes. Overall, our results suggest that a quantitative macroecological framework will be 27 
important for characterizing and understanding complex dynamics of microbial 28 
communities. 29 
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The dynamics of gut bacteria can now be monitored with high temporal resolution using 16S 31 
rRNA amplicon sequencing14. Recent longitudinal studies have revealed significant day to day 32 
variability and marked long-term stability of gut microbiota6, 7, 15, 16. Several studies have also 33 
identified important factors, such as host diet and lifestyle, that contribute to temporal changes in 34 
species abundances7, 8, 17, 18. However, in contrast to other macroscopic ecological communities, 35 
statistical relationships describing gut microbiota dynamics are not well understood. While ideas 36 
from theoretical ecology have been applied to understand static patterns of gut microbial diversity 37 
and species abundance distributions19, 20, a comprehensive, quantitative analysis of 38 
macroecological dynamics is currently missing. Therefore, we sought to investigate dynamical 39 
relationships in the gut microbiome using several of the longest and most densely-sampled 40 
longitudinal studies in humans and mice6-8. The considered data spanned three independent 41 
investigations, utilizing different sample collection procedures and sequencing protocols; 42 
bacterial abundances in these studies were tracked daily for several weeks in mice and up to a 43 
year in humans. Our analysis included four healthy human individuals (A, B, M3, F4) and six 44 
individually-housed mice fed either a low-fat, plant polysaccharide (LFPP) diet or a high-fat, 45 
high-sugar (HFHS) diet. We use these data to explore the short-term abundance changes and 46 
long-term drift of gut microbiota, species residence and return times, and the temporal variability 47 
of individual bacterial taxa across humans and different mouse diet groups. Collectively, our 48 
study provides a comprehensive characterization of macroecological dynamics in the gut 49 
microbiome.  50 
 51 
Following a quantitative framework used previously to examine the ecological dynamics of 52 
animal populations9, 10, we first investigated short-term temporal fluctuations of gut microbiota 53 
abundances. One of the most basic descriptors of bacterial population dynamics is the daily 54 
abundance change, defined as the logarithm of the ratio of consecutive daily abundances, 55 
����� � log �
��� � 1�/
�����, where 
�  is the relative abundance of a bacterial operational 56 
taxonomic unit (OTU) 
 at time �. Defined in this way, ���� quantifies the rate of change of OTU 57 
abundances averaged over the course of a day. Interestingly, we found that the probability of � 58 
averaged over all OTUs closely followed a Laplace distribution (Equation 1), with a characteristic 59 
tent shape in log-transformed probabilities (Fig. 1a-c). 60 
 61 
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Laplace distributions were highly similar within and between individual humans, and between 62 
humans and mice (parameter � � 0.73 �  0.07, � � 0.82 �  0.1; mean � s.d. across all humans 63 
and LFPP mice respectively), indicating the universality of these relationships. Moreover, the 64 
Laplace distribution described well the daily abundance changes of every gut microbiome time 65 
series we analyzed (Supplementary Fig. 1), including those defined at various taxonomic 66 
resolutions (Supplementary Fig. 1c). We note that the observed distributions are unlikely to arise 67 
due to species aggregation (Supplementary Fig. 1d)21, 22 or compositional nature of bacterial 68 
abundance data we use (Supplementary Fig. 3). 69 
 70 
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In contrast to the Gaussian distribution (see Supplementary Figs. 1 and 2 for model fits), which is 71 
expected when bacterial growth is affected by random multiplicative processes20, 23, the Laplace 72 
distribution indicates substantially higher probabilities for large short-term bacterial abundance 73 
fluctuations. A Laplace distribution of abundance variability may arise due to density-dependent 74 
birth and death rates in a migrating population12 or through emergence of sub-specialized 75 
environmental niches24. Nevertheless, the exact mechanisms and dynamic processes generating 76 
this distribution are currently not well-understood and need to be investigated further. The 77 
symmetry of the Laplace distribution suggests an equal probability for increases or decreases in 78 
species’ abundances, which reflects a zero-sum process due to finite resources in the gut. 79 
Interestingly, Laplace distributions have been observed across many diverse ecological and 80 
economic systems including bird communities9, 10, fish populations11, tropical rain forests12, 81 
publicly traded company sales13, and country GDPs25 (Supplementary Fig. 4a). Similar to these 82 
complex ecological and interacting systems, the gut microbiome may often exhibit sudden large-83 
scale abundance fluctuations. 84 
 85 
In many complex ecosystems, species short-term abundance fluctuations often depend on their 86 
current abundance9, 10, 13, 25. We therefore investigated the relationship between the species’ 87 
abundances and the standard deviation of daily abundance changes. The analysis revealed that the 88 
variability of daily abundance changes of gut bacteria decreased approximately linearly with 89 
increasing mean daily abundances (Fig. 1d-f). This result was not due to sampling errors 90 
associated with finite sequencing depth (Supplementary Fig. 5), and the decrease in daily 91 
abundance changes was also observed at the single OTU level (Supplementary Fig. 6). Moreover, 92 
the observed behavior was similar between human and mouse gut microbiomes (regression 93 
slopes � � �0.15 � 0.01, �0.17 � 0.03; mean � s.d. across humans and mice). Thus, likely due 94 
to the presence of more stable nutrient niches, highly abundant bacteria exhibit substantially 95 
smaller relative daily fluctuations compared to bacteria with lower abundances. 96 
 97 
 98 
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 99 
Fig. 1 | Daily changes in the abundances of gut microbiota. a-c, Daily abundance changes were defined as ����� �100 
log  �
��� � 1�/ 
�����, where 
� is the relative abundance of a given OTU 
 on day �. The distribution of � averaged 101 
over all OTUs displays a Laplace form (Equation 1), appearing as a characteristic tent shape in log-transformed 102 
probabilities. Results are shown for two individuals from different human studies (A and M3) and mice fed a low-fat 103 
plant polysaccharide-based (LFPP) diet. Laplace exponents are � = 0.83 � 0.1 for human A, � = 0.71 � 0.07 for human 104 
M3, and � = 0.82 � 0.10  for LFPP mice (mean � s.d., Methods).  Solid lines indicate fits to the data using maximum 105 
likelihood estimation (MLE). d-f, Across all OTUs, the standard deviation of daily abundance changes (��) decreases 106 
with mean daily abundance ( �� ), defined as the mean of successive log abundances, �� �  

