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Abstract

The olfactory system faces the difficult task of identifying an enormous variety of odors
independent of their intensity. Primacy coding, where the odor identity is encoded by
the receptor types that respond earliest, is one possible representation that can facilitate
this task. So far, it is unclear whether primacy coding facilitates typical olfactory tasks
and what constraints it implies for the olfactory system. In this paper, we develop a
simple model of primacy coding, which we simulate numerically and analyze using a
statistical description. We show that the encoded information depends strongly on the
number of receptor types included in the primacy representation, but only weakly on
the size of the receptor repertoire. The representation is independent of the odor
intensity and the transmitted information is useful to perform typical olfactory tasks,
like detecting a target odor or discriminating similar mixtures, with close to
experimentally measured performance. Interestingly, we find situations in which a
smaller receptor repertoire is advantageous for identifying a target odor. The model also
suggests that overly sensitive receptor types could dominate the entire response and
make the whole array useless, which allows us to predict how receptor arrays need to
adapt to stay useful during environmental changes. By quantifying the information
transmitted using primacy coding, we can thus connect microscopic characteristics of
the olfactory system to its overall performance.

Author summary

Humans can identify odors independent of their intensity. Experimental data suggest
that this is accomplished by representing the odor identity by the earliest responding
receptor types. Using theoretical modeling, we here show that such a primacy code
allows discriminating odors with close to experimentally measured performance. This
performance depends strongly on the number of receptors considered in the primacy
code, but the receptor repertoire size is less important. The model also suggests a
strong evolutionary pressure on the receptor sensitivities, which could explain observed
receptor copy number adaptations. Taken together, the model connects detailed
molecular measurements to large-scale psycho-physical measurements, which will
contribute to our understanding of the olfactory system.
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Introduction 1

The olfactory system identifies and discriminates odors for solving vital tasks like 2

navigating the environment, identifying food, and engaging in social interactions. These 3

tasks are complicated by the enormous variety of odors, which vary in composition and 4

in the concentrations of their individual molecules. In particular, the olfactory system 5

needs to separately recognize the odor identity (what is there?) and the odor intensity 6

(how much is there?). For instance, the identity is required to decide whether to 7

approach or avoid an odor source, whereas the intensity information is important for 8

localizing it. It is unclear how these two odor properties are separated. 9

Odors are sensed by olfactory receptors that have distinct responses to different odor 10

molecules. Generally, each receptor responds to a wide range of odors and each odor 11

activates many receptor types. The resulting combinatorial code allows to distinguish 12

odor identities [1–3], but also depends on the odor intensity, since receptors respond 13

stronger to more concentrated molecules [4]. To obtain an intensity-invariant code in 14

the olfactory cortex [5, 6], the neural information is processed in the olfactory bulb in 15

mammals and the antenna lobe in insects [7–9]. For instance, inhibiting neurons in the 16

olfactory bulb [10,11] affect the neurons processing the receptor activities 17

globally [12–18], which could result in a concentration-invariant representation of the 18

odor identity [19,20]. However, we showed that such a normalized representation still 19

depends strongly on the number of ligands in a mixture and might thus not be optimal 20

for solving olfactory tasks [21]. An alternative to these normalized representations is 21

rank coding, where the order in which the receptors are excited is used to encode the 22

odor identity robustly and independently of the odor intensity [22]. Indeed, experiments 23

suggests that odors are encoded robustly by the receptor types that respond within a 24

given time window after sniff onset [23,24]. In particular, the odor identity could be 25

robustly encoded by a fixed number of the receptors that respond first, which is known 26

as primacy coding [23,25]. So far, it is unclear whether this simple coding scheme is 27

sufficient to explain the remarkable discriminatory capability of the olfactory system. 28

In this paper, we consider a simple model of primacy coding and investigate how 29

well it represents the identity of complex odors. In particular, we identify how much 30

information is transmitted and how well this information can be used to perform typical 31

olfactory tasks, like identifying a target odor in a background or discriminating odor 32

mixtures. Our model thus links parameters of the primacy code with results from 33

typical psychophysical experiments. We show that primacy coding provides a robust 34

and compact representation of the odor identity over a wide range of odors, independent 35

of the odor intensity. However, this good performance of the olfactory system hinges on 36

tuned receptor sensitivities, which suggests that there is a strong selective pressure to 37

adjust the sensitivities on evolutionary and shorter timescales. 38

Results 39

We describe odors by concentration vectors c = (c1, c2, . . . , cNL
), which determine the 40

concentrations ci > 0 of all detectable ligands to the olfactory receptors. The 41

number NL of possible ligands is at least NL = 2300 [26] although the realistic number 42

is likely much larger [27]. Typical odors contain only tens to hundreds of ligands, 43

implying that most ci are zero. The statistics of natural odors are difficult to 44

measure [28]. We thus consider a broad class of odor distributions, where each ligand i 45

has a probability pi to appear in an odor. For simplicity, we neglect correlations in their 46

appearance, so the mean number s of ligands in an odor is s =
∑
i pi. To model the 47

broad distribution of ligand concentrations, we choose the concentration ci of ligand i 48

from a log-normal distribution with mean µi and standard deviation σi if the ligand is 49
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Fig 1. Simple model of primacy coding. (A) Schematic picture of the signal
processing in the olfactory bulb: An odor comprised of many ligands excites the
olfactory receptors and the signals from all receptors of the same type are accumulated
in respective glomeruli. The glomeruli with the strongest (earliest) excitations encode
the odor composition, whereas the odor intensity could be encoded separately. (B)
Excitations of NR = 16 glomeruli for an arbitrary odor. The NC = 4 glomeruli with the
highest excitations, above the threshold γ, form the primacy set (orange bars).

