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Abstract

Successful prediction of the likely paths of tumor progression is valuable for diagnostic, prog-
nostic, and treatment purposes. Cancer progression models (CPMs) use cross-sectional sam-
ples to identify restrictions in the order of accumulation of driver mutations and thus encode
the paths of tumor progression. Here we examine whether CPMs can be used to predict the
true distribution of tumor progression paths and to estimate evolutionary unpredictability. Em-
ploying simulations we show that if fitness landscapes are single peaked (have a single fitness
maximum), there is good agreement between true and predicted distributions of evolutionary
paths when sample sizes are large, but performance is poor with the currently common much
smaller sample sizes. Under multi-peaked fitness landscapes (i.e., those with multiple fitness
maxima), performance is poor and improves only slightly with sample size. In all cases, detec-
tion regime (when tumor samples are taken) is a key determinant of performance. Estimates
of evolutionary unpredictability from CPMs tend to overestimate the true unpredictability and
the bias is affected by detection regime; CPMs could be useful for estimating upper bounds
to the true evolutionary unpredictability. Analysis of twenty two cancer data sets shows es-
timates of evolutionary unpredictability in regions where useful prediction might be possible
for at least some data sets. But most of the evolutionary trajectory predictions themselves are
very unreliable, and unreliability increases with numbers of features analyzed. Our results in-
dicate that, currently, obtaining useful predictions of tumor progression paths from CPMs is
dubious and emphasize the need for methodological work that can account for the probably
multi-peaked fitness landscapes in cancer.
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1 Introduction

Improving our ability to predict the paths of tumor progression is helpful for diagnostic, prog-
nostic, and treatment purposes as, for example, it would allow us to identify genes that block
the most common paths of disease progression (Greaves, 2015; Lipinski et al., 2016; McPherson
et al., 2018; Williams et al., 2018). This interest in predicting paths of progression is, of course,
not exclusive to cancer (see e.g., reviews in Lissig et al., 2017; Losos, 2018). For example, in
some cases antibiotic resistance shows parallel evolution with mutations being acquired in a
similar order (Toprak et al., 2012), and here “Even a modest predictive power might improve
therapeutic outcomes by informing the selection of drugs, the preference between monother-
apy or combination therapy and the temporal dosing regimen (...)” (Palmer and Kishony, 2013,
p. 243i). But detailed information about the paths of tumor evolution and their distribution, ob-
tained from multiple within-patient samples with timing information, is not available.

Cancer progression models (CPMs), such as CBN (Gerstung et al., 2009), CAPRI (Ramaz-
zotti et al., 2015), or OT (Szabo and Boucher, 2008), are a tool that can be used to predict paths
of tumor progression. CPMs were originally developed to identify restrictions in the order of
accumulation of mutations during tumor progression from cross-sectional data (Beerenwinkel
et al., 2015, 2016). But CPMs also implicitly encode all the possible mutational paths or tra-
jectories of tumor progression, from the initial genotype to the genotype with all driver genes
mutated, and the identification of these paths or “evolutionary trajectories” is a prominent idea
in recent CPM publications (e.g. Caravagna et al., 2016; Ramazzotti et al., 2015). Thus, CPMs
could improve our ability to predict disease progression by leveraging on the available, and
growing, number of cross-sectional data sets.

The first two questions we address in this paper are whether we can predict the paths of
tumor evolution using CPMs and what are the main factors that affect the quality of these
predictions. To answer these questions we will examine how close to the truth are the pre-
dictions made by CPMs about the distribution of paths of tumor evolution. When addressing
this question we need to take into account possible deviations from the models assumed by
CPMs. In particular, CPMs assume that the acquisition of a mutation in a driver gene does
not decrease the probability of gaining a mutation in another driver gene (Misra et al., 2014):
this implies that the fitness landscapes assumed by CPMs cannot have reciprocal sign epistasis
(Diaz-Uriarte, 2018). Because acquiring driver mutations cannot decrease fitness, this also im-
plies that the fitness landscapes assumed by CPMs only have a single global fitness maximum
(the genotype with all drivers mutated). But reciprocal sign epistasis is likely to be common
in cancer (Chiotti et al., 2014), an argument supported by how common synthetic lethality is in
both cancer cells (Beijersbergen et al., 2017; O’Neil et al., 2017) and the human genome (Blomen
et al., 2015). Moreover, if there are many combinations of a small number of drivers, out of a
larger pool of drivers (Tomasetti et al., 2015), that result in the escape genotype, it is likely that
cancer landscapes will have several local fithess maxima (i.e., be multi-peaked). As we have
shown before (Diaz-Uriarte, 2018), the performance of CPMs for predicting what genotypes
can and cannot exist degrades considerably when the assumption of absence of reciprocal sign
epistasis is violated. Those results, however, do not provide a direct answer to the question
of predictability: if our objective is predicting paths of tumor progression we want to measure
directly the quality of the predictions of paths of progression. For example, getting some of the
edges of the DAG of restrictions wrong, or predicting some of the genotypes incorrectly, might
be of little importance if the main paths of disease are captured. Thus, to answer the question
of whether CPMs can be used to predict paths of progression we will need to look directly at
the prediction of paths and do that both under scenarios where CPM’s assumptions are met
and under scenarios with relevant deviations from the assumptions (see Figure 1).

And relevant scenarios bring us to the third question addressed in this paper: regardless of
the performance when predicting the actual paths of tumor progression, can we use CPMs to
estimate evolutionary unpredictability? Some tumors seem to follow a few, highly repeatable
trajectories, whereas others show a large diversity of trajectories. So that a particular method
can reconstruct well the distribution of paths of tumor progression might be of little impor-
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tance if that happens in a scenario where the true evolutionary unpredictability itself is very
large (where disease progression follows a very large number of possible paths); for practi-
cal purposes, forecasting here would be useless. Conversely, a method could be helpful if it
suggests few paths are possible, even if its actual predictions are not trustworthy.

To address the above three questions (can we predict the paths of tumor evolution using
CPMs?; what factors factors affect the quality of these predictions?; can we estimate evolu-
tionary unpredictability using CPMs?) we use evolutionary simulations on 1260 fitness land-
scapes that include from none to severe deviations from the assumptions of CPMs, and analyze
the data with six different methods for inferring CPMs. Since the role of evolutionary unpre-
dictability is an important focus of this paper, we simulate evolution under different population
sizes and mutation rates, so as to generate different amounts of evolutionary unpredictability.
This paper does not attempt to understand the determinants of evolutionary predictability (see,
e.g., Bank et al., 2016; de Visser and Krug, 2014; Lassig et al., 2017; Losos, 2018; Szendro et al.,
2013) but, instead, we focus on the effects of evolutionary unpredictability for CPMs. This is
why we use variation in key determinants of predictability (e.g., variation in population sizes
and mutation rates) but these factors, themselves, are only used to generate variability in un-
predictability, and not themselves the focus of the study. To better assess the quality of predic-
tions, we use sample sizes that cover the range from what is commonly used to what are much
larger sample sizes than currently available. We also include variation in the cancer detection
process or detection regime (when cancer samples are taken, or when are patients sampled),
since previous studies have shown that it affects the quality of inferences (Diaz-Uriarte, 2015,
2018). Here we find that the agreement between the predicted and true distributions of paths
is generally poor, unless sample sizes are very large and fitness landscapes conform to the as-
sumptions of CPMs. Both detection regime and evolutionary unpredictability itself have major
effects on performance. But in spite of the unreliability of the predictions of paths of tumor
progression, CPMs can be useful for estimating upper bounds to the true evolutionary unpre-
dictability.

What are the implications of our results for the analysis and interpretation of the use of
CPMs with cancer data sets? We use 22 real cancer data sets to address these issues. We cannot
examine how close predictions are to the truth, since the truth is unknown; thus, we use boot-
strap samples to examine the reliability of the inferences. Many of the cancer data sets reflect
conditions where useful predictions could be possible, based on the estimates of evolutionary
unpredictability from CPMs. But for most data sets these results are thwarted by the unreli-
ability of the predictions themselves, which increases with the number of features analyzed.
Our results question the use of CPMs for predicting paths of tumor progression, and suggest
the need for methodological work that can account for the probably multi-peaked fitness land-
scapes in cancer.