�

�
�log�
�� � 1�� �107 

 log �
�����. Standard deviations were calculated by binning daily abundance changes by different values of �� along 108 
the x-axis. Dashed lines are least-squares fits to the data, with slopes of  � � �0.16 � 0.02 , �0.16 � 0.02  and 109 
�0.17 � 0.03 for A, M3 and LFPP mice respectively (mean � s.d., see Methods). Abundance changes in (c) and (f) 110 
were aggregated across the three mice on the LFPP diet.  111 
 112 
In addition to short-term dynamics, interesting long-term dynamical trends have also been 113 
observed across different macroscopic ecosystems9, 21, 26. To explore the long-term behavior of gut 114 
microbiota, we investigated how the mean-squared displacement (MSD) of OTU abundances 115 
�!"��Δ��$�  changed with time. Again, similar to the behavior of other diverse communities 116 
(Supplementary Fig. 4c), we found that the long-term dynamics of gut microbiota abundances 117 
could be well approximated by the equation of anomalous diffusion (Fig. 2, Supplementary Fig. 118 
7), 119 
 120 

!"��Δ��$ %  Δ���#�2�  
 121 
where & is the Hurst exponent quantifying the collective rate of abundance drift over time and 122 
therefore, the long-term stability of gut microbiota27. In comparison with normal diffusion 123 
( & � 0.5 ), a Hurst exponent of & ' 0.5  indicates a tendency for increases (decreases) in 124 
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abundances to be followed by further increases (decreases), whereas a value of & ( 0.5 indicates 125 
a higher degree of stability and a bias for abundances to revert back to their means. In contrast to 126 
short-term fluctuations of bacteria abundances, described by the Laplace distribution (Equation 1, 127 
Fig. 1), the Hurst exponent in Equation 2 quantifies the rate at which the average root mean 128 
squared displacement of abundances increases as a function of time. Both in human and mouse 129 
gut microbiomes, our analysis revealed small Hurst exponents (& � 0.09 � 0.03, & � 0.08 �130 
0.02, mean � s.d. across humans and mice). This suggests that despite overall stability15, 28, 29, gut 131 
microbiota exhibit a slow but continuous and predictable long-term abundance drift. Furthermore, 132 
while the temporal behavior of individual OTU abundances was also well-approximated by the 133 
equation of anomalous diffusion (Supplementary Fig. 8a), the distribution of Hurst exponents 134 
across individual OTUs exhibited substantial variability (Supplementary Fig. 8b). This 135 
demonstrates the heterogeneity in the stability of different gut bacterial taxa within and across 136 
hosts. We show below that the stability of different taxa can be significantly affected by 137 
environmental factors such as host dietary intake.  138 
 139 