present. Consequently, the mean concentration of a ligand in any odor reads 〈ci〉 = piµi 50

and the associated variance is var(ci) = (pi − p2
i )µ

2
i + piσ

2
i . For simplicity, we consider 51

ligands with equal statistics in this paper, so the distribution Penv(c) of odors is 52

characterized by the three parameters pi = p, µi = µ, and σi = σ. 53

Simple model of primacy coding 54

Odors are detected by an array of receptors in the nasal cavity in mammals and on the 55

antenna in insects. The receptor array consists of NR different receptor types, which 56

each are expressed many times. Typical numbers are NR ≈ 50 in flies [7], NR ≈ 300 in 57

humans [29], and NR ≈ 1000 in mice [30]. The excitations of all receptors of the same 58

type are accumulated in an associated glomerulus in the olfactory bulb in mammals and 59

the antennal lobe in insects [31]. Since this convergence of the neural information 60

mainly improves the signal-to-noise ratio, we here capture the excitation of the 61

receptors on the level of glomeruli; see Fig. 1A. The excitation en of glomerulus n can 62

be approximated by a linear map of the odor c [4, 32], 63

en =

NL∑
i=1

Snici , (1)

where Sni denotes the effective sensitivity of glomerulus n to ligand i. Note that Sni is 64

proportional to the copy number of receptor type n if the response from all individual 65

receptors is summed [33]. 66

The sensitivity matrix Sni could in principle be determined by measuring the 67

response of each glomerulus to each possible ligand. However, because the numbers of 68

receptor and ligand types are large, this is challenging and only parts of the sensitivity 69

matrix have been measured, e.g., in humans [34] and flies [35]. We showed that the 70

measured matrix elements are well described by a log-normal distribution with a 71

standard deviation λ ≈ 1 of the underlying normal distribution [33]. Motivated by these 72

observations, we here consider random sensitivity matrices, where each element Sni is 73

chosen independently from the same log-normal distribution, which is parameterized by 74

its mean 〈Sni〉 = S̄ and variance var(Sni) = S̄2(eλ
2 − 1). Since these receptor 75

sensitivities are broadly distributed, they might not include specific receptors related to 76

innate behavior [36], but they can collectively discriminate concentration differences of 77

several orders of magnitude [33]. 78

The odor representation on the level of glomeruli excitations en depends strongly on 79

the odor intensity ctot =
∑
i ci, which complicates the extraction of the odor identity 80

determined by the relative concentrations. A concentration-invariant representation 81
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could be achieved by normalizing the excitations by the mean excitation [16], which 82

leads to an efficient neural representation on the level of projection neurons [21]. 83

However, recent experimental data suggest an alternative encoding based on the timing 84

of the glomeruli excitation [23]. The key idea of this primacy coding is that the set of 85

receptor types that are excited first is independent of the total concentration ctot and 86

thus provides a concentration-invariant representation. In the simple situation where 87

bound ligands only affect the strength of the receptor output, but not the signaling 88

dynamics, the receptors that first cross a threshold are the ones with the largest 89

excitation. For simplicity, we also neglect the order in which excitations cross the 90

threshold, in contrast to rank coding. Taken together, the primacy code is then given by 91

the identity of the NC glomeruli with the largest excitation, which is known as the 92

primacy set [37]. 93

The primacy set can be represented by a binary vector a = (a1, a2, . . . , aNR
), where 94

an = 1 implies that glomerulus n belongs to the primacy set and is active, while an = 0 95

denotes an inactive glomerulus not belonging to the primacy set. Since the active 96

glomeruli have the highest excitation, they can be identified using an excitation 97

threshold γ; see Fig. 1B. Consequently, the activities are given by 98

an =

{
1 en > γ(e)

0 en ≤ γ(e) .
(2)

Physiologically, the activities an could be encoded by projection neurons in insects and 99

mitral and tufted cells in mammals. These neurons receive excitatory input from one 100

glomerulus [38] and are inhibited by a local network of granule cells [20, 31]. These 101

granule cells basically integrate the activity of all glomeruli [39] and could inhibit the 102

glomeruli once a threshold is reached. Taken together, this would imply primacy coding 103

since only the glomeruli that respond earliest would be activated. For simplicity, we 104

consider the case where the number NC of active glomeruli is fixed and does not depend 105

on the odor c. The associated constraint 106

NC =

NR∑
n=1

an (3)

determines the threshold γ. The activity pattern a is sparse since only a fraction 107

NC/NR of all glomeruli are activated. Moreover, a is concentration-invariant, since the 108

odor intensity ctot does not affect a. This is because multiplying the concentration 109

vector c by a constant factor changes both the excitations en and the threshold γ by the 110

same factor, so that a given by Eq. (2) is unaffected. In essence, only relative 111

excitations are relevant for our model of primacy coding. 112

The amount of information that can be learned about the odor c by observing the 113

activity pattern a is quantified by the mutual information I given by 114

I = −
∑
a

P (a) log2 P (a) , (4)

where the probability P (a) of observing an output a depends on the odor environment 115

Penv(c) as well as the properties of the olfactory system, which in our model are 116

quantified by NC, NR, and λ. 117

In an optimal receptor array, each output a occurs with equal probability when 118

encountering odors distributed according to Penv(c) [33]. In the case of primacy coding, 119

only outputs with exactly NC active receptor types are permissible. Consequently, in 120

the optimal representation each receptor type would be activated with a 121

probability 〈an〉 = NC/NR and all types would be uncorrelated, cov(an, am) = 0 for 122
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Fig 2. Transmitted information I increases strongly with primacy
dimension NC and weakly with receptor repertoire size NR. (A) Comparison
of the transmitted information I in primacy coding, binary coding, and rank coding for
NR = 50. (B) The maximally transmitted information Imax (solid lines) given by Eq. (5)
is compared to numerical estimates of I (dots; n = 107, error smaller than symbol size)
obtained from ensemble averages of Eq. (4). Model parameters are NL = 512, µ = σ = 1,
s = 16, and λ = 1, implying ζ ≈ 0.1. (C) Imax as a function of NC for several NR. The
right axis indicates the maximal number 2I of distinguishable signals. (D) Reduction of
Imax when half the receptor types are removed as a function of NC for various NR.

n 6= m. The associated information 123

Imax(NC, NR) = log2

(
NR

NC

)
≈ NC − 1

ln 2
+NC log2

NR

NC
(5)

provides an upper bound for I given by Eq. (4). Here, the approximation on the right 124

hand side is obtained using Stirling’s formula for large receptor repertoires (NR � NC). 125

Note that primacy coding contains much less information than simple binary coding 126