1.1 Assumptions

CPMs assume that the different individuals in a data set constitute independent realizations
of the same evolutionary process and therefore that the same constraints hold for all tumors
(Beerenwinkel et al., 2015, 2016; Gerstung et al., 2011). Thus, a data set can be regarded as
a set of replicate evolutionary experiments where all individuals are under the same genetic
constraints, though they might later be exposed to different conditions. We also make other
common assumptions in this field. Briefly (see details in section 1.1 of Diaz-Uriarte, 2018)
we use biallelic loci, and back mutations and crossing valleys in the fitness landscape using a
single multi-mutation are not allowed (Beerenwinkel et al., 2007; Bozic et al., 2010; McFarland
et al., 2013). All tumors start cancer progression without any of the mutations considered, but
other mutations could be present that have caused the initial tumor growth, so we absorb the
cancer initiation process in the root node (Attolini et al., 2010); this is necessary to simulate
data consistent with cross-sectional sampling. The driver genes are known and there are no
observational errors.
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2 Materials and methods

2.1 Overview of the simulation study

We have used simulations of tumor evolution on fitness landscapes of different types (see Fig-
ure 1), for landscapes of 7 and 10 genes, under different initial population sizes and mutation
rates. As explained above, variation in initial population size and mutation rates is used to
generate variation in evolutionary predictability, but not of interest per se. We have used a total
of 1260 fitness landscapes = 35 random fitness landscapes x 2 conditions of numbers of genes x
3 types of fitness landscapes x 3 initial population sizes x 2 mutation regimes. For each one of
the 1260 fitness landscapes, we simulated 20000 evolutionary runs (with the specified parame-
ters for initial population size and mutation rate) using a logistic-like growth model until one
of the genotypes at the local fitness maxima (or the single global fitness maximum) reached
fixation. Each set of 20000 simulated runs was then sampled under three detection regimes (so
that each fitness landscape generated three sets of 20000 simulated genotypes). From each of
these sets, we obtained five different splits of the genotypes for each of three sample sizes (50,
200, 4000); thus a total of 56700 (= 1260 x 3 x 3 x 5 combinations of 1260 fitness landscapes, 3
detection regimes, 3 sample sizes, 5 splits) data sets were produced. Each of these 56700 data
sets was analyzed with every six one the CPM methods.

2.2 Evolutionary simulations and data sampling

We used three initial population sizes, 2000, 50000, and 1 X 10° cells, for the simulations; these
cover a range of population sizes at tumor initiation that have previously been used in the
literature (e.g. Beerenwinkel et al., 2007; Gerstung et al., 2011; McFarland et al., 2013; Wodarz
and Komarova, 2014). We also used two mutation regimes; in the first one, all genes had a
common mutation rate of 1 x 10~2; in the second, genes had different mutation rates, uniformly
distributed in the log scale between (1/5) 1 x 107> and 5 x 107 (i.e., the largest ratio between
largest and smallest mutation rates was 25), so that the arithmetic mean of mutation rates was
1.5 x 10~° and the geometric mean 1 x 10~°. These mutation rates are within ranges previously
used in the literature (Bozic et al., 2010; McFarland et al., 2013; Nowak et al., 2004), with a bias
towards larger numbers (since we use only 7 or 10 genes relevant for population growth and
we could be modeling pathways, not individual genes). Initial population size and mutation
rates are not of intrinsic interest here (since our focus is not the determinants of evolutionary
predictability per se), but are used to generate variability in evolutionary predictability; see
section 3.1.

For each of the combinations of number of genes (7 and 10), initial population size (2000,
50000, 1 x 106), and mutation rate (constant, variable), we generated random fitness landscapes
of three kinds (see Figure 1). We generated the DAG-derived representable fitness landscapes
by generating a random DAG of restrictions and from it the fitness graph. We then assigned
birth rates to genotypes using an iterative procedure on the fitness graph where, starting from
the genotype without any driver mutation with a birth rate of 1, the birth rate of each descen-
dant genotype was set equal to the maximum fitness of its parent genotypes times a random
uniform variate between 1.01 and 1.19 (yielding, therefore, an average multiplicate increase
in fitness of 0.1, again within values previously used; Bozic et al., 2010; McFarland et al., 2013;
Williams et al., 2018). Birth rate of genotypes without dependencies satisfied was set to 0. (Note
that for the growth model used here —see below— birth rates determine fitness at any popula-
tion size as death rates are identical for all genotypes and depend only on population size. Note
also that genotypes with birth rate of 0 are never added to the population; thus, they cannot
mutate before dying, so this simulation scheme strictly adheres to the assumptions about acces-
sible and non-accessible genotypes under the CPM model). The DAG-derived local-maxima
fitness landscapes were obtained by generating a random DAG and from it the fitness graph.
Before assigning fitness to genotypes, a random selection of edges of the fitness graph were re-
moved so that all accessible genotypes remained accessible but from a possibly much smaller
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set of parents. Fitness was then assigned as above (with the iterative procedure on the fitness
graph, where fitness of child = max(fitness parents) U(1.01,1.19)). For each DAG we repeated
this procedure 50 times, and kept the one that introduced the largest number of local maxima.
Creating local maxima almost always resulted in creating reciprocal sign epistasis (but see Sup-
plementary Material, section 1, “Generating random fitness landscapes”). The local maxima fitness
landscapes used in this paper are representable in the weaker sense of Diaz-Uriarte (2018), as
all genotypes that should be accessible under the DAG of restrictions are accessible. What
the local-maxima landscapes are missing are mutational paths to the genotype with all genes
mutated, because we have introduced local fithess maxima (and once we introduce local max-
ima there is no longer a one-to-one correspondence between DAGs of restrictions and fitness
graphs and, thus, there is no longer a one-to-one correspondence between DAGs of restrictions
and sets of tumor progression paths). These local maxima landscapes are “easier” than the
DAG-derived fitness landscapes used in Diaz-Uriarte (2018), as those also missed some geno-
types that should exist under the DAG of restrictions. Our local maxima are easier by design as
we want to isolate the effect of multi-peaked landscapes or local maxima (or, equivalently, miss-
ing paths), without the additional burden of missing genotypes. The Rough Mount Fuji (RMF)
fitness landscapes were obtained from an RMF model, a model that has been useful to model
empirical fitness landscapes (de Visser and Krug, 2014; Franke et al., 2011; Neidhart et al., 2014),
where the reference genotype and the decrease in birth rate of a genotype per each unit increase
in Hamming distance from the reference genotype were randomly chosen (see Supplementary
Material, section 1.2, “Rough Mount Fuji”). These fitness landscapes cannot be represented by
DAGs of restrictions with respect to neither paths to the maximum nor accessible genotypes
(see also Diaz-Uriarte, 2018).

Once a fitness landscape had been generated, we simulated 20000 evolutionary processes.
We used the continuous-time, logistic-like model of McFarland et al. (2013), in which death rate
depends on total population size, as implemented in OncoSimulR (Diaz-Uriarte, 2017), with the
specified parameters of initial population size and mutation rate. Each individual simulation
was run until one of the genotypes at the local fitness maxima (or the single global fitness
maximum) reached fixation (see details in Supplementary Material, section 3, “Simulations”).
We also verified that all 7 or 10 genes had appeared in at least some genotypes, i.e., were part
of the paths of tumor progression. If this condition was not fulfilled, a new fitness landscape
was generated and the processes started again. This procedure is independent of the detection
process that generates the samples of genotypes (next).