 140 
 141 
Fig. 2 | Long-term stability of gut microbiota abundances. a-c, In humans and mice, the mean-squared displacement 142 
of log OTU abundances (����Δ���� scales with time as a power law of the form ����Δ���    Δ���. Hurst exponents are 143 
!  = 0.07 � 0.03, 0.08 � 0.02, 0.08 � 0.02  for human A, human M3 and LFPP mice respectively (mean �  s.d., 144 
Methods). The data in (c) represent an average over the three individual mice on the LFPP diet (Methods). Dashed lines 145 
indicate least-squares fits to the data.  146 
 147 
Both short and long-term dynamics of gut microbiota contribute to overall turnover in gut 148 
bacterial species. To directly investigate the dynamics of gut microbiota composition, we next 149 
calculated the distribution of residence ������  and return times ������  for individual OTUs. 150 
Following previous macroecological analyses9, 30, 31, we defined residence times as time intervals 151 
between the emergence and subsequent disappearance of corresponding OTUs; analogously, 152 
return times were defined as the intervals between disappearance and reemergence of OTUs. 153 
Again, we observed residence patterns very similar to those previously described in diverse 154 
ecological communities9, 30, 31 (Supplementary Fig. 4b). Specifically, the distributions of ����  and 155 
����  were described well by power laws (Equation 3) with exponential tails resulting from the 156 
finite length of the analyzed time series (Fig. 3, Supplementary Fig. 9a,b, Supplementary Fig. 10). 157 
 158 
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 159 
The residence times distributions were similar within and between individual human and mouse 160 
gut microbiomes (*��� � 2.3 � 0.05, *��� � 1.2 � 0.02, mean �  s.d. across humans, *��� �161 
2.2 � 0.04, *��� � 0.72 � 0.03, across mice on the LFPP diet), suggesting that the processes 162 
governing the local emergence and disappearance of gut bacteria are likely to be independent of 163 
the specific host. The power-law with an exponential tail distribution of residence times may 164 
arise, even in isotropic environment, from the dynamics of births, deaths, and species migration 165 
patterns defined by the spatial structure of the ecosystem30. Notably, the power law exponents 166 
(~2) of the residence distribution revealed in our analysis are similar to the ones observed 167 
previously in macro ecology30. 168 
 169 

 170 
 171 
Fig. 3 | Residence and return times of gut microbiota. a-c,  Residence (���	) and return times (���
) were defined as 172 
the number of consecutive time points during which an OTU was detected at any abundance in the community or 173 
absent from the community respectively. Probability distributions for ���	  and ���
  follow power laws of the form  174 
$���  ���%�

, with the exponential tail resulting from the finite length of each time series. Power law exponents are 175 
&��	 � 2.3 � 0.04 ,  2.2 � 0.07, 2.2 � 0.04  for residence times and &��
 � 1.1 � 0.02, 1.2 � 0.05, 1.2 � 0.07, 1 for 176 
return times (mean � s.d., humans A and M3 and LFPP mice respectively, Methods). Residence and return times are 177 
aggregated across the three individual mice on the LFPP diet. Solid lines indicate fits to the data using MLE. 178 
 179 
Having characterized distributions of daily abundance changes and residence times, we next 180 
investigated the temporal variability of individual OTU abundances. One of the most general 181 
relationships in ecology that has been observed across hundreds of different biological 182 
communities is known as Taylor’s power law32-35, which connects a species’ average abundance 183 
to its temporal or spatial variance, 184 
 185 

