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Summary 12 
- The regulation of resource allocation in biological systems observed today is the cumulative result 13 

of natural selection in ancestral and recent environments. To what extent are observed resource 14 

allocation patterns in different photosynthetic types optimally adapted to current conditions, and 15 

to what extend do they reflect ancestral environments? Here, we explore these questions for C3, 16 

C4, and C3-C4 intermediate plants of the model genus Flaveria. 17 

- We developed a detailed mathematical model of carbon fixation, which accounts for various 18 

environmental parameters and for energy and nitrogen partitioning across photosynthetic 19 

components. This allows us to assess environment-dependent plant physiology and performance 20 

as a function of resource allocation patterns. 21 

- To achieve maximal CO2 fixation rates under growth conditions differing from those experienced 22 

during their evolution, C4 species need to re-allocate significantly more nitrogen between 23 

photosynthetic components than their C3 relatives. As this is linked to a limited phenotypic 24 

plasticity, observed resource distributions in C4 plants still reflect optimality in ancestral 25 

environments, allowing their quantitative inference. 26 

- Our work allows us to quantify environmental effects on resource allocation and performance of 27 

photosynthetic organisms. This understanding paves the way for interpreting present 28 

photosynthetic physiology in the light of evolutionary history. 29 

 30 

Key Words 31 

C4 photosynthesis, C3 photosynthesis, C3-C4 photosynthesis, evolution, Flaveria, phenotypic plasticity, 32 

resource allocation, systems modeling 33 

Introduction  34 

Metabolic efficiency is an important determinant of organismal fitness (Ibarra et al., 2002; Heckmann et 35 

al., 2013). Major constraints on metabolic fluxes can arise from scarcity of chemical compounds, e.g., 36 

nitrogen necessary to produce enzymes (Baudouin-Cornu et al., 2001), or from the limited solvent 37 

capacity of cellular compartments (Atkinson, 1969; Beg et al., 2007). To ensure optimal metabolic 38 

efficiency, gene regulation has to balance available resources appropriately. Modern methods of 39 

modeling metabolism rely strongly on the assumption of metabolic optimality under physico-chemical 40 

constraints (Oberhardt et al., 2009; de Oliveira Dal'Molin et al., 2010; Dourado et al., 2017). Accordingly, 41 

resource allocation and its constraints are under intense investigation, although these studies are mostly 42 
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restricted to unicellular organisms. However, the metabolic efficiency of a given metabolic system is not 43 

static, but depends on the environment. Thus, uncertainties about the environmental properties that an 44 

organism has adapted to remain a major obstacle in the application of these methods. Autotrophic 45 

systems, such as plant leaves, are ideal to study the interaction of the environment and resource 46 

allocation, as the diversity of nutrient sources is much lower than for heterotrophs, which results in a 47 

reduced complexity of the space of possible environments. Furthermore, the effect of environmental 48 

factors on plant performance, e.g., the rate of CO2 assimilation, have been studied intensively (von 49 

Caemmerer, 2000). In particular, C3 and C4 photosynthesis represent complementary gene expression and 50 

resource allocation patterns that result in high fitness in specific ecological niches.  51 

 52 

In all plants, the fixation of carbon from CO2 is catalyzed by the enzyme ribulose-1,5-bisphosphate 53 

carboxylase/oxygenase (Rubisco) as part of the Calvin-Benson cycle. Rubisco also shows an affinity for O2, 54 

resulting in a toxic by-product, which needs to be recycled by the photorespiratory pathway and causes a 55 

significant loss of carbon and energy (Maurino & Peterhansel, 2010). Rubisco is an important resource 56 

sink in the leaf proteome of plants: it utilizes up to 30% of leaf nitrogen and up to 65% of total soluble 57 

protein (Ellis, 1979; Makino et al., 2003). While C3 plants operate the Calvin-Benson cycle in their 58 

mesophyll cells to fix carbon, C4 plants express it in the bundle sheath cells and use phosphoenolpyruvate 59 

(PEP) carboxylase (PEPC) for the initial fixation of carbon. The resulting C4 acids are eventually 60 

decarboxylated in the bundle sheath cells, creating a local high-CO2 environment around Rubisco that 61 

suppresses photorespiration. The C4 cycle is completed by the regeneration of PEP by pyruvate, phosphate 62 

dikinase (PPDK).  63 

 64 

Compared to C3 photosynthesis, C4 metabolism requires additional nitrogen to produce the C4 enzymes; 65 

this additional investment is counteracted by reduced Rubisco requirements due to the concentration of 66 

CO2 around Rubisco (Sage, 2004). The energy requirements of C4 metabolism also differ from those of the 67 

C3 pathway (Munekage & Taniguchi, 2016), as further ATP is needed for the regeneration of PEP, while 68 

ATP and NADPH requirements of the photorespiratory pathway are reduced. The metabolic efficiencies 69 

of the C3 and C4 system depend strongly on the environment. To achieve optimal metabolic efficiency, 70 

plants have to coordinate gene expression of the Calvin-Benson cycle, C4 cycle, photorespiration, and light 71 

reactions in a complex response to the availability of light energy and nitrogen, as well as factors that 72 

influence the rate of photorespiration. The diversity of photosynthetic resource allocation patterns is 73 

emphasized by the existence of C3-C4 intermediate photosynthesis in some plants, where features of the 74 
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archetypical C4 syndrome are only partially expressed. The Flaveria genus contains closely related plants 75 

of C3, C4, and C3-C4 intermediate types, making it an ideal system to study the interaction between 76 

resource allocation and environment in photosynthesis. 77 

 78 

The selection pressures caused by environmental factors over evolutionary time scales are expected to 79 

lead to corresponding adaptations of gene regulation. In contrast, environmental variation on the time 80 

scale of individual generations may select for regulatory programs that adjust plant metabolism to the 81 

environment they currently face, a process called phenotypic plasticity. Reviewing the occurrence of 82 

phenotypic plasticity in C3 and C4 plants, Sage and McKown (2006) concluded that C4 plants show inherent 83 

constraints that prevent the acclimation to environmental changes. Although the occurrence of 84 

phenotypic plasticity in plants is intensively studied, the plasticity in terms of resource allocation is not 85 

fully understood. In particular, it is not clear whether the phenotypic plasticity of different plant lineages 86 

is sufficient to acclimate optimally to the current environment; instead, many plants might still allocate at 87 

least parts of their resources in patterns that were optimal in the environments that dominated their 88 

recent evolutionary history. 89 

 90 

The areas where C4 dicotyledonous plants are assumed to have evolved are regions of low latitude 91 

showing combinations of heat, drought, and salinity (Sage, 2004). For Flaveria, analyses that combine 92 

phylogenetic context and environmental information point toward an evolutionary origin in open habitats 93 

with high temperatures (Powell, 1978; Sage, 2004; McKown et al., 2005). The last common C3 ancestor of 94 

the current Flaveria species lived 2–3 million years ago (Christin et al., 2011), when CO2 levels were 95 

significantly lower than the current, postindustrial level (Sage & Cowling, 1999; Gerhart & Ward, 2010). In 96 

summary, Flaveria species likely faced high light intensities, high temperature, and low atmospheric CO2 97 

level during their recent evolutionary history. 98 

 99 

Here, we aim for a detailed understanding of the interplay between resource allocation and current and 100 

past evolutionary environments in plant physiology, examining C3, C4, and C3-C4 intermediate 101 

photosynthesis. To achieve this goal, we developed a mathematical model for these photosynthetic types 102 

that integrates knowledge on resource costs and relevant environmental factors. Using this model, we 103 

seek to understand (1) to what extent resource allocation is phenotypically plastic and to what extent it 104 

appears adapted to an environment the plants were facing during their evolutionary history; and (2) if 105 

resource allocation patterns can be used to identify unique environments of optimal adaption.  106 
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Results 107 