(where all glomeruli are considered [33,40]) and rank coding (where the order of 127

activation of the first NC glomeruli is also included [22]); see Fig. 2A. Nonetheless, we 128

will show below that primacy coding provides useful information for solving typical 129

olfactory tasks and can even outperform alternatives encoding more information. 130

Transmitted information depends weakly on receptor repertoire 131

We start by analyzing the information I transmitted by the primacy code using 132

numerical ensemble averages of Eqs. (1)–(4); see Methods and Models. Fig. 2B shows 133

that I is very close to the maximal information Imax given by Eq. (5), which is obtained 134

when all receptor types have equal activity and are uncorrelated [33]. This indicates 135

that the primacy code uses the different receptor types with similar frequency and that 136

correlations between them are negligible. The expression for Imax implies that the 137

information grows linearly with the primacy dimension NC, but only logarithmically 138

with the number NR of receptor types. Consequently, the number of distinguishable 139

signals, given by 2I , grows strongly with NC, but the dependence on the repertoire size 140
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is weaker. Given equal NC, our model thus predicts that the transmitted information in 141

mice is only twice that of flies, although mice possess about 20 times as many receptor 142

types; see Fig. 2C. However, the number of discriminable signals changes by many 143

orders of magnitudes because of the exponential scaling with I. 144

The logarithmic scaling of the transmitted information I with the receptor repertoire 145

size NR could explain why the ability of rats to discriminate odors is not significantly 146

affected when half the olfactory bulb is removed in lesion experiments [41,42]. If this 147

operation removes half the receptor types, our model implies that the transmitted 148

information I is lowered by NC bits; see Eq. (5). This corresponds to a reduction of I 149

by about 10 % in rats where NR ≈ 1000; see Fig. 2D. Conversely, the transmitted 150

information can be reduced by almost 50 % in flies, which have a much smaller receptor 151

repertoire of NR ≈ 50. Our model thus predicts that lesion experiments have a much 152

more severe affect on the performance of animals with smaller receptor repertoires. 153

Taken together, this first analysis already suggests that the primacy code provides a 154

robust odor representation, which is sparse, concentration-invariant, and depends only 155

weakly on the details of the receptor array. However, for this representation to be useful 156

to the animal, it needs to allow solving typical olfactory tasks. 157

Primacy coding discriminates odors efficiently 158

Typical olfactory tasks involve detecting a ligand in a background, detecting the 159

addition of a ligand to a mixture, and discriminating similar mixtures. All these tasks 160

involve discriminating odors with common ligands, implying that the associated 161

primacy sets are correlated. In particular, discriminating similar odors will be 162

impossible if their primacy sets are identical. To see when discrimination is possible, we 163

quantify the distance d between two primacy sets by simply counting the number of 164

glomeruli with different activities. 165

Discriminating uncorrelated odors 166

To build an intuition for the distance d between primacy sets, we start by considering 167

two uncorrelated odors. In this case, each receptor type has an expected activity of 168

〈an〉 = NC/NR and the resulting distance reads d∗ = 2NC(1−NCNR
−1), which implies 169

that two uncorrelated odors will typically be distinguishable (〈d〉 ≥ 2), even for very 170

small primacy dimension NC. Moreover, this expression implies that odors become 171

more easily discriminable when NC is increased, whereas increasing the receptor 172

repertoire size NR has a negligible effect in the typical case NC � NR. This is similar 173

to the scaling of the transmitted information I discussed above. 174

Detecting the presence of a target odor in a background 175

One simple task where correlated primacy sets matter is the detection of a target odor 176

in a distracting background. To understand when a target can be detected, we analyze 177

how the primacy set a changes when a single ligand at concentration ct is added to a 178

background ligand at concentration cb. Because of concentration-invariance, only the 179

relative target concentration ct/cb matters and we expect that the target is easier to 180

detect when it is more concentrated (larger ct/cb). Fig. 3A shows that this is indeed the 181

case, since the mean change 〈d〉 in the primacy set a increase with ct/cb. Moreover, 〈d〉 182

increases with the primacy dimension NC in the same way as the distance d∗ of 183

uncorrelated odors (see inset). In fact, 〈d〉 must approach d∗ when the target dominates 184

the background (ct/cb →∞). This scaling implies that the receptor repertoire size NR 185

only has a weak effect on 〈d〉, which is confirmed by Fig. 3B. Surprisingly, the 186
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Fig 3. Detection of a target ligand in a background. (A-B) Mean change 〈d〉 in
the primacy set when the target at concentration ct is added to the background ligand
at concentration cb as a function of ct/cb for (A) various NC at NR = 300 (inset: same
data rescaled by d∗) and (B) various NR at NC = 8. Numerical simulations (dots;
sample size: 105) are compared to the theoretical prediction (lines) obtained using the
statistical model; see Methods and Models. The dotted line indicates the discrimination
threshold 〈d〉 = 2. (C) Distribution of the difference ∆e between the excitations just
above and below the threshold for NR = 32 (green line) and NR = 128 (orange line); see
Methods and Models. The dotted vertical lines indicate the mean 〈∆e〉, obtained from
Eq. (12). The inset shows realizations of NR = 32 (upper panel) and NR = 128 (lower
panel) excitations (vertical bars) drawn from the same excitation distribution (black
lines). The orange bars indicate the primacy set consisting of the NC = 4 largest
excitations. (A–C) Remaining parameters are given in Fig. 2B.

dependence on NR is not monotonic and very dilute odors (small ct/cb) are actually 187

more difficult to discriminate with larger receptor repertoires. 188

The fact that increasing the receptor repertoire size NR can impede the detection of 189

the target odor can be understood in a simplified statistical model, where we calculate 190

the expected distance 〈d〉 using ensemble averages over sensitivity matrices; see 191

Methods and Models. Since the primacy set a corresponds to the NC receptor types 192

with the largest excitations, a will only change when adding the target odor brings the 193

excitation of an inactive receptor type above the excitation of a previously active one. 194