,�� � - . !
$	#�4�  
 186 
where - is a constant, !
$ and ,�� are the mean and variance of species abundances respectively, 187 
and / is a positive scaling exponent. For processes following simple Poissonian fluctuations, the 188 
parameter / � 1, while for processes with constant per capita growth variability36, / � 2. Values 189 
of / have been empirically observed to lie between 1 and 2 for the vast majority of investigated 190 
plant and animal species37. Interestingly, our analysis revealed that the temporal variability of gut 191 
microbiota also followed Taylor’s law (Fig. 4, Supplementary Fig. 11a,b), with exponents for 192 
human and mouse gut microbiomes generally consistent with values observed previously in other 193 
ecological communities37 (/ � 1.7 � 0.02 across humans, / � 1.49 � 0.02 across LFPP mice). 194 
Notably, compositional effects of microbiota datasets did not explain the values of the observed 195 
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Taylor law exponents (Supplementary Fig. 12). Dynamics consistent with Taylor’s law have been 196 
also observed in a recent short-term analysis of the healthy human vaginal microbiome38. It has 197 
been previously suggested that competitive interactions between species may result in Taylor’s 198 
law exponent in the range between 1 and 2 36. Alternatively, a Taylor’s law with nontrivial 199 
exponents may arise due to stochastic demographics of population growth and decline37, presence 200 
of species subtypes each with a gamma-distributed abundances39, or due to a balance between 201 
tendencies of the species to aggregate and disperse 35, 40. In the future, it will be interesting to 202 
apply and compare these diverse theoretical models in the context of microbiota dynamics.  203 
 204 
Although Taylor’s law described well the overall dynamics of gut microbiota, some specific 205 
OTUs clearly deviated from the general trend (Fig. 4). To determine whether their behavior 206 
reflected specific ecological perturbations, we identified all OTUs that exhibited significant and 207 
abrupt increases in abundance during previously documented periods of travel in human A and 208 
enteric infection in human B7 (Methods). Interestingly, these travel and infection-related OTUs 209 
corresponded to the outliers from Taylor’s law (Fig. 4a,b, blue circles), showing on average ~10-210 
fold greater variance than expected based on the Taylor’s law trend (Supplementary Fig. 11a,c, 211 
Supplementary Table 1). Many of these OTUs were members of the Proteobacteria (OTU 13, 212 
family: Enterobacteriaceae, OTU 29, family: Pasteurellaceae, OTU 5771, family: 213 
Enterobacteriaceae in human A; OTU 13, family: Enterobacteriaceae in human B), which were 214 
associated with the microbiota perturbations7 (Supplementary Table 1). Moreover, other OTUs, 215 
primarily belonging to the Firmicutes, that exhibited abrupt changes in abundances (OTU 25, 216 
family: Peptostreptococcaceae in human A; OTU 95, family: Ruminococcaceae, OTU 110, 217 
family Ruminococcaceae in human B) also displayed higher than expected temporal variability 218 
(Fig. 4a,b, purple circles, Supplementary Fig. 11c, Supplementary Table 1). These results suggest 219 
that macroecological relationships can be used to identify and characterize specific microbial taxa 220 
that are likely involved in periods of dysbiosis and other context-specific environmental 221 
perturbations. 222 
 223 

 224 
Fig. 4 | Taylor’s power law in the gut microbiome. Mean and temporal variance of OTU abundances follow 225 
Taylor’s power law of the form ��

