1 Stout camphor tree genome fills gaps in understanding of flowering plant 2 genome and gene family evolution.

- 3
- 4 Shu-Miaw Chaw¶*¹, Yu-Ching Liu¹, Han-Yu Wang¹, Yu-Wei Wu², Chan-Yi Ivy Lin¹,
- 5 Chung-Shien Wu¹, Huei-Mien Ke¹, Lo-Yu Chang^{1,3}, Chih-Yao Hsu¹, Hui-Ting Yang¹,
- 6 Edi Sudianto¹, Ming-Hung Hsu^{1,4}, Kun-Pin Wu⁴, Ning-Ni Wang¹, Jim Leebens-Mack⁵
- 7 and Isheng. J. Tsai \P^{*1}
- 8
- 9
- 10 ¹Biodiversity Research Center, Academia Sinica, Taipei 11529, Taiwan
- 11 ²Graduate Institute of Biomedical Informatics, College of Medical Science and Technology,
- 12 Taipei Medical University, Taipei 11031, Taiwan
- 13 ³School of Medicine, National Taiwan University, Taipei 10051, Taiwan
- 14 ⁴Institute of Biomedical Informatics, National Yang-Ming University, Taipei 11221, Taiwan
- 15 ⁵Plant Biology Department, University of Georgia, Athens, GA30602, USA
- 16

17 ¶ These authors contributed equally to this work

18 Correspondence: Shu-Miaw Chaw (<u>smchaw@sinica.edu.tw</u>) and Isheng Jason Tsai

- 19 (ijtsai@sinica.edu.tw)
- 20

21

22 Abstract

23 We present reference-quality genome assembly and annotation for the stout camphor 24 tree (SCT; Cinnamomum kanehirae [Laurales, Lauraceae]), the first sequenced member 25 of the Magnoliidae comprising four orders (Laurales, Magnoliales, Canellales, and 26 Piperales) and over 9,000 species. Phylogenomic analysis of 13 representative seed plant genomes indicates that magnoliid and eudicot lineages share more recent common 27 28 ancestry relative to monocots. Two whole genome duplication events were inferred within the magnoliid lineage, one before divergence of Laurales and Magnoliales and 29 30 the other within the Lauraceae. Small scale segmental duplications and tandem 31 duplications also contributed to innovation in the evolutionary history of Cinnamomum. 32 For example, expansion of terpenoid synthase subfamilies within the Laurales spawned 33 the diversity of Cinnamomum monoterpenes and sesquiterpenes.

- 34
- 35
- 36
- 37
- 38

39

40

41 Introduction

Aromatic medicinal plants have long been utilized as spices or curative agents 42 43 throughout human history. In particular, many commercial essential oils are derived from flowering plants in the tree genus *Cinnamomum* L. (Lauraceae)¹⁻³. For example, 44 camphor, a bicyclic monoterpene ketone ($C_{10}H_{16}O$) that can be obtained from many 45 members of this genus, has important industrial and pharmaceutical applications⁴. 46 47 Cinnamomum includes approximately 250 species of evergreen aromatic trees belonging to Lauraceae (laurel family), which is an economically and ecologically 48 49 important family that includes 2,850 species distributed mainly in tropical and subtropical regions of Asia and South America⁵. Among them, avocado (Persea 50 americana), bay laurel (Laurus nobilis), camphor tree or camphor laurel (C. 51 52 *camphora*), cassia (*C. cassia*), and cinnamon (including several *C. spp.*) are important 53 spice and fruit species. Lauraceae has traditionally been classified as one of the seven 54 families of Laurales, which together with Canellales, Piperales and Magnoliales 55 constitute the Magnoliidae ("magnoliids" informally).

56

about 9,000 57 The magnoliids, containing species, are characterized by 3-merous flowers with diverse volatile secondary compounds, 1-pored pollen, and 58 insect-pollination⁶. Many magnoliids – such as custard apple (Annonaceae), nutmeg 59 60 (Myristica), black pepper (Piper nigrum), magnolia, and tulip tree (Liriodendron 61 *tulipifera*) – produce economically important fruits, spices, essential oils, drugs, 62 perfumes, timber, and horticultural ornamentals. The phylogenetic position of magnoliids, however, has been uncertain. Further, there are also unresolved questions 63 64 about genome evolution within the Magnoliidae. Analysis of transcriptome sequences has implicated two rounds of genome duplication in the ancestry of Persea 65 (Lauraceae) and one in the ancestry of *Liriodendron* (Magnoliaceae)⁷, but the relative 66 67 timing of these events remains ambiguous.