To obtain the samples of genotypes that were analyzed by the CPMs, we used three differ-
ent detection regimes to emulate single-cell sampling at total tumor sizes (number of cells) that
are, in the log scale, approximately uniformly distributed (uniform detection regime), biased
towards large sizes (large) or biased towards small sizes (small). (Working on the log-scale
of tumor size is appropriate as in the model of McFarland et al., 2013, tumor population size
increases logarithmically with number of driver mutations). We drew random deviates from
beta distributions with parameters B(1,1), B(5,3), and B(3,5) (for uniform, large, and small,
respectively), rescaled them to the range of observed sizes, and obtained the sample with pop-
ulation size closest to the target (see details in Supplementary Material, section 3.3, “Detection
regimes: sampling”). For each sample, the genotype returned was the single genotype with the
largest frequency (so we did not introduce possible additional noise due to bulk sequencing
—i.e., obtaining a single, inexistent, genotype from a sample that could contain multiple differ-
ent genotypes). Finally, for each of the three sample sizes of 50, 200, and 4000, we splitted the
20000 simulations into five sets of non-overlapping data sets. These are the data sets that were
analyzed with the six CPMs.

2.3 Inferring Cancer Progression Models (OT, CBN, CAPRI, CAPRESE) and paths
of tumor progression

We have used four distinct CPM methods (methods not considered here are either too slow for
routine work, have no software available, or have dependencies on non-open source external
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libraries —see Supplementary Material, section 5.2, “CPM software”). Two of the methods used
have two variants, yielding a total of six methods. Only a brief overview is provided here;
detailed descriptions can be found in Caravagna et al. (2016); Desper et al. (1999); Gerstung et al.
(2009, 2011); Montazeri et al. (2016); Olde Loohuis et al. (2014); Ramazzotti et al. (2015); Szabo
and Boucher (2008). CPM methods assume that the different individuals in a data set constitute
independent realizations of the same evolutionary process —see assumptions. These methods
try to identify restrictions in the order of accumulation of mutations from cross-sectional data.
The cross-sectional data is a matrix of subjects or samples by driver alteration events, where
each entry in the matrix is binary coded as mutated or not-mutated. For the simulations, we
will refer to these driver alteration events as “genes”, but they can be individual genes, parts or
states of genes, or modules or pathways made from several genes (e.g. Caravagna et al., 2016;
Gerstung et al., 2011). When we analyze the 22 cancer data sets (see section 2.5) we will use the
generic term “features” as some of those data sets use genes whereas others use pathway or
module information. Both Oncogenetic trees (OT) (Desper et al., 1999; Szabo and Boucher, 2008)
and CAPRESE (Olde Loohuis et al., 2014) describe the accumulation of mutations with order
constraints that can be represented as trees. Thus, among the “representable” fitness landscapes
used in this paper (section 2.2), OT and CAPRESE can only represent the subset that are trees. A
key difference between the two is that CAPRESE reconstructs these models using a probability
raising notion of causation in the framework of Suppes’ probabilistic causation, whereas in OT
weights along edges can be directly interpreted as probabilities of transition along the edges by
the time of observation (Szabo and Boucher, 2008, p. 4). Both CAPRI and CBN allow modeling
the dependence of an event on more than one previous event: the output of the model are
graphs (DAGs) where some nodes have multiple parents, instead of a single parent (as in trees).
CAPRI tries to identify events (alterations) that constitute “selective advantage relationships”
again using probability raising in the framework of Suppes’ probabilistic causation. We have
used two versions of CAPRI, that we will call CAPRI_AIC and CAPRI_BIC, that differ in the
penalization used in the maximum likelihood fit (AIC or BIC, respectively). For CBN we have
also used two variants, the one described in Gerstung et al. (2009, 2011) that uses simulated
annealing with a nested EM algorithm for estimation, and MCCBN, described in Montazeri
et al. (2016), that uses a Monte-Carlo EM algorithm that allows it to fit data sets with many
more genes. See Supplementary Material, section 5.2, “CPM software”, for further details.

Because (the transitive reduction of) a DAG of restrictions determines a fitness graph (see
Figure 1 and Diaz-Uriarte, 2018), the set of paths to the maximum encoded by the output from
a CPM is obtained from the fitness graph. This we did for all methods. From CBN and MCCBN
we can also obtain the estimated probability of each path of tumor progression to the fitness
maximum, since both CBN and MCCBN return the parameters of the transition rates between
genotypes (see e.g., p. i729 in Montazeri et al., 2016, section 2.2 in Gerstung et al., 2009, or
Hosseini, 2018; see details and example in Supplementary Material, section 5.4, “Computing
probabilities of paths”). It is also possible to perform a similar operation with the output of
OT, and use the edge weights from the fits of OT to obtain the probabilities of transition to
each descendant genotype and, from them, the probabilities of the different paths to the global
maximum. It must be noted that these probabilities are not really returned by the model, since
the OTs used are untimed oncogenetic trees (Desper et al., 1999; Szabo and Boucher, 2008). We
will refer to paths with probabilities assigned in the above way as probability-weighted paths.
For CAPRESE and CAPR], it is not possible to map the output to different probabilities of paths
of progression (see also Supplementary Material, section 7, “CAPRI, CAPRESE, and paths of
tumor progression”) and in all computations that required probability of paths we assigned the
same probability to each path.

2.4 Measures of performance and predictability

We have characterized evolutionary unpredictability using the diversity of Lines of Descent
(LODs). LODs were introduced by Szendro et al. (2013) and ”(...) represent the lineages that
arrive at the most populated genotype at the final time” (p. 572). In other words, in our sim-
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ulations a LOD is a sequence of parent-child genotypes, from the initial genotype to a local
maximum: a LOD is the path that a tumor has taken until fixation. The final genotype in a
LOD is a local fithess maximum, but there are no guarantees that any intermediate genotype
in the LOD will have been the most common genotype at any time point (especially if clonal
interference and stochastic tunneling are present — de Visser and Krug, 2014; Sniegowski and
Gerrish, 2010). As in Szendro et al. (2013), we can use the entropy of these paths to measure the
indeterminism of the paths of evolution, or evolutionary unpredictability, and we will define
Sy = — Y piInp;, where p; is the observed probability of each LOD (each path) computed from
the 20000 simulations, and the sum is over all paths or LODs. Evolutionary unpredictability, as
estimated by the CPMs, will analogously be defined as S. = —}_g;Ing;, where g; is the proba-
bility of each path to the maximum according to the cancer progression model considered, and
the sum is over all paths predicted by the CPMs . (Hosseini, 2018, normalizes predictability by
dividing by the maximum entropy, similar to dividing by the prior entropy in the “information
gain” statistic in Lissig et al., 2017; but the maximum entropy is a constant for each number of
genes, i.e., 7! or 10! for our simulations).

To measure how well CPMs predict tumor progression, we used three different statistics. To
compare the overall similarity of the distribution of paths predicted by CPMs with the true ob-
served one (i.e., the distribution of LODs) we used the Jensen-Shannon divergence (JS) (Crooks,
2017; Lin, 1991), scaled between 0 and 1 (equivalent to using the logarithm of base 2). JS is a
symmetrized Kullback-Leibler divergence between two distributions and is defined even if the
two distributions do not have the same sample space, i.e., even if P(i) # 0 and Q(i) = 0 (or
Q(i) # 0 and P(i) = 0), as can often be the case for our data. A JS value of 0 means that
the distributions are identical, and a value of 1 that they do not overlap. Therefore, predic-
tions of CPMs are closer to the truth the smaller the value of JS. The sum of the probabilities
of the paths in the LODs that are not among the paths allowed by the CPMs, P(-DAG|LOD),
is equivalent to 1 - recall. Larger values of 1-recall mean that the CPM is not capturing a large
fraction of the evolutionary paths to the maximum (or maxima). The sum of the predicted
probabilities of paths according to the CPMs that are not used by evolution (i.e., that are not
LODs), P(-LOD|DAG), is equivalent to 1 - precision. Larger values of 1-precision mean that
the CPMs predict larger numbers of paths to the maximum that are not used by evolution.
In the Supplementary Material we also use as statistic the probability of recovering the most
common LOD; we will rarely refer to this statistic in the main paper since it follows a pat-
tern very similar to recall (see Supplementary Material, Figures 519 and 520). Statistics 1-recall
and 1-precision can overestimate performance: they could both have a value of 0, even when
JS is very close to 1 (see example in Supplementary Material, section 5.5, “Example where per-
fect recall and precision do not guarantee Jensen-Shannon divergence of 0”). Thus, the basic overall
performance measure will be JS.