Intuitively, this is more likely when the difference ∆e between the excitation of the 195

weakest active receptor type and the strongest inactive one is small. Fig. 3C shows that 196

large ∆e are more likely for larger NR, essentially because the distribution of the 197

glomeruli excitation en has a heavy tail, so that sampling more excitations leads to 198

larger gaps between the largest excitations. In this case, it is less likely that perturbing 199

the odor changes the order of the excitations and thus the primacy set. Consequently, 200

the maximal concentration ct/cb at which a target can still be detected increases with 201

the receptor repertoire size NR; see Fig. 3B. In contrast, increasing the primacy 202

dimension NC always improves the detection limit. 203

Detecting the addition of a ligand to a mixture 204

So far, we considered simple odors consisting of single ligands. However, realistic odors 205

are comprised of many different ligands and a more realistic olfactory task is thus the 206

detection of a target in a background of many distracting ligands. For simplicity, we 207

first consider the case where all ligands have the same concentration and we only vary 208

the number s of ligands in the background odor. Using ensemble averages over 209

sensitivity matrices, we show in Fig. 4A that the discriminability 〈d〉 decreases both 210

with larger mixture sizes s and smaller primacy dimension NC. In experiments, humans 211

can detect the presence or absence of a ligand for mixtures of up to about 16 212
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Fig 4. Detection of the presence of a ligand in a mixture. (A) Mean
change 〈d〉 in the primacy set when a ligand is added to a mixture with s ligands for
various NC and NR = 300. (B) Maximal mixture size s∗ at which adding a ligand
results in 〈d〉 = 2 as a function of NC for various NR. Shown is the case of uniform
ligand concentrations (solid lines; σ = 0) and distributed concentrations (dashed lines,
σ2/µ2 = 10). The gray band indicates the maximal mixture sizes humans can
resolve [43]. (C) Comparison of the primacy code (blue; NC = 8) to a normalized code
(black) and a binary code (gray) for various s. In the normalized code, glomeruli are
active when their excitation exceeds α times the mean excitation [21]. Here, α is
determined by the indicated number None

C of glomeruli activated by a single ligand. In
the binary code, glomeruli are active when their excitation exceeds the fixed threshold,
so the activity depends on the odor intensity, explaining the strong dependence on the
ligand concentration c [33]. In all models, we considered log-normally distributed Sni
with var(Sni) = 1.72 S̄2 corresponding to λ = 1 and fixed ligands concentrations (σ = 0).
(A,B) Remaining parameters are given in Fig. 2B. (A,C) The dotted line indicates the
discrimination threshold 〈d〉 = 2.

ligands [43] and mice perform even better [44]. To see whether this performance is 213

achievable with primacy coding, we use our statistical model to determine the maximal 214

mixture size s∗ at which the addition of the target odor can still be detected (i. e. when 215

〈d〉 ≥ 2). The solid lines in Fig. 4B show that s∗ = 16 is feasible for NC ≈ 7 in humans 216

if all ligands have the same concentration (σµ = 0). However, if the concentration of the 217

individual ligands is drawn from a distribution with significant variance, a much larger 218

primacy dimension of NC ≈ 15 is necessary to still detect the absence or presence of an 219

additional ligand for s = 16 (dashed lines in Fig. 4B, σ
2

µ2 = 10). 220

Interestingly, we find that target odors can be detected more reliably when the 221

background at a given total concentration cb consists of more ligands. This can be seen 222

by comparing single-ligand backgrounds (Fig. 3A) with multi-ligand backgrounds 223

(Fig. 4A), where the effective target concentration is ct/cb = 1/s. Considering NC = 8, 224

the target can only be detected for ct/cb . 1/3 in the single-ligand case, while the ratio 225

can be much smaller (ct/cb . 1/20) for multiple ligands. This puzzling result can again 226

be understood in the simplified statistical model, which predicts that the variance of the 227

excitations associated with the background odor is smaller if this odor is comprised of 228

many ligands; see Eq. (8) in Methods and Models. This smaller variance implies 229

smaller ∆e, so that adding the target has a higher chance of shuffling the order of the 230

excitations to change the primacy set. The same logic implies that the target is easier 231

to detect when the concentrations of the background ligands vary less, which is 232

confirmed by Fig. 4B. Taken together, numerical results and the statistical model 233

suggest that a target odor is easier to notice if the background odor contains many 234

ligands and small concentration variations. 235

Primacy coding permits the detection of the addition of ligands to mixtures more 236

efficiently than alternative simple encodings. To show this, we also calculate the mean 237
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Fig 5. More similar odor mixtures are more difficult to discriminate. Shown
is the mean distance 〈d〉 between the primacy sets of two mixtures with s ligands each,
sharing sB of them. (A) Distance 〈d〉 for various NC at NR = 300 and s = 30. (B)
Distance 〈d〉 for various NR at NC = 8 and s = 30. (C) Distance 〈d〉 for various mixture
sizes s at NR = 300, NC = 8. (A–C) The dotted line indicates the discrimination
threshold 〈d〉 = 2. Remaining parameters are given in Fig. 2B.

change 〈d〉 of the activity when a ligand is added to a mixture in two alternative models 238

that have been discussed in the literature; see Fig. 4C. First, we consider a normalized 239

code where glomeruli are active when their excitation normalized to the mean 240

excitations exceeds a threshold value α. We showed in [21] that the encoded 241

information and the discriminability strongly depends on the mixtures size s in this 242

model. Consequently, a normalized code cannot detect the addition of a ligand at 243

large s while at the same time providing a sparse response for individual ligands (small 244

NC/NR); see Fig. 4C. In an even simpler model of the olfactory system, glomeruli do 245

not interact at all and are simply activated when their excitation exceeds a 246

threshold [40]. This binary code is not sparse and is strongly affected by the odor 247

intensity, implying that mixtures cannot be discriminated over any significant 248

concentration range [33]. Fig. 4C shows that the discriminability measured by 〈d〉 249

decreases much more slowly with the mixture size s in primacy coding compared to the 250

alternatives. Taken together, primacy coding provides odor discriminability on 251

physiologically relevant levels using a sparse code for all mixtures sizes. 252

Discriminating similar mixtures 253

To consider the discrimination of similar odors that have common ligands, we next 254

consider odors that each contain s ligands, sharing sB of them. Such odors are 255

uncorrelated (〈d〉 = d∗) when they do not share any ligands (sB = 0) and they are 256

identical (〈d〉 = 0) when they share all ligands (sB = s). Between these two extremes, 257

the expected distance 〈d〉 of the primacy sets of the two odors can be determined by a 258

numerical ensemble average over sensitivities and by the statistical model; see Methods 259

and Models. Fig. 5 shows that both methods predict that more similar odors are harder 260

to discriminate. However, the discriminability of odors only depend on their relative 261

similarly (the fraction of shared ligands) and is independent of the total number of 262

ligands in the odor, consistent with psychophysical experiments [45]. Our model predicts 263

that odors should be distinguishable even if they differ by only about 10 % for NC & 4. 264