�  �
��, with ) =1.66�0.09,  1.60�0.08, 1.49�0.02 for humans A, B and LFPP 226 
mice respectively (mean � s.d., see Methods). Each point corresponds to the average abundance and temporal 227 
variance of a single bacterial OTU. a,b, OTUs that exhibited temporary and abrupt increases in abundance are 228 
indicated as colored circles (Methods). Light blue circles indicate OTUs that exhibited significant increases in 229 
abundance specifically during periods of travel (human A) and enteric infection (human B). c, Data from each 230 
mouse on the LFPP diet are overlaid. Dashed lines indicate least-squares regression fits. 231 
 232 
It is well established that the dynamics of diverse ecosystems are strongly affected by their 233 
environment41. Host dietary intake is a major environmental factor influencing gut bacterial 234 
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abundances8, 17, 42 and disease phenotypes43, 44. Therefore, we next explored the effects of diet on 235 
the observed macroecological relationships describing gut microbiota dynamics. To that end, we 236 
used data from the study of Carmody et al.8, who investigated fecal bacterial abundances in 237 
individually-housed mice fed either a low-fat, plant polysaccharide-based (LFPP) diet, or a high-238 
fat, high-sugar (HFHS) diet. Our analysis revealed that the short-term dynamics of gut microbiota 239 
were significantly affected by the diets. While the variability (standard deviation) of daily 240 
abundance changes declined rapidly with increasing abundance in the LFPP mice (Fig. 5a, green), 241 
it remained more homogeneous across OTU abundances in the HFHS mice (Fig. 5a, purple, 242 
regression slopes � � �0.17 � 0.03 for the LFPP diet, �0.08 � 0.02 for the HFHS diet, Z-test 243 
of regression coefficients p= 2.0e-5). As we describe below, the relatively smaller short-term 244 
variability of highly abundant species on the LFPP diet likely reflects more stable niches for 245 
bacteria (Bacteroidetes) that may catabolize dietary fibers. On the other hand, relatively higher 246 
fluctuations of lowly abundant bacteria on this diet may be induced by cross-feeding on catabolic 247 
products of highly abundant species. The observed dependence of short-term variability on 248 
species abundances is much weaker on the HFHS diet, which may result from a general loss of 249 
niche diversity due to the substantially reduced nutrient complexity of that diet. 250 
 251 
In other ecological communities, smaller short-term fluctuations of species abundances do not 252 
necessarily lead to increased long-term ecological stability and vice versa45, 46. Thus, in addition 253 
to short-term fluctuations, we also investigated how different diets affected the long-term drift of 254 
gut microbiota. Hurst exponents were significantly larger in the HFHS mice, indicating 255 
substantially faster long-term drift of bacterial abundances on this diet (Fig. 5b, Supplementary 256 
Fig. 7b, & � 0.19 � 0.02 for the HFHS diet, 0.08 � 0.02 for the LFPP diet, Z-test p<1e-10). We 257 
note that short-term fluctuations in abundances was somewhat higher on the LFPP diet compared 258 
to the HFHS diet, which is reflected in a higher Y-axis intercept for the diffusion on the LFPP 259 
diet (Fig. 5b); the higher intercept is due to larger short-term fluctuations of numerous low 260 
abundant bacteria on the LFPP diet compared to the HFHS diet (Fig. 5a). Despite the intercept 261 
differences, the observed diffusion trend continues over long time scales (>100 days, based on the 262 
data in Fig. 2). Therefore, the long-term drift of microbiota abundances is likely to primarily 263 
depend on the difference in the respective Hurst exponents. 264 
 265 
Previous studies have demonstrated diet-induced compositional shifts of gut microbiota8, 17, 42 and 266 
a reduced gut bacterial diversity in Western populations attributed in part to altered dietary 267 
habits47-49. Our analysis shows that different diets not only affect the composition of gut 268 
microbiota, but also significantly change their long-term dynamics. The reduced long-term 269 
stability on the HFHS diet may result from a higher degree of neutral drift and increased inter-270 
species competition associated with a more homogeneous nutrient environment50. In addition, we 271 
found that while the abundance drift of the Bacteroidetes and Firmicutes, two major phyla in the 272 
mouse gut, were relatively similar on the HFHS diet ( & � 0.18 � 0.1  for Bacteroidetes, 273 
& � 0.18 � 0.03 for Firmicutes), the Bacteroidetes exhibited significantly reduced drift on the 274 
LFPP diet as compared to the Firmicutes (& � 0.03 � 0.06, & � 0.09 � 0.02, Z-test p=3e-8). 275 
This suggests that while the LFPP diet decreased the long-term abundance drift of all taxa, the 276 
stability of the Bacteroidetes was particularly affected by this diet (see below). 277 
 278 
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Different diets may not only change overall gut microbiota dynamics, but also alter the temporal 279 
variability of individual taxa relative to the rest of the community. To understand taxa-specific 280 
changes, we examined Taylor’s law in mice on the LFPP and HFHS diets (Fig. 5c,d). 281 
Interestingly, it has been previously demonstrated that the Taylor’s law exponent may 282 
significantly depend on the environment, at least for some species51-53. Our analysis of the gut 283 
microbiota dynamics on the different diets is consistent with these observations. Specifically, we 284 
found that power law exponents were significantly different between the two diets (/ = 1.49 � 285 
0.02 for the LFPP diet, /  = 1.86 � 0.07 for the HFHS diet, Z-test p=1.5e-6). The temporal 286 
fluctuations of the Bacteroidetes (Fig. 5c,d, blue circles) exhibited significantly lower variability 287 
given their abundances on the LFPP diet, but not on the HFHS diet (hypergeometric test, p=2.4e-288 
4, Supplementary Table 2, Methods). Moreover, we observed significantly lower Taylor’s law 289 
exponents on the LFPP diet specifically for the Bacteroidetes (/ � 1.66 � 0.06 on the LFPP diet, 290 
/ � 1.95 � 0.03 HFHS, Z-test p = 0.0023), but not for all other bacterial taxa (/ = 1.84 � 0.2 for 291 
the LFPP diet, / = 1.86 � 0.07 for the HFHS diet; Z-test p = 0.39). Furthermore, the highly 292 
abundant Bacteroidetes and their lower temporal variability on the LFPP diet were primarily 293 
responsible for the relatively smaller short-term fluctuations of highly abundant bacteria on this 294 
diet (Fig. 5a). Bacteroidetes are known to metabolize a wide range of dietary fibers present in the 295 
LFPP diet55-57 and are significantly lost during multigenerational propagation of mice on a low-296 
fiber diet48. This suggests that specific members of the Bacteroidetes (OTU 118, OTU 237, OTU 297 
364, family: Porphyromonadaceae, Supplementary Table 2) may exhibit both lower temporal 298 
variability and abundance drift by directly exploiting stable niches that are present on the LFPP 299 
diet and likely lost on the HFHS diet. These results demonstrate that macroecological analyses 300 
can identify specific taxa whose temporal dynamics are altered between different diets. 301 
 302 