2.4.1 Comparing paths from CPMs with LODs of different lengths

When all paths from the CPM and the LOD have equal length (they end in a genotype with
the same number of genes mutated, K) computing the above statistics is straightforward. But
paths could differ in length. In fitness landscapes with local maxima, LODs can differ in length;
some LODs could have a length (or number mutations of the fixated genotype), K;, shorter
than the length of the paths from the CPM, K¢ (all paths from a CPM have the same number of
mutations, since all arrive at the genotype with all K¢ genes mutated). It is also possible that
some or all K; > K, i.e., some or all LODs have a length larger than the length of the paths
from the CPM. This will happen if the CPM has been built from a data set that contains fewer
genes than the number of genes in the landscape (e.g., because one or more genes were absent
—see Supplementary material section 5.3, “Preprocessing of data for CPMs"); if the sampled data
set has fewer genes than the landscape in a representable fitness landscape, then all K; > K¢
(as K; will be equal to either 7 or 10).

To compute JS, 1-recall, and 1-precision that will cover all those cases we used the following
procedure (that reduces to the simpler procedure in the above section when all K; = K¢). Let
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i and j denote two paths, one from the LOD and the other from the CPM, with corresponding
probabilities p; and g;; in contrast to the previous section, and to minimize notation, i,j (and
pi,q;) could refer to a path from the LOD and a path from the CPM or, alternatively, a path
from the CPM and a path from a LOD. Let K;, K; denote the length of paths i and j, respectively.
At least one set of either K;s or st has all elements identical (e.g., if j refers to indices of the
paths from the CPM, it is necessarily the case that K; = K, = ... = K, = K¢, with m the total
number of different paths from the CPM).

Now if K; > K; and the path i up to K; mutations (i.e., from the WT genotype to the geno-
type with K; mutations) is identical to j, then path j is included in path i: all of g; is accounted
for by i. This also means that path i is partially included in (or accounted for by) path j, but a
fraction of it, (K; — K;) /K, is missing or unaccounted for. The above applies directly to calcula-
tions of 1-recall and 1-precision. For computing JS, there will be two entries in the vectors with

the probability distributions that will be compared: P = [pi%, piKiIz,Kj } , Q = [4;,0]. This pro-

cedure can be applied to all elements i, j, summing all unmatched entries: ) p; K Kin is the total
flow in the set of paths i that cannot be matched by the js because they are shorter. To simplify
computations, that unmatched term can also include | p,,, where u denote those paths in i that
do not match any j. Conversely, all paths i with K; > K; such that the paths become indistin-
guishable up to K; can be summed in a single entry so that we obtain }_ pi% and ) piKiIzi 5 for
the matched and unmatched fractions, respectively. All computations have their correspond-
ing counterparts for elements i, j when K; < K;. This procedure results in unique JS (remember
the K are all the same for at least one of the sets of paths) as well as unique 1-precision and
1-recall, and it reduces to the procedure (see above) when all K; are equal and equal to all K;. A
commented example and further details are provided in the Supplementary Material ( section

5.6.1, “Commented example for paths of unequal length”).

2.4.2 Statistical modeling of performance

We have used generalized linear mixed-effects models, with a beta model for the dependent
variable (Ferrari and Cribari-Neto, 2004; Griin et al., 2012; Smithson and Verkuilen, 2006), to
model how JS, 1-recall, and 1-precision, are affected by S, detection regime, sample size, num-
ber of genes, and type of fitness landscape. In all models, the response variable was the aver-
age from the five split replicates of each fitness landscape by sample size by detection regime
combination, and fitness landscape id (not type) was a random effect. When the dependent
variable had values exactly equal to 0 or 1, we used the transformation suggested in Smithson
and Verkuilen (2006). Models were fitted using sum-to-zero contrasts (McCullagh and Nelder,
1989) and all regressors were used as discrete regressors, except S,, which has been scaled
(mean 0, variance 1) for easier interpretation; the coefficients of the main effect terms of the
discrete regressors are the deviations from the average (see further details in Supplementary
Material, section 5.7, “Coefficients of linear models”). We have used the glmmTMB (Brooks et al.,
2017) and car (Fox and Weisberg, 2011) packages for R (R Core Team, 2018) for statistical model
fitting and analysis.

2.5 Cancer data sets

We have used 22 cancer data sets (including six different cancer types: breast, glioblastoma,
lung, ovarian, colorectal, and pancreatic cancer); some code mutations in terms of genes (so-
matic mutations and/or copy number alterations) and some in terms of pathways or modules.
All of these data, except for the breast cancer data sets BRCA _ba_s and BRCA _he_s (from Cancer
Genome Atlas Research Network, 2012b), have been used previously as input for some CPM
algorithms in Attolini et al. (2010); Caravagna et al. (2016); Cheng et al. (2012); Gerstung et al.
(2011); Misra et al. (2014); Olde Loohuis et al. (2014); Ramazzotti et al. (2015), with the original
sources of the data being Bamford et al. (2004); Brennan et al. (2013); Cancer Genome Atlas Re-
search Network (2008, 2011, 2012a); Ding et al. (2008); Jones et al. (2008); Knutsen et al. (2005);
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Parsons et al. (2008); Piazza et al. (2013); Wood et al. (2007). Details on sources, names, and how
the data were obtained and processed are provided in the Supplementary Material (section 6,
“Cancer data sets”).

These data sets vary in sample size (27 to 594 samples), number of features (from 7 to over
100), data types (nonsynomymous somatic mutations and copy number aberrations or both),
levels of analysis (genes, modules and pathways, exclusivity groups), patterns of number of
mutations per subject and frequency of mutations analyzed, and procedures for driver selec-
tion, and restriction of patient subtypes. The data sets, therefore, are a large representative
ensemble of data sets to which researchers have previously applied or might apply CPMs.

3 Results

3.1 Simulated fitness landscapes: characteristics, evolutionary predictability, sam-
pled genotypes

In the Supplementary Material (section 2, “Plots of fitness landscapes and inferred DAGs”) we
show all the fitness landscapes used. We also show (section 4, “Fitness landscapes: characteris-
tics, evolutionary predictability, clonal interference, and sampled genotypes”) the main characteristics
of the fitness landscapes used, the variability in evolutionary predictability, and the charac-
teristics of the samples obtained under the three detection regimes. The three types of fitness
landscapes had comparable numbers of accessible genotypes but differed strongly in the num-
ber of local fitness maxima and reciprocal sign epistasis (Figures S1 to 53). Simulations resulted
in varied amounts of clonal interference, as measured by the average frequency of the most
common genotype (Figure 54 or, similarly, the inverse of the average number of clones with
frequency > 5%: Figure S5); scenarios where clonal sweeps dominated (i.e., those character-
ized by the smallest clonal interference) corresponded to initial population sizes of 2000, with
clonal interference being much larger at the other population sizes (Figure 54).

Simulations resulted in observed numbers of paths to the maximum (number of distinct
LODs) that showed a wide range (Figure 5S6), from 2 to 3082 (median of 228, 95, and 55, for rep-
resentable, local maxima, and RMEF, respectively), with fitness landscapes with 10 genes with
a much larger number than those with 7 genes (105 vs. 1340, 55 vs. 261, 33 vs. 113, for rep-
resentable, local maxima, and RMF, respectively). LOD diversities (S,) ranged from 0.3 to 8.7
(Figure 57) with RMF models showing smaller S,; RMF landscapes had the largest number and
diversity of observed local fitness maxima (Figure 58 and 59) and Sp was strongly associated
to the number of accessible genotypes (Figure 510). Of course, the number of mutations of the
fitness maxima were 7 and 10 in the representable landscapes, and smaller in the local maxima
and RMF landscapes (Figure S11).