68

69 *Cinnamomum kanehirae*, commonly known as the stout camphor tree (SCT), a name 70 referring to its bulky, tall and strong trunk, is endemic to Taiwan and under threat of 71 extinction. It has a restricted distribution in broadleaved forests in an elevational band 72 between 450 and 1,200 meters⁸. *Cinnamomum*, including SCT and six congeneric 73 species contributed to Taiwan's position as the largest producer and exporter of 74 camphor in the 19th century, and its value was further enhanced due to its valuable 75 wood, with trunks exhibiting the largest diameters among flowering plants of Taiwan, and aromatic, decay-resistance attributed to the essential oil D-terpinenol⁹. Antrodia 76 *cinnamomea*, a parasitic fungus that infects the trunks of SCT causing heart rot¹⁰. The 77 fungus produces several medicinal triterpenoids that impede the growth of liver 78 cancer cells^{10,11} and act as antioxidants that protect against atherosclerosis¹². Due to 79 intensive deforestation in the past half century, followed by poor seed germination 80 81 and illegal logging to cultivate the fungus, natural populations of SCT are fragmented and threatened 13,14. 82

83

84 Here we report a chromosome-level genome assembly of SCT. Comparative analyses 85 of the SCT genome with those of 10 other angiosperms and two gymnosperms 86 (ginkgo and Norway spruce) allow us to resolve the phylogenetic position of the magnoliids and shed new light on flowering plant genome evolution. Several gene 87 88 families appear to be uniquely expanded in the SCT lineage, including the terpenoid 89 synthase superfamily. Terpenoids play vital primary roles as photosynthetic pigments 90 (carotenoids), electron carriers (plastoquinone and ubiquinone side chains), and regulators of plant growth (the phytohormone gibberellin and phytol side chain in 91 chlorophvll)¹⁵. Specialized volatile or semi-volatile terpenoids are also important 92 biological and ecological signals that protect plants against abiotic stress and promote 93 94 beneficial biotic interactions above and below ground with pollinators, pathogens, herbivorous insect, and soil microbes¹⁵⁻¹⁸. Analyses of the SCT genome inform 95 understanding of gene family evolution contributing to terpenoid biosynthesis, shed 96 light on early events in flowering plant diversification, and provide new insights into 97 98 the demographic history of SCT with important implications for future conservation 99 efforts.

100

101

102 **Results**

103

104 Assembly and annotation of SCT

105 SCT is diploid (2n=24; Supplementary Fig. 1a) with an estimated genome size of 800 106 to 846 Mb (Supplementary Figs. 1b, 2). An initial assembly with 141x and 50x 107 Illumina paired-end and mate-pair reads, respectively (Supplementary Table 1), 108 produced 48,650 scaffolds spanning 714.7 Mb (scaffold N50 = 594 kb and N90 = 3109 kb; Table 1). A second, long-read assembly derived solely from 85x Pacbio long reads (read N50 = 11.1 kb; contig N50 = 0.9 Mb) was scaffolded with 207x "Chicago" 110 reconstituted-chromatin and 204x Hi-C paired-end reads using the HiRise pipeline¹⁹ 111 112 (Table 1; Supplementary Fig. 3). A final, integrated assembly of 730.7 Mb was

produced in 2,153 scaffolds, comprising 91.3% of the flow cytometry genome size
estimate. The final scaffold N50 was 50.4 Mb with more than 90% in 12
pseudomolecules, presumably corresponding to the 12 SCT chromosomes.

116 Using a combination of reference plant protein homology support and transcriptome 117 sequencing derived from a variety of tissues (Supplementary Fig. 1c and Table 2) and 118 ab initio gene prediction, 27,899 protein-coding genes models were annotated using the MAKER2 pipeline²⁰ (Table 1). Of these, 93.7% were found to be homologous to 119 120 proteins in the TrEMBL database and 50% could be assigned gene ontology terms using eggNOG-mapper²¹. The proteome was estimated to be at least 89% complete 121 based on BUSCO²² (Benchmarking Universal Single-Copy Orthologs) assessment 122 which is comparable to other sequenced plant species (Supplementary Table 3). 123 Orthofinder²³ clustering of SCT gene models with those from twelve diverse seed 124 125 plant genomes yielded 20,658 orthologous groups (OGs) (Supplementary Table 4). 126 24,148 SCT genes (85.8%) were part of OGs with orthologues from at least one other 127 plant species. 3,744 gene models were not orthologous to others, and only 210 genes 128 were part of the 48 SCT specific OGs. Altogether, they suggest that the phenotypic 129 diversification in magnoliids may be fueled by *de novo* birth of species-specific genes 130 as well as expansion of existing gene families.