 303 
 304 
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Fig. 5 | Dynamics of gut microbiota in mice fed different diets. a, OTUs in mice fed a low-fat plant-polysaccharide-305 
based (LFPP) diet show a stronger dependence of the variability in daily abundance changes (��� on mean daily 306 
abundance ( �� � compared to those fed a high-fat high-sugar (HFHS) diet (regression slopes � = -0.17� 0.03, � = -307 
0.08� 0.02; mean� s.d., LFPP and HFHS mice respectively). Data are aggregated across the three mice on each diet 308 
with dashed lines indicating least-squares regression fits. b, OTU abundances in the LFPP mice exhibit reduced long-309 
term abundance drift compared to those in the HFHS mice (! � 0.08 � 0.02, ! �  0.19 � 0.02). c,d, Taylor’s law 310 
analysis shows differences in overall scaling of average OTU abundance versus temporal variance on each diet () = 311 
1.49 � 0.02, ) = 1.86 � 0.07),  driven by the temporal behavior of the Bacteroidetes in the LFPP mice (blue circles). 312 
Plots correspond to data combined from the three mice on each diet. Dashed lines indicate least-squares regression 313 
performed on the combined data.  314 
 315 
Our study demonstrates that, in spite of an amazing interaction and organizational complexity, the 316 
dynamics of gut microbiota can be described by multiple robust quantitative relationships. These 317 
scaling laws characterize both short- and long-term microbiota dynamics, and are usually 318 
observed across many orders of magnitude in time and bacterial abundances. We furthermore 319 
show that these relationships are unlikely to arise due to technical noise, compositional nature of 320 
microbiome datasets, and effects associated with species aggregation. Despite the difference of 321 
more than six orders of magnitude in the relevant spatial and interaction scales, the statistical 322 
relationships described in our study are strikingly similar to those observed previously in many 323 
diverse macroecological systems. This similarity suggests that the temporal processes in both 324 
macroscopic and microbial communities may be governed by a universal set of underlying 325 
mechanisms and principles.  326 
 327 
We anticipate that the quantitative statistical framework developed in macroecology4, 58, 59 will be 328 
important for analyzing microbiota dynamics. As the observed statistical relationships describe 329 
different aspects of community dynamics, an important goal for the future studies will be to unify 330 
these observations into an integrated view of microbiota ecology, which also takes into account 331 
the spatial and environmental dimensions. Moreover, the ability to easily perturb microbiota 332 
composition and environment, add and remove particular species, as well as monitor species 333 
abundances at high temporal and spatial resolution, suggests an exciting opportunity to use 334 
microbiome as a convenient model system to explore general ecological relationships. 335 
 336 
We also envision that a quantitative ecological framework will be important for understanding 337 
how host-specific and environmental factors influence the dynamics of gut and other health-338 
related microbiota. Our results suggest that the observed macroecological relationships can be 339 
used to identify both global dynamical changes and also specific taxa whose abnormal temporal 340 
behavior may serve as biomarkers for periods of illness and clinically relevant perturbations61, 62. 341 
Therefore, it will be important to investigate how the quantitative macroecological relationships 342 
revealed in our study vary across large and densely-sampled human cohorts63-65.s 343 
 344 
  345 
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Methods 346 
 347 
16S rRNA Sequence Analysis. Raw 16S rRNA sequencing data for humans A and B was 348 
obtained from the European Nucleotide Archive (accession number: PRJEB65187). Raw 349 
sequencing data from humans M3, F4 and mice was obtained from the MG-RAST database66 350 
(4457768.3-4459735.3 for humans; 4597621.3-4599933.3 for mice). Sequences were analyzed 351 
with USEARCH 8.167 using an open clustering approach. For studies including unfiltered 352 
sequencing reads, filtering was performed using the –fastq_filtecommand with expected errors of 353 
2. All reads were then truncated to 100bp, with shorter reads discarded. Following a conventional 354 
approach, reads were de-replicated and clustered at 97% sequence similarity using the –355 
cluster_otus command to generate OTUs with a minimum of 2 sequences. Sequences were then 356 
assigned to OTUs using the –usearch_global command, resulting in OTU tables for each study. 357 
Taxonomic assignments were made to OTUs using the RDP classifier68. Sequencing reads from 358 
each sample were then rarefied to a depth of 25K, 17K and 25K for the two human studies (A/B, 359 
M3/F4) and one mouse study respectively using Qiime 1.869. 360 
 361 
OTU Inclusion Criteria. To control for technical factors such as sample preparation and 362 
sequencing noise, analysis was restricted to OTUs passing two sets of criteria. First, OTUs were 363 
required to be present in over half of the samples within respective subjects.  Second, OTUs were 364 
required to have a mean relative abundance > 1e-3 over the time series. The abundance cutoff 365 
corresponded to a mean of 25 (A, B,  LFPP/HFHS mice) and 17 (M3 and F4) reads over 366 
respective sampling periods. The final analysis of human individuals included ~75 OTUs 367 
comprising ~90% of the reads assigned to an OTU in any given sample. For mice, these criteria 368 
resulted in the inclusion of ~70 OTUs in the HFHS diet and ~55 OTUs in the LFPP diet, 369 
comprising ~90% of reads assigned to an OTU in a given sample. Because the HFHS mice 370 
initially received a LFPP diet, the analysis of these mice began 5 days after the diet shift. For the 371 
calculation of residence and return times, different criteria were imposed (see below), as these 372 
analyses would be biased by a prevalence cutoff and were more robust to noise in OTU 373 
abundance levels. 374 
 375 
Daily abundance changes. Daily abundance changes were defined as ����� � log � 
��� � 1� / 376 