The number of different sampled genotypes was comparable between detection regimes
(Figure 512), but diversity differed (Figure 513), with the uniform detection regime showing
generally larger sampled diversity. The mean and median number of mutations of sampled
genotypes (Figures 514 and 515) differed between detection regimes in the expected direction
(largest in the large detection regime, and smallest in the small detection regime); the standard
deviation and coefficient of variation in the number of mutations (Figures 516 and 517) were
largest in the uniform detection regime (thus, the uniform detection regime showed both the
largest variation in number of mutations of genotypes and the largest diversity of genotypes).
Sample characteristics and the difference in sample characteristics between detection regimes
were affected by type of fitness landscape (e.g. Figures 513 and 516).

3.2 Predicting paths of evolution with CPMs

The six methods used can be divided into three groups: methods that return trees (OT and

CAPRESE) and two families of methods that return DAGs, CAPRI (CAPRI_AIC and CAPRI_BIC)
and CBN (CBN and MCCBN). Comparing within groups with respect to JS, and as seen in the
Supplementary Material (section 8, “Ouverall patterns for the six methods”), one member of the
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pair consistently outperformed the other (see Figure S18). OT (using probability-weighted
paths, see below) was significantly better than CAPRESE (paired t-test over all non-missing
56595 pairs of results: fs5e504 = —161.1, P < 0.0001), CBN was significantly better than MC-
CBN (tse593 = —42.6, P < 0.0001), and CAPRI_AIC was significantly better than CAPRI_BIC
(tse504 = —41.9, P < 0.0001).

This ranking within types of methods does not always apply to the other two measures of
performance, most notably CAPRESE with respect to 1-recall, where its performance can be
one of the best, and often better than that of OT. CAPRESE'’s better recall, however, is more
than offset by its poor precision (often the worst or among the worst). Similar comments apply
to other reversals (e.g., MCCBN’s slightly better precision in some scenarios being offset by
its considerably worse recall). Remember we will assess performance using mainly JS (see
“Measures of performance and predictability”, section 2.4). In what follows, therefore, and for the
sake of brevity, we will focus on OT, CBN, and CAPRI_AIC, since the overall performance of
their alternatives is worse.

Figure 2 shows how the performance measures for OT, CBN, and CAPRI_AIC change with
sample size for all combinations of type of landscape, detection regime, and number of genes
(results for the probability of recovering the most common LOD are shown in the Supple-
mentary Material, Figure 519, and the patterns are essentially those of recall, Figure 520).
The measures of JS and 1-precision for OT and CBN (and MCCBN) use probability-weighted
paths computed as explained in 2.4, because there was strong evidence for all three methods
that the probability-weighted paths led to better results (JS, paired t-test over all pairs: OT,
t56594 = —195.8, P < 0.0001; CBN: t56594 = —222.3, P < 0.0001,‘ MCCBN: t56593 = —149.0,
P < 0.0001; 1-precision: OT: tse504 = —187.6, P < 0.0001; CBN: t56504 = —217.6, P < 0.0001;
MCCBN: ts6593 = —130.3, P < 0.0001). (See also Supplementary Material, Figures 521 , 522,
S23).

Overall, CBN was the method with the best performance (P < 0.0001 from all pairwise
comparisons between the six methods with Tukey’s contrasts and single-step multiple testing
p-value adjustment —Hothorn et al., 2008— on linear mixed-effects models with landscape by
split replicate as random effect). It must be noted, however, that all methods can show large
variability in performance, as shown in Figure 3 (also Supplementary Material, Figure 524).

JS differed between type of landscape, number of genes, detection regime, and sample size,
but the magnitude and even direction of effects differed between combinations of those factors,
as seen in Figure 2 and 4. Generalized linear mixed-effects models fitted to the complete data
set and to the different combinations of method and type of landscape (see Supplementary
Material, section 17, “Analysis of deviance tables for fitted models”) also showed highly significant
(P < 0.0001) two-, three-, and four-way interactions between most of the factors, in particular
those involving type of landscape and detection regime. As seen in Figure 3, type of landscape
and detection regime also had very strong effects in the variability of the estimates, with relative
variabilities that could reach 20% with small sample sizes.

Under representable fitness landscapes, performance improved with increasing sample size
and with the uniform detection regime. Performance was worse in fitness landscapes of 10
genes (Figure 2, panel A; Figure 4, top row); the decrease in performance with increasing num-
ber of genes is related to methods both missing evolutionary paths (Figure 2B), and allowing
paths that are not used by evolution (Figure 2C). Notably, with CAPRI the effect of sample size
was much weaker and increases in sample size could even lead to decreases in performance,
specially under the uniform detection regime (highly significant, P < 0.0001, interactions of
detection and sample size —see Supplementary Material, section 17, “Analysis of deviance tables
for fitted models”). This is attributable to CAPRI excluding many paths taken during evolution
(Figure 2B). This behavior of CAPRI can also be seen in Figure 6A, where the ratio of esti-
mated to true number of paths went from slight to very severe underestimation as sample size
increased under the uniform detection regime. This was itself caused by CAPRI sometimes
allowing only a few or even just one path to the maximum (Supplementary Material, Figure
S25).

10


https://doi.org/10.1101/371039
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/371039; this version posted November 20, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Under the RMF landscape overall performance was worse. Increasing sample size for OT
and CBN led to minor decreases in performance (Figure 2 and Figure 4 bottom row). CPMs
failed to capture about 50% of the evolutionary paths (or fractions of paths) to the local maxima
(Figure 2B) and included more than 75% of paths (or fractions of paths) that were never taken
by evolution (Figure 2C). The behavior under local maxima was similar to that of representable
fitness landscapes in terms of the direction of most effects, but effects were generally weaker,
with the exception of evolutionary unpredictability (see next).

What about the effect of evolutionary unpredictability itself on performance? There were
no marginal effects of evolutionary unpredictability (as measured with S,) on performance in
representable fitness landscapes (Figure 4) for CBN and OT. But the effects of evolutionary
unpredictability were, in fact, more complex than depicted in Figure 4, as there were highly
significant interactions (P < 0.0001) between S,, detection regime, and sample size, within
representable and local maxima landscapes, as well as in the overall models (see Supplemen-
tary Material, section 17, “Analysis of deviance tables for fitted models”). In many cases, the sign of
the slope was reverted from its main effect, as shown in Figure 5 (see also Supplementary Mate-
rial, Figure 526). In most scenarios, performance was worse with larger unpredictability (larger
Sp) as seen by the positive slopes of JS on S, (Figure 5). But under representable landscapes, in
the large detection regime and for sample sizes 50 and 200, larger evolutionary unpredictability
was associated with better performance; the difference in effects was itself significantly affected
by the number of genes (see also Supplementary Material, section 17, “Analysis of deviance ta-
bles for fitted models”). Under RMF fitness landscapes, large evolutionary unpredictability was
associated with poorer performance over all sample sizes. Under local maxima, the effect of
evolutionary unpredictability depended strongly on sample size and detection regime, with
reversal of effects from sample size of 50 compared to 4000 under the large detection regime,
similar to those mentioned above for representable landscapes (Figure 5).

3.3 Inferring evolutionary unpredictability from CPMs

Figure 6 shows the relationship between the estimated and true numbers and diversities of
paths of tumor progression. Under representable fitness landscapes, and for the two methods
with the best behavior, CBN and OT, there were large differences in the ratio of number of
paths to the maximum over true number of paths to the maximum, associated to differences
in sample size and number of genes, as shown in Figure 6A. Average ratios of estimated paths
to the maximum over true paths to the maximum were 1.4 and 6.9 for 7 and 10 genes for
CBN (and 0.4 and 1.9 for OT). But values for CBN ranged from 0.5 (7 genes, sample size 50,
uniform detection regime), to 33.9 (10 genes, sample size 4000, large detection regime); for OT
they ranged from 0.2 (7 genes, sample size 200, uniform, detection) to 5.6 (10 genes, sample size
4000, large detection regime). In section 3.1 (see also Supplementary Material, section 4, “Fitrness
landscapes: characteristics, evolutionary predictability, clonal interference, and sampled genotypes”) we
saw that the true number of evolutionary paths increased with the number of genes; what we
see here is that the inferred number of evolutionary paths to the maximum from CBN and
OT often increased even faster, a consequence of worse recall under 10 genes. Detection regime
and sample size (again, for OT and CBN) had a large effect: number of paths inferred increased
with sample size, specially under the large detection regime (Figure 6).