131

132 Genome characterization

133 We identified 3,950,027 bi-allelic heterozygous sites in the SCT genome, 134 corresponding to an average heterozygosity of 0.54% (one heterozygous SNP per 185 135 bp). The minor allele frequency of these sites had a major peak around 50% consistent 136 with the fact that SCT is diploid with no evidence for recent aneuploidy 137 (Supplementary Fig. 4). The spatial distribution of heterozygous sites was highly 138 variable with 23.9% of the genome exhibiting less than 1 SNP loci per kb compared to 139 10% of the genome with at least 12.6 SNP loci per kb. Runs of homozygosity (ROH) 140 regions appeared to be distributed randomly across SCT chromosomes reaching a 141 maximum of 20.2 Mb in scaffold 11 (Fig. 1a). Such long ROH regions may be associated with selective sweeps, inbreeding or recent population bottlenecks. 142 Pairwise sequentially Markovian coalescent²⁴ (PSMC) analysis based on 143 144 heterozygous SNP densities implicated a continuous reduction of effective population 145 size over the last 9 Ma (Fig. 1b) with a possible bottleneck coincident with the 146 mid-Pleistocene climatic shift at 0.9 Ma. Such patterns may reflect a complex 147 population history of SCT associated with the geologic history of Taiwan including uplift and formation of the island in the late Miocene (9 Ma) followed by mountain 148 149 building 5–6 Ma, respectively 25 .

150

151 Transposable elements (TEs) and interspersed repeats made up 48% of the genome 152 assembly (Supplementary Table 5). The majority of the TEs belonged to LTR 153 retrotransposons (25.53%), followed by DNA transposable elements (12.67%). 154 Among the LTR, 40.75% and 23.88% or retrotransposons belonged to Ty3/Gypsy and 155 Ty1/Copia, respectively (Supplementary Table 5). Phylogeny of reverse transcriptase 156 domain showed that the majority of Ty3/Gypsy copies formed a distinct clade (20,092 157 copies) presumably as a result of recent expansion and proliferation, while Ty1/Copia 158 elements were grouped into two sister clades (7,229 and 2,950 copies; Supplementary 159 Fig. 5). With the exception of two scaffolds, both Ty3/Gypsy and Ty1/Copia LTR 160 TEs were clustered within the pericentromeric centers of the 12 largest scaffolds (Fig 161 2; Supplementary Fig. 6). Additionally, the LTR enriched regions (defined by 100 kb 162 with excess of 50% comprising LTR class TEs) had on average 35% greater coverage 163 than rest of the genome (Fig 2; Supplementary Fig. 7), suggesting that these repeats 164 were collapsed in the assembly and may have contributed to the differences in flow 165 cytometry and k-mer genome size estimates. The coding sequence content of SCT is 166 similar to the other angiosperm genomes included in our analyses (Supplementary 167 Table 3), while introns are slightly longer in SCT due to a higher density of TEs (P <168 0.001, Wilcoxon rank sum test; Supplementary Fig. 8).

169

As has been described for other plant genomes²⁶, the chromosome-level scaffolds of 170 171 SCT exhibit low protein-coding gene density and high TE density in the centers of 172 chromosomes, and increased gene density towards the chromosome ends (Fig. 2). We identified clusters of putative subtelomere heptamer TTTAGGG extending as long as 173 2,547 copies, which implicate telomeric repeats in plants²⁷ (Supplementary Table 6). 174 Additionally, 687 kb of nuclear plastid DNAs (NUPT) averaging around 202.8 bp 175 176 were uncovered (Supplementary Table 7). SCT NUPTs were overwhelmingly 177 dominated by short fragments with 96% of the identified NUPTs less than 500 bp 178 (Supplementary Table 8). The longest NUPT is ~ 20 kb in length and syntenic with 179 99.7% identity to a portion of the SCT plastome that contains seven protein-coding 180 and five tRNA genes (Supplementary Fig. 9).

181

182 Phylogenomic placement of *C. kanehirae* sister to eudicots

The magnoliids have been hypothesized as the sister lineage to (1) the Chloranthaceae, (2) a clade including eudicots, Chloranthaceae, Ceratophyllaceae, (3) the monocots, (4) a monocot + eudicot clade, or (5) a Chloranthaceae + Ceratophyllaceae clade, based on phylogenetic analyses of plastid genes, plastomic IR regions, four mitochondrial genes, inflorescence and floral structures, and low copy nuclear genes^{7,28}. Similar to the APG III, the APG IV system²⁹ placed Magnoliidae and Chloranthaceae together 189 as sister to a robust clade comprising monocots and Ceratophyllales + eudicots. To 190 resolve the long-standing debate over the phylogenetic placement of magnoliids 191 relative to other major flowering plant lineages, we constructed a phylogenetic tree 192 based on 211 strictly single copy orthologue sets shared among the 13 genomes 193 included in our analyses. A single species tree was recovered through maximum likelihood analysis³⁰ of a concatenated supermatrix of the single copy gene 194 alignments and coalescent-based analysis using the 211 gene trees³¹ (Fig. 3; 195 196 Supplementary Fig. 10). SCT, representing the magnoliid lineage was placed as sister to the eudicot clade (Fig. 3). Using MCMCtree³², we calculated a 95% confidence 197 interval for the time of divergence between magnoliids and eudicots to be 139.41-198 199 191.57 million years (Ma; Supplementary Fig. 11), which overlaps with two other recent estimates (114.75-164.09 Ma³³ and 118.9-149.9 Ma³⁴). 200