Overly sensitive receptors degrade the coding efficiency 265

So far, we calculated the transmitted information and tested the discrimination 266

performance of primacy coding under the assumption that all receptor types behave 267

similarly. In fact, we established that the maximal information is achieved when all 268
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Fig 6. Variations in receptor activities deteriorate the array performance.
(A) Information I relative to Imax given in Eq. (5) as a function of the mean activity
〈a1〉 of the first receptor type while all others are unchanged for NC = 8. Dotted lines
indicate Imax(NC, NR − 1). Inset: Same data for the activity rescaled by NC/NR. (B)
Numerical simulation of I as a function of the sensitivity factor ξ1 of the first receptor
type for NR = 16, NC = 4, and ξn = 1 for n ≥ 2. (C) I for log-normally distributed
sensitivity factors ξn as a function of the distribution width var(ξ)/〈ξ〉2 for various NC

at NR = 20. The inset shows that the scaled information I/Imax collapses as a function
of NR = 10, 20 and NC = 2, 4, 6 for different widths σ/µ of the concentration
distribution. (D) Mean change 〈d〉 in the primacy set caused by adding a ligand to a
mixture as a function of var(ξ)/〈ξ〉2 for various NR and NC. The dotted black line
indicates the discrimination threshold 〈d〉 = 2. (B–D) Shown are numerical simulations
with NL = 512, µ = σ = 1, and λ = 1 as well as s = 16 in (B,C) and s = 10 in (D).

receptor types are activated with equal probability NC/NR. However, neither the 269

receptor sensitivities nor the odors themselves are distributed equally in realistic 270

situations. Variations in these quantities affect the transmitted information and thus 271

the usefulness of the primacy code. For instance, the transmitted information decreases 272

if a single receptor is activated less often than all the others; see Fig. 6A. This effect is 273

small, since in the worst case the receptor is never active and the transmitted 274

information thus corresponds to an array with the receptor removed. Conversely, having 275

a receptor that is active more often than all others can have a much more severe effect; 276

see Fig. 6A. In fact, if the receptor type is more than three times as active, the 277

transmitted information I is lower than if the receptor type was remove completely; see 278

Methods and Models. This indicates that receptors can shadow the response of other 279

receptors and thus be detrimental to the overall array when they are overly sensitive. 280

The effect of varying receptor sensitivities can be studied in our model of primacy 281

coding by discussing more general sensitivities matrices. We consider Sni = ξnS
iid
ni , 282

where each receptor type can have a different sensitivity factor ξn, which modulates the 283

uniform sensitivity matrix Siid
ni where each entry is independently chosen from the same 284

log-normal distribution. The case of homogeneous sensitivities that we discusses so far 285
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thus corresponds to ξn = 1. 286

To investigate the effect of heterogeneous sensitivities, we start by varying the 287

sensitivity factor of one receptor type while keeping all others untouched, i. e., we 288

change ξ1 while keeping ξn = 1 for n ≥ 2. There are three simple limits that we can 289

discuss immediately. For ξ1 = 0, the first receptor type will never become active, the 290

array behaves as if this type was not present, and the transmitted information is 291

approximately Imax(NC, NR − 1). This value is lower than the maximally transmitted 292

information Imax(NC, NR) reached for the symmetric case ξ1 = 1. However, the 293

associated information loss ∆I = Imax(NC, NR)− Imax(NC, NR − 1) ≈ NC/(NR ln 2) is 294

relatively small in large receptor arrays (NR � NC); see Fig. 6B. Conversely, the 295

transmitted information can be affected much more severely if the sensitivity of the first 296

receptor type is increased beyond ξ1 = 1 and the receptors will thus be active more 297

often than the others. In the extreme case of ξ1 →∞, the first receptor type will always 298

be active and thus not contribute any information. Since this receptor type would 299

always be part of the primacy set, the information transmitted by the remaining 300

receptor types is approximately Imax(NC − 1, NR − 1), which is smaller than 301

Imax(NC, NR − 1) in the typical case NR � NC. Consequently, an overly active 302

receptor type can be worse than not having this type at all under primacy coding. 303

The fact that overly sensitive receptors are detrimental to the transmitted 304

information is also visible in numerical simulations. Fig. 6B shows ensemble averages of 305

the information I transmitted by receptor arrays as a function of the sensitivity 306

factor ξ1. As qualitatively argued above, I is maximal for ξ1 = 1 and it is slightly lower 307

for smaller ξ1 since the receptor type is active less often. In contrast, for ξ1 > 1, I 308

decreases dramatically and falls below the value of ξ1 = 0 for ξ1 & 1.5. These data 309

suggest that it would be better to remove receptor types that exhibit a 50 % higher 310

sensitivity than the other types. 311

To see whether overly sensitive receptor types are also detrimental when all types 312

have varying sensitivities, we next considering sensitivity factors ξn distributed 313

according to a lognormal distribution. Numerical results shown in Fig. 6C indicate that 314

the transmitted information indeed decreases with increasing variance var(ξn) of the 315

sensitivity factors. In fact, a variation of var(ξn)/〈ξn〉2 = 0.5 already implies a 316

reduction of the transmitted information by almost 50 % for small concentration 317

variations σ/µ = 1. If the odor concentrations vary more, the information degradation 318

is less severe, but the same trend is visible. Interestingly, rescaling the information by 319

the maximal information Imax given in Eq. (5) collapses the curves for all 320

dimensions NC and NR, suggesting that this analysis also holds for realistic receptor 321

repertoire sizes. Note that the reduced transmitted information also implies poorer odor 322

discrimination performance; see Fig. 6D. Taken together, this provides a strong selective 323

pressure to limit the variability of the receptor sensitivities so overly sensitive receptors 324

do not dominate the whole array. 325

Discussion 326

We analyzed a simple model of primacy coding, where odors are identified by the NC 327

strongest responding receptor types. This primacy coding provides a sparse 328

representation of the odor identity that is independent of the odor intensity. We showed 329

using numerical simulations and a statistical model that the primacy dimension NC 330

strongly affects the transmitted information and the discriminability of odors. However, 331

we showed that typical olfactory discrimination tasks can be carried out with 332

performances close to experimentally measured ones for small NC . 10 already. 333