But for both CBN and OT that disproportionate increase in the number of inferred paths
carried only a small penalty in terms of correctly estimating evolutionary unpredictability (the
diversity of paths to the maximum, S,), as can be seen from Figure 6B —and this is a conse-
quence of both using probability-weighted paths and of changes in scale (diversities used log-
arithms). For example, for CBN the ratio of inferred to observed diversities, S./ Sp, remained
close to 1 over all combinations of detection regime, number of genes, and sample size (aver-
ages of 0.81x and 0.93x for 7 and 10 genes); the values were closest to one with sample size
4000 and under the uniform detection regime.

In contrast to CBN and OT, patterns for CAPRI seemed dominated by the tendency of
CAPRI to only allow very few paths as the sample size grows large, and mainly under the
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uniform detection regime (see also Supplementary Material, Figure 525). Under representable
landscapes, CAPRI underestimates, sometimes severely, the true diversity of paths to the max-
imum (Figure 6B) and can lead to very large variability of the estimates (Supplementary Mate-
rial, Figure 527, for coefficient of variation of S.).

Type of landscape affected the quality of estimates. Under RMF, the number of paths tended
to be overstimated by very large factors (averages over 7 and 10 genes: paths: CBN 2.9x and
55.6x; OT: 5.1x and 128 x; CAPRIL: 3.5x and 61x), especially with 10 genes and sample sizes
of 4000 (CBN: 112 x; OT: 236 x; CAPRI: 61 x). Diversity was also overstimated but, as was the
case for representable landscapes, by smaller factors (averages over 7 and 10 genes: CBN 1.1
and 1.6x; OT: 2.1x and 2.8 x; CAPRI: 3.0x and 3.5x; values for 10 genes and sample sizes of
4000: CBN: 2.2x; OT: 3.5x; CAPRI: 4.0x).

And how does the estimated evolutionary unpredictability change with the true evolution-
ary unpredictability? Figure 6C shows that the slopes of regressions of estimated unpredictabil-
ity from CPMs (S.) on true unpredictability (S,) changed depending on fitness landscape, de-
tection regime, and sample size, including slopes over and under 1, and even inversion of signs
(ranges of slopes over all combinations of type of landscape by detection regime by number of
genes by sample size: CBN: 0.47 to 1.27; OT: 0.43 to 1.50; CAPRI: -1.04 to 1.19).

3.4 Cancer data sets

We will use CPMs on 22 cancer data sets to examine their usefulness for predicting tumor
evolution. As explained in section 2.5, these data sets are a large representative set to which
CPMs have been applied or might be applied in the future; they include six different cancer
types, and show wide variation in sample size, number of features, data type, levels of analysis
(genes, modules, pathways), methods for driver and patient subtype selection, and distribution
of number of mutations per subject and frequency of mutations (see Supplementary Material,
section 6, “Cancer data sets” and Figures 531 and 532).

We have analyzed all the data sets with CBN (the best performing method —see sections
3.2 and 3.3). We have run the analysis three times per data set, limiting the number of features
analyzed to the 7, 10, and 12 most common ones, so as to examine how our assessments depend
on the number of features analyzed; the first two thresholds use the same number of features as
the simulations. (Of course, for data sets with 7 or fewer features, there are no differences in the
data sets used under the 7, 10, and 12 thresholds, so the values shown below reflect variability
between runs; ditto for data sets with 8 to 10 features with respect to thresholds 10 and 12).

We do not know the true paths of tumor progression, but we can use the bootstrap to assess
the robustness of the inferences. To do so, we repeated the process above with 100 bootstrap
samples (see Supplementary Material, section 6.2, “Bootstrapping on the cancer data sets”). We
computed S, ;, the JS between the distribution of paths to the maximum from the original
data set and each of the bootstrapped samples. Large differences in the distribution of paths
between the analyses with the bootstrap samples and the analysis with the original sample
suggests that the inferences are unreliable and cannot be trusted (but small differences do not
indicate that the inferred paths match the distribution of the true ones).

The results are shown in Figure 7; summary patterns are shown in Figure 8. Unreliability
(JSop) was large for most data sets, and very large for some of them. These results would be
expected, even if the true fitness landscapes were representable ones, as most of the data sets
have small sample sizes (less than 1000), and we have seen that performance is poor (large
JS) for that range of sample sizes (Figure 2A). For these data sets, as can be seen from Fig-
ure 8, there was no relationship between |S,;, and sample size, and when the same data set
was analyzed using pathways/modules and genes, performance was generally better using
pathways or modules (Pan_pa vs. Pan_ge, Col_pa vs. Col_g, GBM_ge vs. GBM_pa, GBM_mo
vs. GBM_CNA). Within data sets, and for all data sets, as the number of features analyzed in-
creased performance either decreased or stayed the same (i.e., for data sets with more than 7
features, unreliability at the 10 feature threshold, | Sg%, was larger or equal to unreliability at

the 7 feature threshold, | S7b; for data sets with more than 10 features, | SZ,b <] Sg,ob <] Stl),zb:

0,
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Figure 7A).

Smaller numbers of features and smaller S. should be associated with smaller JS,,, and
there were mild trends for these patterns (Figure 8B, C), with notable exceptions: the Pancreas
Pathways (Pan_pa) data set had very small JS,; even for moderate number of features, and
the All Pathways (all_pa) data set had a relatively small JS,; even though it used 12 features
and had a large S.; the GBM CNA modules (GBM_mo) data set also showed moderate JS, j, in
spite of having 9 features and relatively large S.. Conversely, some data sets with small S; had
extremely unreliable path predictions (e.g., BRCA _ba_s, Col_mss_co, Col_msi_co, GBM_ge).

Values for S, were well within the ranges of S; estimated by CBN for the simulated data
(see Supplementary Material, Figure 528). Of course, S, increased with number of features an-
alyzed (see also Supplementary Material, Figure 533). Given the results from section 3.3, where
generally S p < S, this suggests that the true evolutionary unpredictability (when analyzing
up to 12 features) for 13 of the data sets should be less than that corresponding to about 100
equiprobable paths to the maximum, but only eight are below the much more manageable,
and useful, 20 equiprobable paths. The Pan_pa, GBM_coo, and BRCA _he_s show outstanding
patterns in Figures 7 and 8. Examination of the output showed that there was one single path
with estimated probability > 0.97 for Pan_pa, and two paths to the maximum of about equal
probability that together added > 0.95 for GBM_coo. BRCA _he_s had only four features but
mutations in SRPRA and PIK3R1 were present each in only four individuals (different indi-
viduals for the two mutations); repeated runs of CBN led to different sets of restrictions being
inferred which, because there are few paths to the maximum, and some had large probabilities
(> 0.5) which resulted in large differences in JS statistic between runs (and bootstrap runs will
exacerbate these differences).

4 Discussion

Can we predict the likely course of tumor progression using CPMs? CBN was the best per-
forming CPM method in our study. Using CBN under the representable fitness landscapes (the
easiest scenario, as it fits the underlying model) returned estimates of the probability of paths
of tumor evolution that were not far from the true distribution of paths of evolution (Figure
2A) when sample size was very large. But we find that, even under representable fitness land-
scapes, performance with moderate (and more realistic) sample sizes was considerably worse
and was affected by detection regime. The analysis of the 22 cancer data sets revealed that
performance (as measured by JS, j,, an indicator of unreliability of inferences) was poor or very
poor for most data sets. Even data sets with few features and small diversity of paths to the
maximum, S., showed very unreliable predictions.