����), where 
���� is the relative abundance of a given OTU 
  on day �. Distributions reflect 377 
community averages, with abundance changes calculated for each OTU across all time points and 378 
aggregated over all OTUs. To estimate the variability of the distribution of daily abundance 379 
changes within human subjects, each time series was divided into six consecutive time frames of 380 
equal length (estimates were insensitive to this number). Within each time frame, daily 381 
abundance changes were calculated and maximum-likelihood estimation (MLE) was used to fit 382 
the Laplace distribution exponent, with the mean and standard deviation of these values reported 383 
in the main text. For the mouse study, standard deviations reflected variability across the three 384 
individual mice on each diet. Mean daily abundances 2
  were defined as the mean of consecutive 385 

log OTU abundances, 2
 �  �
�

3log4
�� � 1�5 �  log �
����6. To estimate the variability in daily 386 

abundance changes as a function of abundance, abundance changes were binned by values of 2
  387 
using a bin size of 0.4 and standard deviations ,� were then calculated on the binned abundance 388 
changes. For diet comparisons, daily abundance changes were aggregated across the three mice 389 
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on each diet. Abundance changes and mean daily abundances were calculated using the base ten 390 
logarithm in all figures, with the natural log used for parameter estimation.   391 
 392 
Hurst exponents. The mean-squared-displacement (MSD) of log OTU abundances was 393 
estimated as: 394 
 395 

!"��Δ��$ � 1
7�8 � ∆�� : :; 2���
 � ∆�� � 2���
� <�


�

 

 396 
where the angled brackets denote a community average (over time and OTUs). Here, 2���
� is the 397 
log relative abundance of OTU 
 at time �
 , 7 is the total number of OTUs and 8 is the total 398 
length of the time series. A maximum time lag of 100 and 15 days were chosen for human and 399 
mice subjects respectively due to the finite length of each time series. Hurst exponents were then 400 
calculated by regressing !"��Δ��$ against Δ� on log-transformed axes. To estimate the variability 401 
of Hurst exponents within human subjects, time series were divided into six equal-length time 402 
frames as was done for daily abundance changes calculations. Hurst exponents for individual 403 
OTUs were estimated in a similar fashion but with displacements restricted to time averages. For 404 
diet comparisons, Hurst exponents were additionally averaged over mice within each diet: 405 
 406 

!"��Δ��$�
�� � 1
= : 1

7��8� � ∆�� : :; 2�,���
 � ∆�� � 2�,���
� <�

��

 