Predicting resource allocation and fitness across environments and photosynthetic types: 108 

a mathematical model 109 

The standard method to model the light- and enzyme-limited CO2 assimilation rate of C3, C4, and C3-C4 110 

intermediate plants is based on the mechanistic biochemical models of Berry and Farquhar (1978), 111 

Farquhar et al. (1980), and von Caemmerer (1989; 2000). With great success, these models predict the 112 

CO2 assimilation rate considering enzymatic activities and various environmental parameters, including 113 

mesophyll CO2 level and light intensities. In many ecosystems, the most limiting resource for plant growth 114 

is nitrogen (Malhi et al., 2001; Vance, 2001). The increased nitrogen-use efficiency of C4 species compared 115 

to C3 relatives indicates that nitrogen availability may have played a major role in C4 evolution (Vogan & 116 

Sage, 2011). However, existing model implementations predict CO2 assimilation rates from known or 117 

estimated enzyme activities and electron transport capacity. Thus, these models do not allow to assess 118 

the effects of nitrogen investment into different classes of proteins—including enzymes and components 119 

of the electron transport chain—on the CO2 assimilation rate of a given photosynthetic type in a specific 120 

environment.  121 

 122 

Here, we present a nitrogen-dependent light- and enzyme-limited model for the steady-state CO2 123 

assimilation rate (Fig. 1). The model describes C3, C4, and all intermediate photosynthetic types depending 124 

on its parameterization, including the nitrogen investment into its different components (see Heckmann 125 

et al. (2013) for details and Supporting Information for our parameterization). We modified the light- and 126 

enzyme-limited C3-C4 models developed by von Caemmerer (2000) and added a fixed budget of nitrogen 127 

constraining the total abundance of photosynthetic proteins. Furthermore, we extended the existing 128 

models by explicitly modeling the ATP and NADPH production of the linear and cyclic electron transport 129 

(LET and CET, respectively). Thus, a photosynthetic nitrogen budget is distributed across the enzymes of 130 

the Calvin-Benson cycle in the mesophyll and bundle sheath cell, the C4 cycle, and the proteins of the 131 

linear and cyclic electron transport in the thylakoid membranes. Combining this model with the 132 

temperature dependency of the photosynthetic apparatus (Massad et al., 2007) results in a detailed 133 

model of photosynthesis that incorporates leaf nitrogen level, light intensity, mesophyll CO2 and O2 levels, 134 

as well as the effects of temperature (see Methods for details). 135 

 136 

In order to understand physiological data in the context of adaptive environments, we aim to find optimal 137 

resource allocation in a given environment. To this end, we assume that resource allocation has been 138 
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optimized by natural selection to maximize the net CO2 assimilation rate (Zhu et al., 2007; Gerhart & Ward, 139 

2010; Vogan & Sage, 2012). We developed a robust optimization pipeline that reliably finds optimal 140 

resource allocation dependent on environments and photosynthetic types (see Methods for details). In 141 

previous work, optimality assumptions were successfully used in a variety of plant systems biology 142 

contexts; examples are candidate identification of photosynthetic engineering targets (Zhu et al., 2007), 143 

explanation of the coordination of C3 photosynthesis (Friend, 1991; Maire et al., 2012), the exploration of 144 

evolutionary trajectories of C4 photosynthesis (Heckmann et al., 2013) and of inter-cellular pathways in C2 145 

plants (Mallmann et al., 2014), and the prediction of dynamic proteome allocation in cyanobacteria 146 

(Reimers et al., 2017). We use optimality of CO2 fixation rate to determine (1) the optimal partitioning of 147 

NADPH between the Calvin-Benson cycle and the photorespiratory pathway, (2) the optimal partitioning 148 

of ATP across the Calvin-Benson cycle, photorespiratory pathway, and the C4 cycle (if relevant), (3) the 149 

optimal proportion of LET and CET, and (4) the relative investment of nitrogen into Rubisco, the C4 cycle 150 

enzymes, and the proteins of the light-dependent reactions (see Methods). For a specific photosynthetic 151 

type, the optimization procedure estimates the resource allocation that is optimally adapted to a given 152 

environment. Note that at the point of optimal resource allocation, the light- and enzyme-limited CO2 153 

assimilation rates are equal, as otherwise resources could be shifted from the non-limiting to the limiting 154 

sector. 155 

 156 

Optimal resource allocation in the evolutionarily relevant environment explains 157 

physiological data and outperforms models based on the growth environment in C4 plants 158 

Do photosynthetic types exhibit differences in phenotypic plasticity, i.e., do they differ in their ability to 159 

adjust their photosynthetic resource allocation to optimally fit the environment in which they were 160 

grown? Or is resource investment static and reflects past environments in which the plants’ ancestors 161 

evolved? To compare these competing hypotheses, we predict physiological data of plants that are either 162 

optimally adapted to the experimental growth conditions used in the respective studies (‘growth 163 

scenario’) or to the environments in which they likely evolved (‘evolutionary scenario’). This in silico 164 

experiment also serves as validation for our modeling framework; if the parameterization for Flaveria and 165 

our optimality assumptions are correct, we would expect the model to explain physiological responses in 166 

one of the two or an intermediate scenario. Based on the suggested environment of C4 evolution in 167 

Flaveria (Powell, 1978; Sage, 2004; McKown et al., 2005), the evolutionary environment is defined as 168 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/371096doi: bioRxiv preprint 

https://doi.org/10.1101/371096


7 
 

having 1750 µmol quanta m-2 s-1 light intensity, 30°C temperature, 150 µbar mesophyll CO2, and 200 mbar 169 

mesophyll O2. 170 

 171 

Vogan and Sage (2012) measured the net CO2 assimilation rate as a function of intercellular CO2 172 

concentration (A-Ci curve) for Flaveria robusta (C3), F. ramosissima (C3-C4), and F. bidentis (C4). In this 173 

experiment, plants were grown at light intensities of 560 µmol quanta m-2 s-1, 37°C at daytime, current 174 

atmospheric O2 concentration and current or low atmospheric CO2 concentrations. However, CO2 175 

assimilation curves calculated from a model parameterized for optimal CO2 assimilation in these growth 176 

conditions are qualitatively different from the experimental curves (Fig. 2a; Supporting Information Figs. 177 