Conversely, the number NR of receptor types does not strongly affect the coding 334

capacity and the discriminability of similar odors, in accordance with lesion experiments. 335
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Interestingly, our model even indicates that lowering NR can improve the identification 336

of a target ligand in a background. 337

Our model predicts that receptors need to respond with similar frequencies to 338

incoming odors to be useful. This is because receptor types that are overly sensitive and 339

respond strongly to many odors could dominate the response of other types and thus 340

degrade the total information. In fact, having a receptor type that is 50 % more 341

sensitive than others, and thus responds about three times as often, can lead to less 342

transmitted information than when this type is absent. This observation is related to 343

the primacy hull discussed in [37], which also predicts strong restrictions on the receptor 344

sensitivities stemming from primacy coding. Various strategies could play a role in 345

keeping the activity of the receptor types similar [46]: On timescales as short as a single 346

sniff, the inhibition strength could be adjusted to regulate the relative importance of 347

receptor excitations [47]. On longer timescales of several weeks, there are changes of the 348

receptor copy number that directly affect the sensitivity of the glomeruli [48–50] and the 349

processing neurons in the olfactory bulb [51,52]. Receptor copy number adaptations 350

influence the signal-to-noise ratio at the receptor level, so the copy number could be 351

increased to improve the detection of frequently appearing odors [53]. In contrast, we 352

predict a decrease of the copy number of overly sensitive receptor types that respond 353

often. Combining the two alternatives, receptor copy numbers could be controlled such 354

that noise is suppressed sufficiently while ensuring that single receptor types do not 355

dominate the array. Finally, receptor sensitivities can also be adjusted by genetic 356

modifications on evolutionary timescales [54, 55]. Moreover, direct feedback from higher 357

regions of the brain could modify the processing of olfactory signals, e. g., in response to 358

the behavioral state [7]. Although our work shows that the activities of the receptors 359

need to be balanced, the actual distribution of the sensitivities matters much less. For 360

instance, log-uniform distributions, which have been suggested to describe realistic 361

receptor arrays [40, 56], lead to similar odor discriminability as log-normally distributed 362

sensitivities; see Fig. S1. 363

Our results raise the question why mice have 20 times as many receptor types than 364

flies, although the transmitted information under primacy coding is only increased by a 365

factor of 2; see Eq. (5). The apparent usefulness of large receptor repertoires hints at 366

roles of the olfactory system beyond transmitting the maximal information and 367

discriminating average odors. For instance, having many receptor types might help to 368

hardwire innate olfactory behavior when receptors are narrowly tuned to odors. In this 369

case, our model would only apply to the fraction of the receptor types that are broadly 370

tuned and are not connected to innate behavior. Alternatively, having many receptor 371

types might be advantageous to discriminate very similar odor mixtures, to cover a 372

larger dynamic range in concentrations of individual ligands, or to allow for a larger 373

variation in average sensitivities, enabling quick adaptation to new environments. 374

Finally, biophysical constraints of the receptor structure might imply that many 375

receptors are required to cover a large part of chemical space. 376

Our model of primacy coding is very similar to our previous model of normalized 377

receptor responses [21], which also exhibits concentration-invariant representations and 378

predicts similar evolutionary pressure on the receptor sensitivities. In that case however, 379

the mean activity decreases with larger mixture sizes, leading to diminishing 380

discriminability of large mixtures caused by the constant inhibition strength [21]. 381

Conversely, primacy coding can be interpreted as normalization with an inhibition 382

strength that depends on the non-dimensional width of the concentration distribution; 383

see Methods and Models. Primacy coding is thus an example for global inhibition with 384

instantaneous adaptation, which displays better performance than a simple fixed 385

threshold. Note that both models can detect targets in background odors, while this 386

task is almost impossible without concentration invariance; see Fig. S2. Concentration 387
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invariance, here achieved by global inhibition, is therefore paramount for discriminating 388

odors at various intensities. Taken together, our model suggests that primacy coding is 389

superior at discriminating odors (Fig. 4C) while at the same time transmitting less 390

information (Fig. 2A) compared to alternative models [21, 33, 40]. This implies that the 391

information is more useful, which potentially allows for simpler processing downstream. 392

We discussed the simplest version of primacy coding with a minimal receptor model 393

and a constant primacy dimension NC implemented by a hard threshold. This model 394

neglects the complex interactions of ligands at the olfactory receptors, which can affect 395

perception [57]. In particular, antagonistic effects can already provide some 396

normalization at the level of receptors [58]. Generally, it is likely that many mechanisms 397

contribute to the overall normalization of the receptor response [59]. A more realistic 398

model of primacy coding might also consider a softer threshold, where receptor types 399

with larger excitation are given higher weight in the downstream interpretation, which 400

is related to rank coding [22]. In this case, information from fewer glomeruli might be 401

sufficient to identify odors, since the rank carries additional information; see Fig. 2A. 402

Realistic olfactory systems could also use a timing code, taking into account more and 403

more receptor types (with decreasing excitation) until an odor is identified confidently. 404

Such a system could explain that the response dynamics in experiment depend on the 405

task [60,61]. Generally, a better understanding of the temporal structure of the 406

olfactory code [8, 62–66] might allow to derive more detailed models. These could rely 407

on attractor dynamics that are guided by the excitations and thus respond stronger to 408

the early and large excitations [67,68]. 409

Methods and Models 410

Numerical simulations 411

All numerical simulations are based on ensemble averages over odors c and sensitivity 412

matrices Sni. The elements of Sni are drawn independently from a log-normal 413

distribution with var(Sni)/S̄
2 = 1.72 corresponding to λ = 1. Odors c are chosen by 414

first determining which of the NL ligands are present using a Bernoulli distribution with 415

probability p = s/NL and then drawing their concentration from a log-normal 416

distribution with mean µ and standard deviation σ. The primacy set a corresponding 417

to c is given by the NC receptors with the highest excitation calculated from Eq. (1). 418