 407 
 where the outermost summation is over individual mice (= =3) on each diet. 408 
 409 
Residence and return times. Residence times (����,�� of an OTU 
 corresponded to the number 410 
of consecutive time points between its appearance ( 8�,�� and disappearance ( 8�,��  in the 411 
community (����,� � 8�,� � 8�,� ). Here, 8�,� is any time point at which the OTU was detected at 412 
a finite read count with no reads detected on the previous collection date, and  8�,� is the next 413 
time point at which reads were no longer detected.  Return times ����  were similarly defined as 414 
the number of consecutive time points between local disappearance (8�,��  and reappearance 415 
(8�,�� in the community (����,� � 8�,� � 8�,�). Only intervals that fell entirely within the time 416 
frame of the study were included. A series of alternative criteria were also considered to ensure 417 
robustness of distributions. 1) To ensure results were not biased by detection sensitivity of 418 
sequencing, distributions were calculated for data subsampled to various sequencing depths 419 
(down to 1,000 reads per sample). 2) To account for false negatives in read detections, single read 420 
counts of zero, interrupting a run of consecutive nonzero abundances were neglected. That is, an 421 
OTU with zero reads at time � was considered to be present in the community if that OTU was 422 
also present at times � � 1 and � � 1. 3) To control for false positives, single read abundances 423 
were neglected and treated as a zero count. Results were qualitatively insensitive to both 424 
sampling depth and the alternative read detection criteria. To estimate variability of distribution 425 
parameters within human individuals, OTUs were randomized into six equal-sized groups. 426 
Residence and return times were calculated within each group and exponents were then fitted 427 
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using MLE, with means and standard deviations reported in the main text. Within diets, means 428 
and standard deviations were calculated across individual mice.  429 
 430 
Taylor’s power law. The mean abundance !
�$   and variance ,���  for each OTU 
  was 431 
calculated over the time series. Taylor’s exponents were obtained by performing linear regression 432 
of the log-transformed mean and variance across OTUs in each subject. To estimate variability of 433 
exponents within subjects, time series were divided into six consecutive time frames as described 434 
before. Spiking OTUs were defined as those whose abundance on any single day was greater than 435 
the average abundance over all other days by over 25-fold. Travel-related and infection-related 436 
OTUs in humans A and B were identified as those whose abundances spiked over 25-fold during 437 
the documented time periods7. For mice, Taylor’s law outliers were identified using a likelihood-438 
based approach. Briefly, linear regression on the log-transformed means and variances were 439 
performed on all but a single OTU 
 . The probability of observing the left out OTU 
  was 440 
assigned using a Gaussian likelihood function based on estimated residuals. All OTUs with 441 
probability less than * = 0.025 were taken to be outliers. For diet comparisons, means and 442 
variances were aggregated across individual mice within diets groups. 443 
 444 
Simulations of sampling error associated with finite sequencing depth. Read counts were 445 
simulated using a multinomial distribution with parameters �>  and 7 , where �>  was estimated 446 
empirically from the set of average relative OTU abundances from humans A, B, M3 and F4 and 447 
7 was taken to be the total sequencing depth used in each study (25,000 reads per sample for 448 
humans A and B; 17,000 reads per sample for humans M3 and F4). Simulations were performed 449 
multiple times to generate sample OTU trajectories in each human that solely reflected sampling 450 
error. To account for sporadic sequencing read dropouts, zero counts were introduced into 451 
simulations of each OTU to match the empirical frequency of zero counts observed in the real 452 
data. 453 
 454 
Simulations of microecological dynamics across a range of community diversities. Initial 455 
(� � ��� abundances of N=65 species were generated using power law distributions. The power 456 
law exponents were selected to generate a range of community diversities, quantified by the 457 
effective number of species (ENS = ?� , where H is the Shannon diversity). For the simulated 458 
Gaussian daily abundance changes distribution (Supplementary Figure 3), Ornstein-Uhlenbeck 459 
process was used to generate 1,000 consecutive time points. For the Taylor’s law simulations 460 
(Supplementary Figure 12), we performed simulations identical to that of Kilpatrick and Ives36. 461 
Specifically, abundances of the 65 non-interacting species were propagated across 300 time 462 
points, matching the number of OTUs and samples in Human A. Both simulations were 463 
performed using absolute abundances, and the scaling macroecological relationships were then 464 
calculated using either absolute or relative abundances. 465 
 466 
Statistics. All statistical analysis was performed using custom scripts written in MATLAB 467 
(https://www.mathworks.com). Comparisons of various exponents between mouse diet groups 468 
were performed by first calculating the relevant coefficient and associated standard error of 469 
combined data across the three mice in each diet group. Z-tests were then performed comparing 470 
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the two coefficients associated with each diet group assuming normality of standard errors. 471 
Reported p-values refer to one-sided tests. 472 
 473 
Data availability. All sequencing data used in this study can be downloaded from the ENA 474 
(https://www.ebi.ac.uk/ena/data/view/PRJEB6518 for humans A and B) and MG-RAST 475 
databases (https://www.mg-rast.org/linkin.cgi?project=mgp93 for humans M3 and F4; 476 
https://www.mg-rast.org/linkin.cgi?project=mgp11172 for mice). These data were used to 477 
generate all figures in the main text and supplement with the exception of Supplementary Figure 478 
4.  479 
 480 
Code availability. All MATLAB scripts used to perform data analysis and generate figures will 481 
be available on GitHub at the time of publication. 482 
 483 
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