S2–S4). In contrast, the modeled curves based on a model optimally adapted to the evolutionary scenario 178 

are qualitatively consistent with the measured curves; this difference is especially pronounced in the case 179 

of the C4 plant F. bidentis. 180 

 181 

In the same study, Vogan and Sage (2012) measured the CO2 assimilation rate for temperatures between 182 

15°C and 45°C (A-Temperature curve; Fig. 2b; Supporting Information Fig. S5). The results assuming an 183 

optimal allocation under the evolutionary scenario agree qualitatively with the measured data, again in 184 

contrast to the values predicted from a model optimally adapted to the growth environment. Note that 185 

none of the species in this data set were used to obtain the temperature response curves used in the 186 

model (see Methods).  187 

 188 

In an independent experiment, Vogan and Sage (2011) measured the dependence of CO2 assimilation rate 189 

on leaf nitrogen levels in C3, C3-C4 intermediate, C4-like, and C4 Flaveria species (Fig. 3). The plants were 190 

grown at 554 µmol quanta m-2 s-1 light intensity, 30°C at daytime, at current atmospheric CO2 and O2 191 

concentrations. Again, the model results assuming optimal resource allocation in the evolutionary 192 

scenario are consistent with the measured data and outperform the results based on optimality in the 193 

growth scenario for C3-C4 intermediate, C4-like, and C4 plants.  194 

 195 

We quantified the disagreement between measured curves and predicted results through the residual 196 

sum of squares (Table 1). In C4 and C4-like plants, the evolutionary scenario predicts all measured curves 197 

better than the growth scenario, except for the A-Temperature curve for C4 plants grown at low CO2 198 

concentration. Jointly considering all measured curves in Figs. 2 and 3 as well as Supporting Information 199 

Figs. S2–S5 (Vogan & Sage, 2011; Vogan & Sage, 2012), we find that for the C4 and C4-like species, squared 200 
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residuals for the evolutionary scenario are statistically significantly smaller than for the growth scenario 201 

(C4: P = 6.0x10-8; C4-like: P = 0.007; Wilcoxon rank sum tests). This finding indicates that observed resource 202 

allocation patterns in C4 and C4-like plants reflect past environments relevant during evolution more than 203 

the environment in which the assayed plants were grown. Conversely, and as expected from Table 1, the 204 

observed differences between predictions from the evolutionary and growth scenario are not statistically 205 

significant for the C3 and the C3-C4 intermediate species (C3: P = 0.35; C3-C4: P = 0.55).  206 

 207 

Dwyer et al. (2007) performed detailed experiments on the photosynthetic resource allocation and 208 

performance of the C4 species F. bidentis. This data allows us to compare the predicted nitrogen 209 

investment into the three major photosynthetic components—Rubisco, C4 cycle, and electron transport 210 

chain—as well as the corresponding CO2 assimilation rate to experimentally observed resource allocation 211 

patterns. The plants were grown under 25°C or 35°C at daytime, 550 µmol quanta m-2 s-1, and current 212 

atmospheric CO2 and O2 concentrations. Model predictions of chlorophyll content and the amount of 213 

photosystem II agree within a factor of 1.10 to 1.22 with values measured by Dwyer et al. (2007) (see 214 

Supporting Information Table S7). For plants grown at 25°C, the resource allocation determined under the 215 

evolutionary scenario agrees with the measured data within a factor of 0.47 to 1.22 (Fig. 4a); at 35°C, 216 

agreement is within a factor of 0.43 to 1.12 (Fig. 4b). In both cases, agreement is much lower for 217 

predictions in the growth scenario. We assessed the statistical significance of the superior performance 218 

of the evolutionary scenario by comparing the distributions of the squared residuals (expressed as 219 

fractions of the experimental means). The resource allocation calculated for the evolutionary scenario 220 

outperforms the growth scenario significantly for the data represented in Fig. 4 (P = 7.2x10-5, Wilcoxon 221 

rank sum test).  222 

 223 

Although we could obtain the majority of our model parameters from the literature, the relationship of 224 

cytochrome f and the maximal electron transport rate of the CET had to be estimated (see Methods). We 225 

performed a sensitivity analysis to examine the robustness of the results to changes in the estimated 226 

parameters and to uncertainties in values obtained from the literature, focusing on parameters with high 227 

uncertainty or major expected effect on model predictions (see Supporting Information Method S5). The 228 

predictions based on the evolutionary scenario outperform those based on the growth environment 229 

consistently across all parameter sets (Supporting Information Fig. S1).  230 

 231 
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The model identifies a unique evolutionary environment for C4 photosynthesis in Flaveria 232 

The model optimally adapted to the evolutionary scenario leads to superior predictions of plant 233 

performance and resource allocation in C4 plants compared to a parameterization optimized for the 234 

growth scenario across diverse physiological data sets. The inferior performance of the growth scenario 235 

model indicates a lack of phenotypic plasticity of resource allocation in C4 plants. This finding points to the 236 

possibility that the environment most relevant for recent evolutionary adaptation of a given C4 plant could 237 

be inferred quantitatively from observations on plant physiology and resource allocation. Thus, to infer a 238 

typical evolutionary environment for C4 Flaveria bidentis, we calculated optimal resource allocation under 239 

conditions covering plausible ranges of mesophyll CO2 partial pressure, temperature, and light intensities 240 

to identify the conditions that best explain the empirical data (Fig. 5). As atmospheric O2 concentration 241 

remained almost constant for at least the last few million years (Gerhart & Ward, 2010), this 242 

environmental parameter is set to a constant value. We use the empirical data of Dwyer et al. (2007), as 243 

this data set comprises detailed measurements for each nitrogen pool and the resulting CO2 assimilation 244 

rate, allowing us to quantify the discrepancy between modeled and measured values as the mean squared 245 

residuals (expressed as fractions of experimental means). 246 

 247 

We find that the model showing minimal prediction error defines a unique environment (Fig. 5), exhibiting 248 

1562.5 µmol quanta m-2 s-1 light intensity, 30°C, a mesophyll CO2 level of 100 µbar, and an O2 level of 200 249 

mbar. As indicated in Fig. 5, the areas in which the model successfully describes the empirical values 250 

generally show high light intensities, intermediate to high temperatures, and a trend towards low CO2 251 

partial pressures. High light intensities and low CO2 levels, as in the evolutionary scenario, favor an 252 

increased nitrogen investment into the dark reactions, which goes along with a reduced investment into 253 

the electron transport chain. The effect of temperature is of special importance for plants using the C4 254 

cycle, as temperature increases PEPC activity drastically and therefore reduces the necessary nitrogen 255 

investment into the C4 cycle. This allows an increased investment into the electron transport chain and 256 