Statistics of a and the transmitted information I given by Eq. (4) are determined by 419

repeating this procedure 105 and 107 times, respectively. 420

Statistical model 421

The statistics of the output a given by Eqs. (1)–(3) can be estimated using ensemble 422

averages of sensitivity matrices for different odors c, similar to our treatment presented 423

in [21] and [33]. In particular, Eq. (1) implies that the excitations en are well 424

approximated by a log-normal distribution with mean 〈en〉S = S̄
∑
i ci and variance and 425

varS(en) = var(Sni)
∑
i c

2
i [69], whereas correlations are negligible [21]. The probability 426

that the excitation en exceeds the threshold γ and the associated receptor type is part 427

of the primacy set reads 428

〈an〉S = 1−G
(
γ(c)

〈en〉S
; ζ(c)

)
(6)

with 429

G(x; ζ) =
1

2
+

1

2
erf

(
ζ + log(x)

2ζ
1
2

)
(7)
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being the cumulative density function of a log-normal distribution with 〈x〉 = 1 and 430

var(x) = exp(2ζ)− 1. The width of the distribution is determined by the positive 431

parameter ζ = 1
2 ln(1 + var(en)/〈en〉2), which reads 432

ζ(c) =
1

2
ln

[
1 +

(
eλ

2 − 1
) ∑

i c
2
i(∑

i ci
)2
]

(8)

for an ensemble average over sensitivities. Note that ζ is concentration-invariant, since 433

it does not change when the concentration vector c is multiplied by a constant factor. 434

In the simple case of ligands that are distributed according to Penv(c), we find 435

〈(∑i c
2
i )(
∑
i ci)

−2〉c = s−1(1 + σ2/µ2). Consequently, the distribution width ζ is large 436

for broadly distributed sensitivities (large λ), few ligands in an odor (small s), and wide 437

concentration distributions (large σ/µ). 438

The constraint Eq. (3) implies 〈an〉 = NC/NR, so that the mean threshold reads 439

〈γ〉 = 〈en〉S ·G−1

(
1− NC

NR
; ζ

)
, (9)

where G−1 is the inverse function of G defined in Eq. (7). Using this expression as an 440

estimate for γ in Eq. (6) results in concentration-invariant activities an, since 〈γ〉 is 441

proportional to the excitation 〈en〉. This situation is comparable to simple normalized 442

representations resulting from the threshold γ = α〈en〉, where α is a constant inhibition 443

strength [21]. In fact, primacy coding can be interpreted as global inhibition with an 444

inhibition threshold depending on the width of the excitation distribution, 445

α = G−1(1−NCNR
−1; ζ). 446

Inter-excitation intervals The expected difference between excitations 447

corresponding to a given odor c can be studied using order statistics, where excitations 448

are re-indexed such that they are ordered, e(1) < e(2) < . . . < e(NR). For simplicity, we 449

consider the case where the excitations en are distributed identically when considering 450

all odors according to Penv(c). Denoting the cumulative distribution function of the 451

excitations by F (e) = G( e
〈en〉 ; ζ) and the associated probability density function by f(e), 452

the probability density function associated with the excitation e(n) at rank n reads [70] 453

fE(n)
(e) =

N ! f(e)

(n− 1)! (N − n)!
Fn−1(e) [1− F (e)]N−n . (10)

The joint distribution of E(n) and E(m), 1 ≤ n < m ≤ N , reads [70]

fE(n),E(m)
(en, em) =

N ! f(en)f(em)

(n− 1)!(m− n− 1)!(N −m)!

· Fn−1(en)[1− F (em)]N−m [F (em)− F (en)]m−n−1 . (11)

Consequently, the distribution of the difference ∆e = e(n) − e(n−1) of consecutive 454

excitations is 455

f∆E(∆e;n) =

∫ ∞
0

fE(n−1),E(n)
(y,∆e+ y) dy . (12)

Hence, the expected difference 〈∆e〉 =
∫
xf∆E(x;NR−NC− 1) dx between the strongest 456

excited inactive receptor type and the weakest active receptor type can be evaluated. 457
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Distances between primacy set The expected number 〈d〉 of changes in the 458

primacy set a when a target odor ct is added to some background cb reads 459

〈d〉 = NR · (pon + poff) , (13)

where pon is the probability that a receptor type that was inactive for cb is turned on 460

by the perturbation ct and poff is the probability that a receptor type that was active is 461

turned off. Both probabilities depend on the excitation thresholds γ(1) and γ(2)
462

associated with the odors cb and cb + ct, respectively, which can be estimated from 463

Eq. (9) using the respective excitation statistics. With this, pon follows from the 464

probability that the excitation was at the value x below γ(1) and the additional 465

excitation by the target brings the total excitation above γ(2), 466

pon ≈
∫ γ(1)

0

[
1−G

(
γ(2) − x
〈et
n〉S

; ζt

)]
g

(
x

〈eb
n〉S

; ζb

)
dx , (14)

where g(e; ζ) is the probability density function associated with G(e; ζ) given in Eq. (7). 467

Here, 〈ejn〉S and ζj describe the excitation statistics of the target (j = t) and the 468

background (j = b). Similarly, we obtain 469

poff ≈
∫ γ(2)

γ(1)

G

(
γ(2) − x
〈et
n〉S

; ζt

)
g

(
x

〈eb
n〉S

; ζb

)
dx , (15)

so we can use Eq. (13) to calculate the expected Hamming distance 〈d〉. Note that γ(1)
470

and γ(2) depend on NR, so the distance 〈d〉 does thus not scale trivially with NR, in 471

contrast to the case of normalized representations [21]. 472

We use Eqs. (13)–(15) to calculated 〈d〉 when a target ligand with concentration ct is
added to a background ligand at concentration cb. The associated statistics of the
excitations obey