What factors, and how, affect performance? Under representable fitness landscapes, perfor-
mance on simulated data was of course affected by the number of features, the dimension of the
fitness landscape: JS was worse with 10 than with 7 genes (Figures 2, 4). Increasing sample size
improved performance (Figures 2 and 4). Detection regime and evolutionary unpredictability,
as measured by LOD diversity (S;), affected individually and jointly all performance mea-
sures (Figures 2, 4, 5). Increased evolutionary unpredictability hurt performance under most
conditions (Figure 5). Detection regime was a key determinant of performance, as already
found in previous work (Diaz-Uriarte, 2015, 2018); performance was better under the uniform
detection regime and, more importantly, it affected how the rest of the factors (evolutionary
unpredictability, sample size, and number of features) impacted on performance (Figures 2 to
5).

The analysis of the 22 cancer data sets also indicated number of features as major deter-
minant of performance. Across data sets, unreliability of inferences (JS,;) increased with
number of features. More importantly, within data set unreliability increased as the num-
ber of features increased; note that an increase in the number of features analyzed leads to
an increase in the number of features with low frequency events. Interestingly, the driver-
selected data sets (Col-mss, Col.msi, BRCA_he_s, BRCA _ba_s) did not perform much better
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than data sets with a simple frequency-based selection of features (e.g., Lu, Ov, or compari-
son Ov with Ov_drv). Even data sets with very careful, manually-curated selection of drivers
and “exclusivity groups” and where variability due to subtypes has been minimized (Col_msi,
Col_msi_co, Col_mss, Col_mss_co, ACML_co, BRCA _he_s and BRCA ba_s) show very large JS, ;.
And BRCA he_s, with only four features, showed much larger |S, , than GBM_coo and Pan_pa
(with 3 and 7 features, respectively), due to the presence of two low frequency alterations.
These results bring forth the problem of the selection of the relevant features for analysis
(Caravagna et al., 2016; Cristea et al., 2016; Gerstung et al., 2011) and whether sample size is
large enough relative to the number and frequency of features considered. We have previ-
ously shown that feature selection can have a very detrimental impact on the performance of
CPM methods (Diaz-Uriarte, 2015). Using pathways instead of genes in the analyses (see, e.g.,
Cristea et al., 2016; Raphael and Vandin, 2015) can alleviate some of the problems of feature
selection. For example, data sets coded as pathways or modules generally reduce the presence
of low-frequency alterations (see Supplementary Material, Figures 531 and 532). Pathways can
also improve predictability and how close the estimates of path distributions are to the truth
because they are more similar to heritable phenotypes, which often have smoother phenotype-
fitness maps and tend to show more repeatable evolution (Lassig et al., 2017; see also Wang
et al., 2015, but also Chebib and Guillaume, 2017; Sailer and Harms, 2017). Gerstung et al.
(2011) found that analysis using pathways gave stronger evidence for order constraints than
analysis using genes, and we also see in Figure 7 that both S. and JS,; tend to decrease if we
use pathways or modules (Pan_pa vs. Pan_ge, Col_pa vs. Col_g, GBM_ge vs. GBM_pa, GBM_mo
vs. GBM_CNA). “All Pathways” constitutes a promising case because it has large S, but moder-
ate |S, ;. Using so-called “exclusivity groups” (sensu Caravagna et al., 2016) to identify “fitness
equivalent alterations” is a similar, though not identical, procedure that in this paper showed
only modest improvements in |S, , (Col-mss_co vs. Col_mss, Col_msi_co vs. Col_-msi, ACML_co
vs. ACML); this can of course be due to particularities of these data sets (e.g., large number
of features relative to number of subjects) or the intrinsic difficulties of identifying true fit-
ness equivalent groups via “hard/soft exclusivities”. However, note that although analysis
using pathways/modules/exclusivity groups might lead to more reliable results from the pre-
dictability point of view, the identification of paths at the gene level is still the ultimate goal for
therapeutic interventions (see Ashworth et al., 2011). Regardless of the details of the procedure
for collapsing and reducing features, our results suggest that further work on feature selection
should consider reduction of variability of estimates of evolutionary paths as a key component.

Hosseini (2018) has reanalized the DAG-derived representable and a subset (those where
the fully mutated genotype has largest fitness) of the DAG-derived non-representable fitness
landscapes in Diaz-Uriarte (2018). He finds good agreement between the distributions of paths
to the maximum from CBN and the fitness landscape-based probability distribution of paths
to the maximum. Our results for CBN under the best conditions are not as optimistic. Two
differences in the studies explain the differences. First, Hosseini (2018) computes the fitness
landscape-based probability of paths assuming a strong selection weak mutation regime, not
by directly examining the distribution of the paths to the maximum in each simulation (i.e., he
does not use the LODs) and, second, he uses CBN with the very large sample size of 20000 (the
full data sets in Diaz-Uriarte, 2018).

Even very good performance, though, needs to be interpreted with care. Very good per-
formance simply tells us that the true and estimated probability distributions of the paths to
the maximum agree closely. If the true evolutionary unpredictability is large, then for practi-
cal purposes our capacity to predict what will happen (in the sense of providing a small set
of likely outcomes) is very limited. Ranges of diversities of 3.2 to 6.0, equivalent to 25 to 400
equiprobable paths, were common in the simulated data (see Supplementary Material, Figure
528) and are comparable to the ranges in most cancer data sets with 7 and 10 feature thresholds
(see Figure 7). The inability to narrow down the likely paths to a small set of paths in these
cases is, of course, not a limitation of the methods, but a problem inherent to the unpredictabil-
ity of the evolutionary process in many scenarios, which could severely limit the usefulness of
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even perfect predictions.

The discussion above has centered on representable fitness landscapes. As argued before,
fitness landscapes with local fitness maxima are probably common in cancer. Interestingly, for
small sample sizes, recall was sometimes better in local-maxima and RMF than under repre-
sentable landscapes (Figure 2): with local fitness maxima, achieving good recall involves the
relatively easier task of getting right the first part of short paths to the maximum (see Sup-
plementary Material, Figure 529 and 530, where 1-recall increases with the average number
of mutations of local fitness maxima). But good recall was more than offset by low precision:
overall predictability was very poor. The decrease in precision is the consequence of local fit-
ness maxima: CPMs are fitting models with paths of tumor progression that extend beyond
the true end point of the progression. In addition, RMF fitness landscapes strongly violate the
CPM assumption that acquiring a mutation in one gene does not decrease the probability of
acquiring a mutation in another gene (see Diaz-Uriarte, 2018). The violations of assumptions
in RMF and local fitness maxima explain the decreases in the relevance of sampling regime and
why increasing sample size has negligible (or even detrimental) effects in these regimes (Fig-
ures 2 and 4). Remarkably, regardless of type of fitness landscape (i.e., even under violation of
assumptions), and for all tasks considered (prediction of paths and estimating unpredictabil-
ity) performance of methods that could return probability-weighted paths (CBN, MCCBN, OT)
was better when using probability-weighted paths; thus, further improvement in these meth-
ods, even under violations of assumptions, might be possible by recalibrating their output.

And we return to our third original question, as even if achieving good performance in
predicting the paths of tumor progression is unlikely, inferring evolutionary unpredictability
could be an easier task. Can we use inferences of evolutionary unpredictability from CPMs
as estimates of the true evolutionary unpredictability? Under representable fitness landscapes,
CBN, the best performing method also for this task (Figure 6B), returned values of S; very
similar to S,, the evolutionary unpredictability estimated from the diversity of paths, and this
held over detection regimes and sample sizes. Hosseini (2018) also finds that the estimates of
predictability from CBN correlate well with the true evolutionary predictability, with slopes
of the regression of CPM-based on landscape-based predictability generally slightly below 1,
similar to our Figure 6C (left-most column). These good results do not hold under the other two
fitness landscapes: evolutionary unpredictability is overestimated, and increasing sample sizes
made the problems worse and, as shown in Figure 6C, different evolutionary scenarios, sample
sizes, and detection regimes have different relationships of estimated and true unpredictability.
But our results indicate that we can use CBN to set upper bounds on the true S,; obtaining
tighter estimates is an objective for further research to explore. And here our analysis of 22
cancer data sets suggests that the true evolutionary unpredictability of at least some cancer
scenarios might be reasonably small, specially if S is overestimating the true unpredictability.