Rubisco, which show reduced activity at elevated temperatures due to thermal instabilities.  257 

 258 

Our results indicate that C4 Flaveria species show a lower degree of photosynthetic phenotypic plasticity 259 

than closely related C3 species. On a molecular level, this plasticity predominantly requires the 260 

re-allocation of nitrogen between the major photosynthetic protein pools. To assess the costs of 261 

phenotypic plasticity, we thus quantified the total fraction of nitrogen that needs to be re-allocated 262 

between photosynthetic pools to optimally adjust photosynthesis from the evolutionary scenario to a 263 
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given growth environment (δn, see Methods). We find that photosynthetic types that utilize the C4 cycle 264 

require a consistently higher amount of re-allocation compared to C3 plants (P = 1.5x10-5, sign test, see 265 

Supporting Information Table S5). Our results thus reveal a link between required nitrogen re-allocation 266 

and limited photosynthetic phenotypic plasticity (see Supporting Information Tables S4–S6), suggesting a 267 

possible causal relationship. 268 

Discussion 269 

Our novel modeling framework allows us to study the interplay between photosynthetic plant 270 

performance and resource investment on the molecular level. Comparisons of model predictions with 271 

phenotypic and molecular data reveal that C4 plants have low phenotypic plasticity in terms of resource 272 

allocation. This limited phenotypic plasticity may be explained by the large amount of nitrogen that needs 273 

to be re-allocated by C4 plants to optimally adapt to a given growth environment (Supporting Information 274 

Table S5). The lack of phenotypic plasticity allowed us to make quantitative predictions for the 275 

environments that dominated recent evolution of C4 photosynthesis in Flaveria. Previously, environments 276 

relevant for C4 photosynthesis evolution have been inferred—mostly qualitatively—based on C3-C4 habitat 277 

comparisons (Powell, 1978; Sage, 2004; McKown et al., 2005) and geophysiological considerations 278 

(Christin et al., 2011). Our results are consistent with and refine these earlier estimates. 279 

 280 

In contrast to our findings for C4 and C4-like plants, the performance of the evolutionary and the growth 281 

scenario models is similar for C3 and C3-C4 intermediate Flaveria species (Table 1; Figs. 2 and 3; Supporting 282 

Information Figs. S2–S5). It is conceivable that the lack of superior performance for the evolutionary 283 

scenario in C3 Flaveria species is not a result of higher phenotypic plasticity in these plants, but is due to 284 

an inappropriate parameterization of the evolutionary scenario. The environment most relevant for the 285 

recent evolution of C3 Flaveria may be different from the environment used in the simulations, which was 286 

chosen based on its relevance for the C4 lineages. To explore this possibility, we simulated a wide range 287 

of alternative environments, testing if resource allocation optimized for any of these leads to significantly 288 

improved model predictions for the data from Vogan and Sage (2012) for C3 plants (Supporting 289 

Information Figs. S6 and S7). However, none of the environments tested led to a significant improvement. 290 

This result is in agreement with habitat studies that show that niches of C3 and C4 Flaveria species overlap 291 

(Powell, 1978). A more likely explanation for the similar performance of evolutionary and growth scenario 292 

models in C3 plants could lie in the small amount of re-allocation C3 plants require to transfer adaptively 293 

between environments (Supporting Information Tables S4–S6). Our results thus suggest that C3 (but not 294 
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C4) plants are phenotypically plastic enough to show some degree of adaptation towards current, 295 

postindustrial conditions. 296 

 297 

Given the complexity of our physiological model, we needed to make a number of assumptions. We 298 

addressed uncertainties in model parameters through a sensitivity analysis, showing that our conclusions 299 

are robust against variation in these parameters (Supporting Information Fig. S1). Furthermore, our 300 

predictions assume that nitrogen availability in the evolutionary scenario is identical to current nitrogen 301 

availability. 302 

 303 

Even though we find that the evolutionary scenario leads to superior predictions of physiological 304 

responses in C4 plants when compared to the growth scenario, the PEPC activity predicted to be optimal 305 

in the evolutionary scenario is approximately 55% lower than experimentally observed data (Fig. 4). This 306 

discrepancy might in part be explained by the assumption of a fixed average daytime temperature in the 307 

simulations. Temperature variation strongly affects the PEPC activity; lower temperatures in the morning 308 

and evening may require higher PEPC activity than assumed in the simulations. Although predictions for 309 

total nitrogen investment into the thylakoids based on the evolutionary scenario are highly consistent 310 

with the measurements, the model overestimates the amount of cytochrome f by a factor of 2 (1.65 µmol 311 

m-2 instead of the measured 0.87 µmol m-2 for plants grown at 25°C, 1.43 µmol m-2 instead of 0.81 µmol 312 

m-2 at 35°C). However, the error of the measurements is uncertain, as no replicate measurements were 313 

performed for this parameter (Dwyer et al., 2007). Discrepancies between model predictions and 314 

observations may also be in part due to error propagation from modeled amounts of chlorophyll and the 315 

photosystems. In each simulation, we optimized resource allocation for an environment that represents 316 

a static approximation to the dynamic environment a plant is facing. As diurnal and annual variations 317 

(which are no focus of this work) potentially show short-term trade-offs (Mori et al., 2017; Reimers et al., 318 

2017), these might lead to a discrepancy between modeled and real evolutionary scenario. In particular, 319 

the difference between periodic and fluctuating conditions of the natural ancestral habitat on one hand, 320 

and the stable experimental growth conditions in audited growth chambers and the statically modeled 321 

evolutionary scenario on the other hand might have a strong effect.  322 

 323 

In summary, we developed a general model of the complex photosynthetic apparatus, its resource 324 

requirements, and its interactions with environmental conditions. The presented modeling pipeline allows 325 

us to determine the extent of phenotypic plasticity and the relevance of different environmental 326 
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conditions for photosynthetic organisms using C3, C3-C4 intermediate, and C4 metabolism. Applied to the 327 

physiological data from Flaveria, our work points to a strongly constrained phenotypic plasticity of C4 328 

plants towards all considered environmental factors. This allows us to infer unique selective environments 329 

from plant performance and resource allocation data. More generally, our model provides a powerful tool 330 

to analyze the resource allocation of photosynthetic organisms and its dependence on environmental 331 

factors, allowing estimates for physiological and molecular parameters for which measurements are 332 

currently infeasible or impractical. This may prove to be of particular utility for systematically assessing 333 

the likely performance of crops in environments distinct from their natural habitats and for suggesting 334 

engineering targets in cases of limited phenotypic plasticity.  335 

 336 

Description 337 

Model overview 338 

The nitrogen-dependent light- and enzyme-limited model allows us to calculate the 339 