〈et
n〉S =

ct
cb
〈eb
n〉S varS(et

n) =

(
ct
cb

)2

varS(eb
n) (16)

and varS(eb
n)/〈eb

n〉2S follows from chosen values of σ/µ and λ. Similarly, when a ligand
with concentration c is added to a mixture of s ligands, all at concentration c, we have

〈et
n〉S = s−1〈eb

n〉S varS(et
n) = s−1 varS(eb

n) . (17)

The third case of correlated odors that we discuss in the main text concerns two odor 473

mixtures of equal size s sharing sB of the ligands. In this case, the excitation 474

threshold γ is the same for both odors and we can express the probability pxor that a 475

receptor type is excited by one mixture but not the other as 476

pxor =

∫ γ

0

G

(
γ − x
〈eD
n 〉S

; ζD

)[
1−G

(
γ − x
〈eD
n 〉S

; ζD

)]
g

(
x

〈eB
n〉S

; ζB

)
dx , (18)

where the statistics 〈ejn〉S and ζj need to be evaluated for the excitations associated 477

with the sB ligands that are the same (j = B) and the s− sB ligands that are different 478

(j = D) between the two mixtures. Taken together, the expected distance reads 479

〈d〉 = 2NRpxor and we recover 〈d〉 = d∗ for unrelated mixtures (sB = 0) and 〈d〉 = 0 for 480

identical mixtures (sB = s). 481
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Information transmitted by diverse receptors In the case where the primacy 482

sets a can be partitioned into NM groups with all elements within a group appearing 483

with the same probability, we can write the information I given by Eq. (4) as 484

I = −
NM∑
m=1

pm log2

(
pm
Mm

)
, (19)

where Mm is the number of elements within group m and pm is the probability that
group m appears in the output, such that

∑
mMm =

(
NR

NC

)
and

∑
m pm = 1. In the

simple case of one receptor type with deviating statistics, we have NM = 2 with

p1 = 〈a1〉 p2 = 1− 〈a1〉 (20a)

M1 =

(
NR − 1

NC − 1

)
M2 =

(
NR − 1

NC

)
(20b)

while the remaining activities are 〈an〉 = (NC − 〈a1〉)/(NR − 1) for n ≥ 2 to obey 485

Eq. (3). For p1 = 0, Eq. (19) reduces to I = Imax(NC, NR − 1), whereas the maximum 486

I = Imax(NC, NR) is reached for p1 = NC/NR. The information decreases for larger p1 487

and eventually reaches values lower than Imax(NC, NR − 1) when p1 = pmax
1 . For 488

p1 > pmax
1 , it would thus be advantageous to remove this receptor type. Using 489(

n
k

)
≈ nk/k! and expanding Eq. (19) around p1 = eNR/(NR − 1), we find 490

pmax
1 ≈ 1

log
(

1− eNC

NR−1

)
− 1

+ 1 =
eNC

NR
+O

([
NC

NR

]2)
(21)

in the limit NR � NC of large repertoires, so pmax
1 ≈ eNC/NR. 491

Supporting information 492

S1 Fig. Log-uniform distributed sensitivities behave similar to log-normal 493

distributed ones under primacy coding. Analysis of odor discrimination of 494

primacy coding with log-uniform distributed sensitivities. 495

S2 Fig. Target detection fails without concentration normalization. 496

Analysis of odor discrimination of a binary encoding with log-normal and log-uniform 497

sensitivities. 498
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68. Grabska-Barwińska A, Barthelmé S, Beck J, Mainen ZF, Pouget A, Latham PE.
A probabilistic approach to demixing odors. Nat Neurosci.
2016;doi:10.1038/nn.4444.

July 9, 2018 20/22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2018. ; https://doi.org/10.1101/370916doi: bioRxiv preprint 

https://doi.org/10.1101/370916
http://creativecommons.org/licenses/by/4.0/


69. Fenton LF. The sum of log-normal probability distributions in scatter
transmission systems. Communications Systems, IRE Transactions on.
1960;8(1):57–67.

70. David HA, Nagaraja HN. Order statistics. Wiley Online Library; 1970.

July 9, 2018 21/22

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2018. ; https://doi.org/10.1101/370916doi: bioRxiv preprint 

https://doi.org/10.1101/370916
http://creativecommons.org/licenses/by/4.0/


0 0.2 0.4 0.6 0.8 1

Target concentration ct/cb

0

2

4

6

8

D
is
ta
n
ce

〈d
〉

A

0 0.2 0.4 0.6 0.8 1

Target concentration ct/cb

0

5

10

D
is
ta
n
ce

〈d
〉

NR = 50

NR = 300

NR = 1000

B C

100 101 102

Mixture size s

100

101

D
is
ta
n
ce

〈d
〉

NC = 8

NC = 4

NC = 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

Fig S1. Log-uniform distributed sensitivities behave similar to log-normal
distributed ones under primacy coding. (A-B) Mean change 〈d〉 in the primacy
set a when a target ligand at concentration ct is added to a background ligand at
concentration cb as a function of ct/cb for (A) various NC at NR = 300 (inset: same
data rescaled by d∗) and (B) various NR at NC = 8. (C) Mean change 〈d〉 in the
primacy set when a ligand is added to a mixture with s ligands as a function of s for
various NC and NR = 300. (A–C) The dotted line indicates the discrimination threshold
〈d〉 = 2. Shown are numerical simulations (dots; sample size: 105) for NL = 512,
σ/µ = 0, and var(Sni)/S̄

2 = 7, so the log-uniform distributed sensitivities span 7 orders
of magnitude. Note that the three panels are similar to Fig. 3A, 3B and 4A, respectively,
implying that log-uniform and log-normal distributed Sni behave similarly.
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Fig S2. Target detection fails without concentration normalization. Mean
change 〈d〉 in the activity a associated with binary coding (an = 1 if and only if en > 1)
when a target ligand at concentration ct is added to a background ligand at
concentration cb as a function of ct/cb for various concentrations cb. Shown are
numerical simulations (dots; sample size: 105) for NR = NL = 50 and σ/µ = 0. (A)
Log-normal distributed Sni with var(Sni)/S̄

2 = 1.72 discussed in [33]. (B) Log-uniform
distributed Sni with var(Sni)/S̄

2 = 7 discussed in [40].
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