4.1 Conclusion

The answer to the question “can we predict the likely course of tumor progression using
CPMs?” is, unfortunately, “only with moderate success and only under representable fitness
landscapes and with very large sample sizes; but even perfect predictions might be of little
use if evolutionary unpredictability is large”. Estimating upper bounds to evolutionary unpre-
dictability is a more modest, though more likely to succeed, use of CPMs. There are three key
difficulties for successful prediction: the sheer size of the problem even for moderate numbers
of genes, the intrinsic evolutionary unpredictability in many scenarios, and the deviations from
the assumptions of CPMs that are likely to hold in most cancer data. In addition to the caveat
about using these methods under scenarios where performance is very poor, this paper raises
the general question of what can we really predict about likely paths of tumor progression from
cross-sectional data, for instance to guide therapeutic interventions. At a minimum, measures
such as [S,; and S, on methods that return probability-weighted paths should probably be-
come routine as ways of providing a sense of the reliability of predictions and for assessing
whether the predictions could be of any practical use.
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Figure 1: Fitness landscapes, paths of tumor progression,
@ e @ and DAGs of restrictions in the order of accumulation of mu-
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tations for the three types of landscapes used. (a) Repre-

sentable; (b) local maxima; (c) RMF. In each row, on the left,
° ° ° the fitness landscape (representation based on Brouillet et al.,
2015) that shows the accessible genotypes (where the notation
“AB” means a genotype with both genes A and B mutated)
and on the right the fitness graphs or graphs of mutational
paths (Crona et al., 2013; de Visser and Krug, 2014; Franke
et al., 2011), where nodes are genotypes and arrows point to-
ward mutational neighbors of higher fitness. These fitness
graphs show all the paths of tumor progression, the set of ac-
BC @ cessible mutational paths and adaptive walks that, under the

‘ (b)

Fitness

restriction that there can be no back mutations, start from the

ABCD “wild type” (WT) genotype —where we absorb all cancer ini-
tiation events— and end in the local fitness maxima (or single

A ABD global fitness maximum). Each path from WT to a maximum
corresponds to a different Line of Descent (LOD). For (b) and

(c), gray edges and nodes denote those that are present in
@ @ (a) but missing in (b) or (c). The inset in the first row shows
> > the DAG of restrictions in the order of accumulation of muta-

tions that applies to (a) and (b). A DAG of restrictions shows
° ° ° genes in the nodes; an arrow (directed edge) from gene i to
gene j indicates a direct dependency of a mutation in j on a
mutation on i; a mutation in j cannot be observed unless i is
mutated. In the example, a mutation in gene D can only be
observed if both A and B are mutated; note that, among the
methods considered in this paper, CAPRESE and OT can only
represent trees (so they can not account for D having two, or
more, incoming arrows). The absence of an arrow between
ABC two genes indicates a lack of direct dependencies between
(C) the two genes. The set of genotypes that can exist under both
(a) and (b) is the same, and all of them satisfy the restrictions
in the DAG of restrictions. But the fitness landscape in (b) has
ABD ABC three maxima; there are fewer paths to “ABCD” and several
paths end in the other two maxima (“AC”, “BC”). Thus, the
ABD fitness graph of (b) does not fulfil the assumptions of CPMs.
6 The defining features of (b) are that the set of accessible geno-
g types can be represented by a DAG of restrictions, but there
K / are missing paths. The fitness landscape in (c) cannot be rep-
8 @ @ resented by any DAG of restrictions; e.g., no DAG of restric-
tions can account at the same time for the presence of geno-
types “A”, “B”, “C”, and the absence of every double mutant
with “C”. Relative to (a), (c) is missing both paths and geno-
types (relative to other DAGs of restrictions it could either be

missing and/or adding genotypes and paths).
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Figure 2: Summary performance measures (see definitions in 2.4) for OT, CAPRI (with AIC penalty)
and CBN for all combinations of sample size, type of landscape, detection regime, and number of
genes. For all measures, smaller is better. For OT and CBN, Jensen-Shannon divergence (JS) and
1-precision use probability-weighted paths (see text). Each point represented is the average of 210
points (35 replicates of each one of the six combinations of 3 initial size by 2 mutation rate regimes —
see 2.1); we are thus marginalizing over mutation rate by initial simulation size combinations. Each
one of the 210 points is, itself, the average of five runs on different partitions of the simulated data.
See Supplementary Material, Figure S18, for results for all six methods used.
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Figure 3: Coefficient of variation (standard deviation/mean) of JS for each method for all com-
binations of sample size, type of landscape, detection regime, and number of genes. The coeffi-
cient of variation has been computed from the five runs for each landscape on each combination
of sample size and detection regime. For OT and CBN, JS is computed using the probability-
weighted paths (see text). Each point plotted is the average of 210 points (see Figure 2).
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Figure 4: Coefficients from generalized linear mixed-effects models, for JS as dependent vari-
able, with separate models fitted to each combination of method and type of fitness landscape.
Coefficients are from models with sum-to-zero contrasts (see text and Supplementary Material,
section 5.7, “Coefficients of linear models”). Within each panel, coefficients have been ordered
from left to right according to decreasing absolute value of coefficient. The dotted horizontal
gray line indicates O (i.e. no effect). Coefficients with a large positive value indicate factors that
lead to a large decrease in performance (increase in JS). Only coefficients that correspond to a
term with a P-value < 0.05 in Type II Wald chi-square tests are shown. The coefficient that cor-
responds to Number of genes 7 is not shown (as it is minus the coefficient for 10 genes —from
using sum-to-zero contrasts). “N_Genes”: number of genes; “S_Size”: sample size; “Detect”:
detection regime; “Sp”: LOD diversity (S;).
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Figure 5: Estimated slopes of the regression of Jensen-Shannon divergence (JS) on LOD di-
versity (S,) for all combinations of sample size by type of landscape by detection regime by
number of genes. A beta regression was fitted to each subset of data. Slopes not significantly
different from 0 (P > 0.05) shown as 0. Each regression was fitted to 210 points, each of which
is itself the average of five replicates, one for each of the five runs on different partitions of the
simulated data.
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Figure 6: Number of paths and path diversities inferred from CPMs relative to the values from LODs. Panel A:
average of the ratio of number of paths to the maximum from the CPMs relative to the observed number of distinct
LODs for all combinations of type of landscape by detection regime by number of genes by sample size. Panel B like
panel A, but for diversities of paths to the maxima. As in Figure 2, each point is the average of 210 points. Panel
C shows the slope of the regression S; on S;; each point is thus a slope from a regression of 210 points, each of
which is itself the average of 5 replicates (see Figure 5). Panels B and C show different features of the data: panel B
shows whether evolutionary unpredictability (S,) tends to be over- or under-estimated by S.; panel C shows how S,
changes with S, —see Supplementary Material, section 19, “LOD and CPM diversity: ratios and slopes”, for an example
of positive ratios with negative slopes.
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Figure 7: Results from the cancer data sets analyzed with CBN. Data sets have been ordered by increasing sample
size, and the x-axis labels provide the acronym (shown in full in the inset legend). Below the data set acronym are
the number of subjects and the total number of features, respectively. Analysis were run three times, limiting the
number of features analyzed to the 7, 10, and 12 most common ones; the boxplots for each data set are shown in
increasing order of number of features. For data sets such as, say, Pancreas genes (PG), using 7, 10, or 12 maximum
features makes no difference in the number of features analyzed; the three replicate runs show run-to-run variability.
A) |5, p: ]S statistic for the comparison of the distribution of paths from running CBN on the original data set against
the distribution of paths from running CBN on each one of the bootstrap runs. B) Diamonds show the S, from the
full data, and boxplots the S. from the boostrap runs. Right axis labeled by number of equiprobable paths equivalent
to the S..
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Figure 8: Summary patterns for average JS, ;, JS for the full data vs. bootstrap runs as a function of sample size,
number of features analyzed, and S (from the full original data set) for the cancer data sets using the statistics from
the analysis with 12 features. See legend of Figure 7 for labels.
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