environment-dependent net steady-state CO2 assimilation rate (A) of C3, C4, and all C3-C4 intermediate 340 

photosynthetic types. The model inputs are parameters defining the photosynthetic type and species-341 

specific, invariable biochemical properties of the leaf to be modeled. Additionally, the input parameters 342 

comprise the following environmental factors: light intensity, leaf nitrogen level, temperature, and CO2 343 

and O2 mesophyll partial pressures. We simulate a plant that is adapted to the input environment with 344 

respect to photosynthetic nitrogen and energy allocation. To this end, the nitrogen and energy allocation 345 

pattern that maximizes the net steady-state CO2 assimilation rate (A) is calculated via optimization, subject 346 

to the environmental and species-specific input parameters.  347 

Environmental factors and evolutionary parameters 348 

We specify the environment in terms of the following factors: light intensity, leaf nitrogen level, 349 

temperature, and CO2 and O2 mesophyll partial pressures. The photosynthetic type is defined by six 350 

parameters: the Rubisco distribution between mesophyll and bundle sheath cells (β); the Rubisco kinetics, 351 

(specified through a single parameter, kccat [µmol m-2 s-1], due to the known trade-off relationships 352 

between the kinetic parameters (Savir et al., 2010)); the maximal C4 cycle activity (Vpmax, [µmol m-2 s-1]); 353 

the fraction of glycine decarboxylated by the glycine decarboxylase complex in the bundle sheath cell that 354 

is derived from oxygenation by Rubisco in the mesophyll cell (ξ); the Michaelis constant of PEPC for 355 

bicarbonate (Kp, [µbar]), and the bundle sheath cell conductance (gs, [µmol m-2 s-1]) (see Heckmann et al. 356 
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(2013) for details). The values for the parameters are taken from the literature (see Supporting 357 

Information for details). 358 

Nitrogen allocation 359 

To calculate the CO2 assimilation rate, we focus on the photosynthetic nitrogen pool (Nps, [µmol m-2]). In 360 

our model, Nps can be allocated across the following major pools of leaf photosynthetic nitrogen: the main 361 

enzyme of the Calvin-Benson cycle (nEtot), Rubisco; the main enzymes of the C4 cycle (nC4), PEPC and PPDK; 362 

and the thylakoids (nJmax), which include the electron transport chains. Nps is calculated as a fraction of 363 

total leaf nitrogen (Nt, [µmol m-2]) based on phenomenological observations according to Eqn 1, which 364 

comprises measured values for the investment into Rubisco, 12%, and the investment into the thylakoids 365 

(nfit, [fraction]) of C3 plants (Vogan & Sage, 2011; Vogan & Sage, 2012). nfit represents a fit of the proportion 366 

of nitrogen invested into the thylakoids as a function of Nt, based on the data of Vogan and Sage (2011).  367 

 𝑁𝑝𝑠 = (0.12 + 𝑛𝑓𝑖𝑡) ∙ 𝑁𝑡 (1) 368 

with 369 

𝑛𝑓𝑖𝑡 = (
50.38 − 0.270 ∙ 𝑁𝑡 ∙ 10−3 + 0.0005035 ∙ (𝑁𝑡  ∙ 10−3)2

100
) 370 

We assume a nitrogen investment into the photorespiratory enzymes of 13.8%, as suggested by Zhu et al. 371 

(2007) for a ‘typical’ C3 plant. To account for the reduced enzyme requirements of the photorespiratory 372 

cycle, we assume that Nps increases by 10% in plants that show sufficient C4 cycle activity; in our analyses, 373 

this applies to the C3-C4 intermediate, C4-like, and C4 species.  374 

Nitrogen allocated to Rubisco 375 

We only consider the nitrogen requirements of Rubisco in the Calvin-Benson cycle, as it accounts for the 376 

major nitrogen costs of this cycle (Evans & Seemann, 1989). The amount of catalytic sites of Rubisco (Etot, 377 

[µmol m-2]) is calculated from the invested nitrogen by Eqn 2, where nEtot represents the fraction of Nps 378 

invested into Rubisco: 379 

 𝐸𝑡𝑜𝑡 =
n𝐸𝑡𝑜𝑡 ∙ 𝑁𝑝𝑠 ∙ 8 

11.4 ∙ 550
 (2) 380 

The parameters of this relationship are taken from Harrison et al. (2009).  381 

 382 

Nitrogen allocated to enzymes of the C4 cycle 383 

The nitrogen cost of C4 cycle enzymes is calculated from data on enzyme kinetics. The nitrogen 384 

requirements of the C4 cycle consider co-limitation of PEPC and PPDK, whose molecular weight (MW) and 385 

kcat are used to calculate the maximal rate of C4 cycle activity (Evans & von Caemmerer, 2000; Wang et al., 386 
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2014). Eqn 3 represents the relationship between Vpmax and nitrogen investment into the C4 enzymes 387 

(nC4Nps). MW* represents the nitrogen requirement of a catalytic site, assuming the nitrogen content is 388 

16% (Makino et al., 2003). Indices declare the considered enzyme.  389 

 𝑉𝑝𝑚𝑎𝑥 =
𝑛𝐶4 ∙ 𝑁𝑝𝑠 

(
𝑀𝑊∗

𝑃𝑃𝐷𝐾
𝑘𝑐𝑎𝑡𝑃𝑃𝐷𝐾

)+(
𝑀𝑊∗

𝑃𝐸𝑃𝐶
𝑘𝑐𝑎𝑡𝑃𝐸𝑃𝐶

)
 (3) 390 

Nitrogen and the maximal electron transport rate 391 

Nitrogen invested into the thylakoids (Nthy = Nt nthy, [µmol m-2]) is related to the maximal electron transport 392 

rate (Jmax, [µmol m-2 s-1]) via the amount of cytochrome f (cyt, [mmol/mol Chl]) and by considering 393 

photosystems I and II (PSI and PSII, [mmol/mol Chl]) as well as the light harvesting complexes (LHC, 394 

[mmol/mol Chl]). We use data from Ghannoum et al. (2005) for abundances of PSI and PSII to include 395 

phenomenological stoichiometry rules between LHC and the components of the electron transport chain 396 

(Eqns 4–8) and to relate Nthy to the amount of cyt (Eqns 9–11). We assume that the chlorophyll content is 397 

shared between PSI, PSII, and LHC (Eqns 7 and 8). To be able to consider LET and CET, these complexes 398 

are split according to the proportion of LET (p) and CET (1 - p). Indices represent the considered pathway. 399 

 𝑃𝑆𝐼𝐿𝐸𝑇 = 2 ∙ 𝑝  (4) 400 

 𝑃𝑆𝐼𝐶𝐸𝑇 = 2 ∙ (1 − 𝑝) (5) 401 

 𝑃𝑆𝐼𝐼 = 2.5 (6) 402 

 𝐿𝐻𝐶𝐿𝐸𝑇 =
1000 ∙ 𝑝−𝑃𝑆𝐼𝐼 ∙ 60−𝑃𝑆𝐼𝐿𝐸𝑇 ∙ 184

13
 (7) 403 

 𝐿𝐻𝐶𝐶𝐸𝑇 =
1000 ∙ (1−𝑝)−𝑃𝑆𝐼𝐶𝐸𝑇 ∙ 184

13
 (8) 404 

 405 

For the LET, Jmax is related to Nthy as described in Eqns 9–12. cytJmax describes the relation of cyt to Jmax and 406 

was measured by Niinemets and Tenhunen (1997), who determined 156 (mmol e-)/(mmol cyt s) across 407 

various C3 species. Assuming 95% of LET in C3 plants, this leads to a capacity of 172 (mmol e-)/(mmol cyt 408 

s) for cytJmax. 409 

 𝑁𝑡ℎ𝑦𝐿𝐸𝑇
=

𝑛𝐽𝑚𝑎𝑥 ∙ 𝑁𝑝𝑠 ∙ 𝑝

𝐶ℎ𝑙
 (9) 410 

 𝑁𝐿𝐻𝐿𝐸𝑇 = 𝑃𝑆𝐼𝐼 ∙ 83.3 ∙ 0.06 + 𝑃𝑆𝐼𝐿𝐸𝑇 ∙ 32.8 ∙ 0.184 + 𝐿𝐻𝐶𝐿𝐸𝑇 ∙ 26 ∙ 0.013 (10) 411 

 𝑐𝑦𝑡𝐿𝐸𝑇 =
1

8.85
(𝑁𝑡ℎ𝑦𝐿𝐸𝑇

− 𝑁𝐿𝐻𝐿𝐸𝑇
) (11) 412 

 𝐽𝑚𝑎𝑥𝐿𝐸𝑇 = max (0,
𝑐𝑦𝑡𝐿𝐸𝑇 ∙ 𝐶ℎ𝑙 ∙ 𝑐𝑦𝑡𝐽𝑚𝑎𝑥

1000
) (12) 413 

 414 
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Chlorophyll content (Chl, [µmol m-2]) is calculated based on an empirical factor (Vogan & Sage, 2012) that 415 

relates the amount of nitrogen invested into thylakoids (nfit Nt, Eqn 1) to the amount of chlorophyll in C3 416 

plants: 417 

 𝐶ℎ𝑙 =  𝑛𝑓𝑖𝑡 ∙ 𝑁𝑡 ∙ 0.0158887 (13) 418 

The response of chlorophyll content to leaf nitrogen does not differ significantly between different 419 

photosynthetic types in Flaveria (Vogan & Sage, 2011). 420 

 421 

The derivation for the CET is analogous to the case of the LET (Eqns 14–17); additionally, the factor JmaxCL 422 

is required, which describes the scaling of Jmax with cyt for the CET: 423 

 𝑁𝑡ℎ𝑦𝐶𝐸𝑇
=

𝑛𝐽𝑚𝑎𝑥 ∙ 𝑁𝑝𝑠 ∙ (1−𝑝)

𝐶ℎ𝑙
 (14) 424 

 𝑁𝐿𝐻𝐶𝐸𝑇 = 𝑃𝑆𝐼𝐶𝐸𝑇 ∙ 32.8 ∙ 0.184 + 𝐿𝐻𝐶𝐶𝐸𝑇 ∙ 26 ∙ 0.013 (15) 425 

 𝑐𝑦𝑡𝐶𝐸𝑇 =
1

8.85
(𝑁𝑡ℎ𝑦𝐶𝐸𝑇

− 𝑁𝐿𝐻𝐶𝐸𝑇
) (16) 426 

 𝐽𝑚𝑎𝑥𝐶𝐸𝑇 = max (0,
𝑐𝑦𝑡𝐶𝐸𝑇 ∙ 𝐶ℎ𝑙 ∙ 𝑐𝑦𝑡𝐽𝑚𝑎𝑥 ∙ 𝐽𝑚𝑎𝑥𝐶𝐿

1000
) (17) 427 

 428 

Optimization procedure 429 

To find the maximal CO2 assimilation rate under the given environmental, physiological, and biochemical 430 

constraints, we optimize the allocation of photosynthetic nitrogen (assumed to depend only on total leaf 431 

nitrogen) into Rubisco, C4 cycle, LET, and CET through an augmented Lagrangian approach. The 432 

optimization is constrained to make sure that the results are biologically realistic, e.g., C3 species were not 433 

able to invest nitrogen into the C4 cycle (see Supporting Information for additional details). 434 

 435 

The model and its optimization were implemented in the R environment (R Core Team, 2017), using the 436 

auglag-function of the package ‘nloptr’ (Johnson, see Supporting Information for details). The 437 

optimization algorithm can use various local solvers; we chose a derivative-free solver, ‘COBYLA’. We 438 

adapted the parameters of the auglag-function as follows: (1) xtol_rel=1x10-100, i.e., we stop the 439 

optimization when all parameters changed by a proportion <1x10-100 in the last iteration; (2) localtol, the 440 

tolerance applied in the selected local solver, is set to 1x10-100; and (3) maxeval, the maximal number of 441 

optimization iterations, is set to 5x103. To ensure robust retrieval of the global optimum, we perform a 442 

large number of optimizations starting from a wide range of initial values (see Supporting Information for 443 

details). The successful run resulting in the maximal CO2 assimilation rate is used. 444 

 445 
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Modeling the effect of light 446 

The relationship of the electron transport rate (Jt, [µmol m-2 s-1]) and the absorbed light of a certain 447 

irradiance (I, [µmol m-2 s-1]) is presented in Eqns 18–20. I is related to Jt by a widely accepted empirical 448 

hyperbolic function (Eqn 18), (von Caemmerer, 2000; Bernacchi et al., 2003) that includes the following 449 

parameters: (1) Jmax, the maximum electron transport rate; (2) Θ, the convexity of the transition between 450 

the initial slope and the plateau of the hyperbola; (3) α, the leaf absorptance; (4) f, a correction factor 451 

accounting for the spectral quality of the light; and (5) p, the fraction of absorbed quanta that reaches PSI 452 

and PSII of LET (with (1 − p) reaching the CET). Iabso is set to ILET and ICET dependent on the considered path 453 

of electron transport. The fraction of irradiance that is absorbed by the LET is shared equally between PSI 454 

and PSII (resulting in the factor 0.5 in Eqn 19), while the fraction of irradiance that is absorbed by the CET 455 

is assumed to reach PSI in full. 456 

 𝐽𝑡 =
𝐼𝑎𝑏𝑠𝑜+𝐽max−√(𝐼𝑎𝑏𝑠𝑜+𝐽max)2−4 𝜃𝐼𝑎𝑏𝑠𝑜𝐽max

2𝜃
 (18) 457 

 𝐼𝐿𝐸𝑇 =  𝐼 ∙ 𝛼 ∙ (1 − 𝑓) ∙  𝑝 ∙ 0.5 (19) 458 

 𝐼𝐶𝐸𝑇 =  𝐼 ∙ 𝛼 ∙ (1 − 𝑓) ∙ (1 − 𝑝 ) (20) 459 

 460 

In our model it is assumed that the electron transport chain is the only source of ATP and NADPH and that 461 

both are used exclusively for CO2 fixation (von Caemmerer, 2000). As NADPH production results from LET, 462 

the amount of electrons is calculated using Eqns 18 and 19. The amount of electrons utilized for ATP 463 

production depends on both LET and CET (see below). There are multiple pathways of CET (Kramer & 464 

Evans, 2011); the model considers those pathways with an active Q-cycle and a ratio of two protons per 465 

electron. Note that Rubisco is assumed to be fully activated, independent of the irradiance (von 466 

Caemmerer, 2000). 467 

 468 

The available energy needs to be partitioned between five pools: (1) the Calvin-Benson cycle (CBB) in the 469 

mesophyll; (2) the CBB in the bundle sheath; (3) the photorespiratory pathway (PR) in the mesophyll; (4) 470 

the PR in the bundle sheath cell; and (5) the C4 pathway. This means that the available energy is calculated 471 

in total and then partitioned (Kanai & Edwards, 1999) into Jmp, Jmc, and Js, the fractions invested into the 472 

C4 cycle, the CBB and the PR in the mesophyll, and the CBB and the PR in the bundle sheath cell, 473 

respectively. During optimization, the activity of each process is constrained by its allocated energy pool, 474 

i.e., the energy allocation equals the relative energy allocation of the processes (see Supporting 475 

Information Method S1 for details). 476 
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 477 

The number of electrons transported to generate one molecule of ATP is unknown; for a discussion, see, 478 

e.g., Amthor (2010). We address these uncertainties by a factor that represents the ratio of electron 479 

transported per ATP in LET, which we set to eATP = 4/3 in this work. In Flaveria, this ratio is supported by 480 

Siebke et al. (1997). The ATP and the NADPH requirements of the CBB, the PR, and the C4 cycle are based 481 

on the work of von Caemmerer (2000, see Supporting Information for equations). The energy 482 

requirements of the C4 cycle are adequate for the C4-subtypes that utilize NAD-malic enzyme or 483 

NADP-malic enzyme, whose ATP demand can be assumed to be equal. For the C4-subtype that utilizes PEP 484 

carboxykinase, the energetic costs are different and currently unclear (Kanai & Edwards, 1999; von 485 

Caemmerer, 2000). 486 

 487 

CO2 assimilation rate  488 

A limitation in the production of both ATP and NADPH arises under light-limited conditions (von 489 

Caemmerer, 2000). The ATP-limited CO2 assimilation rate (𝐴𝑗
𝐴𝑇𝑃) is calculated according to the 490 

light-limiting model of von Caemmerer (2000) (see Supporting Information for equations). The NADPH 491 

limitation is calculated analogously to the ATP-limited scenario (𝐴𝑗
𝑁𝐴𝐷𝑃𝐻, see Supporting Information). 492 

The light-limited CO2 assimilation rate is then: 493 

 𝐴𝑗 = min(𝐴𝑗
𝐴𝑇𝑃, 𝐴𝑗

𝑁𝐴𝐷𝑃𝐻) (24) 494 

 495 

The model for the CO2 assimilation rate when the electron transport rate is not limiting (Ac) is taken from 496 

Heckmann et al. (2013) and extended by a parameter representing the fraction of PSII activity in the 497 

bundle sheath cells, which affects O2 evolution. This parameter is set to p. In the whole model, each 498 

limitation is considered independently; the minimal CO2 assimilation rate determines the limiting process: 499 

 𝐴 = min(𝐴𝑗, 𝐴𝑐) (25) 500 

 501 

Temperature-dependent model 502 

Temperature affects the CO2 assimilation rate by changing the maximal activity of the C4 cycle, the 503 

carboxylation rate of Rubisco, and the electron transport rate. Temperature also affects the specificity of 504 

Rubisco as well as the Michaelis constants of Rubisco and PEPC. We model the temperature response by 505 

an extended Arrhenius function that describes two counteracting effects: rate increases with increasing 506 

temperature and enzyme inactivation through thermal instability (Massad et al., 2007). We use 507 
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parameters taken from literature or fitted to available data (see Supporting Information for the equation 508 

and a full list of parameters and their sources).  509 

 510 

Data used in the analyses 511 

As the raw data of Vogan and Sage (2012) was not available, we extracted it from the corresponding 512 

figures using the Graph Grabber software provided by Quintessa Limited (Version 1.5.5). The measured 513 

curves consider the CO2 assimilation rate per intercellular CO2 concentration (Ci). We assume that the 514 

mesophyll CO2 level is 85% of the Ci. 515 

 516 

For the detailed analysis of the C4 plants (Fig. 4), we used data published by Dwyer et al. (2007) for the 517 

CO2 assimilation rate at 25°C and 35°C, Rubisco catalytic sites, the PEPC activity, and the nitrogen 518 

investment into the thylakoids. As PEPC activity in Flaveria does not serve as a proxy for C4 cycle activity 519 

above values of around 130 µmol m-2 s-1 (Heckmann et al., 2013), the maximal PEPC activity in C4 plants is 520 

set to 130 µmol m-2 s-1. 521 

 522 

Required nitrogen re-allocation (δn) 523 

Required nitrogen re-allocation (δn, [fraction]) is defined as the total fraction of nitrogen that needs to be 524 

re-allocated between photosynthetic pools to optimally adjust photosynthesis from the evolutionary 525 

scenario (𝑛𝐸𝑡𝑜𝑡
𝑒𝑣𝑜 , 𝑛𝐶4

𝑒𝑣𝑜, 𝑛𝐽𝑚𝑎𝑥
𝑒𝑣𝑜 ) to a given growth environment (𝑛𝐸𝑡𝑜𝑡

𝑔𝑟𝑜𝑤𝑡ℎ
, 𝑛𝐶4

𝑔𝑟𝑜𝑤𝑡ℎ
, 𝑛𝐽𝑚𝑎𝑥

𝑔𝑟𝑜𝑤𝑡ℎ
): 526 

 𝛿𝑛 = ∑ |𝑛𝑖
𝑒𝑣𝑜 − 𝑛𝑖

𝑔𝑟𝑜𝑤𝑡ℎ
| i∈{𝐸𝑡𝑜𝑡,𝐶4,𝐽𝑚𝑎𝑥 }  (26) 527 

 528 

Statistical information 529 

The differences between adaptation scenarios are tested with the Wilcoxon rank sum test. Due to 530 

computational limitations, only a limited number of leaf nitrogen levels can be used to calculate the 531 

resource allocation for the data set of Vogan and Sage (2011) (Fig. 3). We considered 16 leaf nitrogen 532 

levels for the calculation of the resource allocation and CO2 assimilation rates. We inferred the CO2 533 

assimilation rates required for the remaining leaf nitrogen levels from linear interpolation between the 534 

two closest leaf nitrogen levels. For the statistical analysis, the data of the modeled species, F. pringlei 535 

(C3), F. floridana (C3-C4), F. palmeri (C4-like), and F. bidentis (C4), was considered. All statistical analyses 536 

were conducted in R (R Core Team, 2017). 537 
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 538 

The difference of δn for various photosynthetic types was tested by a sign test, applied to the data of 539 

Vogan and Sage (2011) (Supporting Information Table S5). 540 
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Figure legend 663 

Table 1 In C4 and C4-like plants, the evolutionary scenario shows significantly smaller residual sum of 664 

squares compared to the growth scenario. The residual sum of squares for the evolutionary and growth 665 
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scenario, each photosynthetic type, and all measured curves of Vogan and Sage (2011) and Vogan and 666 

Sage (2012) are presented. 667 

 668 

Figure 2 Model results based on optimality in the evolutionary scenario (solid lines) describe the measured 669 

data (dots ± SE) better than the model assuming optimal adaptation to the growth conditions (dashed 670 

lines) for F. robusta (C3), F. ramosissima (C3-C4), and F. bidentis (C4) grown at the current CO2 level (data 671 

from Vogan and Sage (2012)). (a) The net CO2 assimilation rate as a function of intercellular CO2 672 

concentration measured at 30°C. (b) The net CO2 assimilation rate as a function of temperature. 673 

 674 

Figure 3 The dependence of the CO2 assimilation rate on leaf nitrogen levels for various Flaveria species 675 

is consistent with model results based on optimality in the evolutionary scenario (solid lines). For C3-C4 676 

intermediate, C4-like, and C4 these results outperform the ones assuming optimal phenotypic adaptation 677 

to the growth conditions (dashed lines). The modeled species are F. pringlei (C3), F. floridana (C3-C4), 678 

F. palmeri (C4-like), and F. bidentis (C4) (data from Vogan and Sage (2011)).  679 

 680 

Figure 4 A detailed analysis of resource allocation and physiology in F. bidentis (C4) shows a good 681 

agreement between experimental data (Dwyer et al., 2007) and model results based on the evolutionary 682 

scenario (orange dots). Alternative model results assuming optimal phenotypic adaptation to the growth 683 

scenario consistently show higher disagreement with the data (purple dots). Values are mean 684 

log2(modeled results/measured data) ± SE. (a) Plants grown at 25°C (b) Plants grown at 35°C. A = net CO2 685 

assimilation rate; N = nitrogen. 686 

 687 

Figure 5 Discrepancy between measured and modeled F. bidentis data across diverse environments. The 688 

black dot indicates the environment that best explains the experimental data of Dwyer et al. (2007). The 689 

deviation between model predictions and measurements (‘error’) is defined as the mean of the squared 690 

residuals (which are expressed as fractions of experimental means). 691 
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Additional supporting information may be found in the online version of this article. 694 
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Methods S1 Details about the optimization procedure of resource allocation 696 
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Table 1 In C4 and C4-like plants, the evolutionary scenario shows significantly smaller residual sum of 721 

squares compared to the growth scenario. The residual sum of squares for the evolutionary and growth 722 

scenario, each photosynthetic type, and all measured curves of Vogan and Sage (2011) and Vogan and 723 

Sage (2012) are presented. 724 
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Fig. 2a 58.1 77.1  93.4 

Fig. 2b 823.7 524.6  155.6 

Fig. 3 549.2 1554.3 1443.5 834.9 

Supporting Information Fig. S2 616.3 299.1  136.9 

Supporting Information Fig. S3 39.9 40.4  166.0 

Supporting Information Fig. S4 137.0 85.6  286.4 
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Fig. 2b 755.2 306.1  340.3 

Fig. 3 386.5 2122.2 3052.2 1873.2 

Supporting Information Fig. S2 252.7 84.9  433.9 

Supporting Information Fig. S3 140.84 50.7  436.1 

Supporting Information Fig. S4 97.8 38.8  460.0 

Supporting Information Fig. S5 13.4 53.9  142.8 
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 726 

Figure 1 An overview of the nitrogen-dependent light- and enzyme-limited model. CO2 entering the 727 

mesophyll cell (M) can be fixed by Rubisco (C3 and intermediates) or PEPC (C4 and intermediates); The C4 728 

cycle then shuttles CO2 fixed by PEPC to the bundle sheath cell (BS) and releases it, allowing it to be re-729 

fixed by Rubisco. The fixation of O2 by Rubisco leads to photorespiration (PCO). Blue arrows indicate the 730 

nitrogen allocation and yellow arrows represent the energy allocation considered in the model.  731 
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 733 

Figure 2 Model results based on optimality in the evolutionary scenario (solid lines) describe the measured 734 

data (dots ± SE) better than the model assuming optimal adaptation to the growth conditions (dashed 735 

lines) for F. robusta (C3), F. ramosissima (C3-C4), and F. bidentis (C4) grown at the current CO2 level (data 736 

from Vogan and Sage (2012)). (a) The net CO2 assimilation rate as a function of intercellular CO2 737 

concentration measured at 30°C. (b) The net CO2 assimilation rate as a function of temperature. 738 
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 740 

Figure 3 The dependence of the CO2 assimilation rate on leaf nitrogen levels for various Flaveria species 741 

is consistent with model results based on optimality in the evolutionary scenario (solid lines). For C3-C4 742 

intermediate, C4-like, and C4 these results outperform the ones assuming optimal phenotypic adaptation 743 

to the growth conditions (dashed lines). The modeled species are F. pringlei (C3), F. floridana (C3-C4), 744 

F. palmeri (C4-like), and F. bidentis (C4) (data from Vogan and Sage (2011)).  745 
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 747 

Figure 4 A detailed analysis of resource allocation and physiology in F. bidentis (C4) shows a good 748 

agreement between experimental data (Dwyer et al., 2007) and model results based on the evolutionary 749 

scenario (orange dots). Alternative model results assuming optimal phenotypic adaptation to the growth 750 

scenario consistently show higher disagreement with the data (purple dots). Values are mean 751 

log2(modeled results/measured data) ± SE. (a) Plants grown at 25°C (b) Plants grown at 35°C. A = net CO2 752 

assimilation rate; N = nitrogen. 753 
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 755 

Figure 5 Discrepancy between measured and modeled F. bidentis data across diverse environments. The 756 

black dot indicates the environment that best explains the experimental data of Dwyer et al. (2007). The 757 

deviation between model predictions and measurements (‘error’) is defined as the mean of the squared 758 

residuals (which are expressed as fractions of experimental means). 759 
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