201

202 Synteny analysis / whole genome duplication (WGD)

Previous investigations of EST data inferred a genome-wide duplication within the 203 magnoliids before the divergence of the Magnoliales and Laurales⁷, but synteny-based 204 testing of this hypothesis has not been possible without an assembled magnoliid 205 206 genome. A total of 16,498 gene pairs were identified in 992 syntenic blocks 207 comprising 72.7% of the SCT genome assembly. Of these intragenomic syntenic 208 blocks, 72.3% were found to be syntenic to more than one location on the genome, 209 suggesting that more than one WGD occurred in the ancestry of SCT (Fig. 4a). Two 210 rounds of ancient WGD were implicated by extensive synteny between pairs of 211 chromosomal regions and significantly but less syntenic paring of each region with 212 two additional genomic segments (Supplementary Fig. 12). Synteny blocks of SCT's 213 12 largest scaffolds were assigned to five clusters that may correspond to pre-WGD 214 ancestral chromosomes (Fig. 4a; Supplementary Fig. 12 and Note).

215

Amborella trichopoda is the sole species representing the sister lineage to all other extant angiosperms, and it has no evidence of WGD since divergence from the last common ancestor extant flowering plant lineages³⁵. To confirm two rounds of WGD took place in ancestry of SCT after divergence of lineages leading to SCT and *A*. *trichopoda*, we assessed synteny between the two genomes. Consistent with our hypothesis, four segments of the SCT genome aligned with a single region in the *A*. *trichopoda* genome (Fig. 4b; Supplementary Fig. 13).

223

In order to more precisely infer the timing of the two rounds of WGD evident in the SCT genome, intragenomic and interspecies homolog Ks (synonymous substitutions per synonymous site) distributions were estimated. SCT intragenomic duplicates 227 showed two peaks around 0.46 and 0.76 (Fig. 5a), congruent with the two WGD 228 events. Based on these two peaks, we were able to infer the karyotype evolution by 229 organizing the clustered synteny blocks further into four groups presumably 230 originating from one of the five pre-WGD chromosomes (Supplementary Fig. 14). 231 Comparison between Aquilegia coerulea (Ranunculales, a sister lineage to all other extant eudicots³⁵) and SCT orthologs revealed a prominent peak around Ks = 1.41232 233 (Fig. 5a), while the Aquilegia intra-genomic duplicate was around Ks = 1, implicating 234 independent WGDs following the divergence of lineages leading to SCT and 235 Aquilegia. The availability of the transcriptome of 17 Laurales + Magnoliales from 1,000 plants initiative³⁶ allowed us to test the hypothesized timing of the WGDs 236 evident in the SCT genome⁸. Ks distribution of all species from Lauraceae have 237 238 shown apparent two peaks, but only one peak was observed in other Laurales and 239 Magnoliales samples, suggesting a WGD predating divergence of these two orders 240 followed by a second recent WGD in the early ancestry of the Lauraceae (Fig. 5b). 241 The Ks peak seen in Aquilegia data is likely attributable to WGD within the 242 Ranunculales well after the divergence of eudicots and magnoliids (Supplementary 243 Fig. 15).

244

245 **Specialization of the magnoliids proteome**

246 We sought to identify genes and protein domains specific to SCT by annotating protein family (Pfam) domains³⁷ and assessing their distribution across the 13 seed 247 248 plant genomes included in our phylogenomic analyses. Consistent with the 249 observation that there were very few SCT-specific OGs, principal component analysis 250 of Pfam domain content clustered SCT with the monocots and eudicots, with the first 251 two principal components separating gymnosperms and A. trichopoda from this group 252 (Supplementary Fig. 16a). There were considerable overlaps between SCT, eudicot 253 and monocot species, suggesting significant functional diversification since these 254 three lineages split. SCT also showed a significant enrichment and reduction of 111 255 and 34 protein domains compared to other plant species, respectively (Supplementary 256 Fig. 16b and Table 9). Gain of protein domains included the terpene synthase C 257 terminal domain involved in defense responses and the leucine-rich repeats (628 vs 334.4) in plant transpiration efficiency³⁸. Interestingly, we found that SCT possesses 258 259 21 copies of EIN3/EIN3-like (EIL) transcription factor, more than the previously reported maximum of 17 copies in the banana genome (Musa acuminata)³⁹. EILs 260 initiate an ethylene signaling response by activating ethylene response factors (ERF), 261 262 which we also found to be highly expanded in SCT (150 copies versus an average of 68.3 copies from nine species reported in ref³⁹; Supplementary Fig. 17). Ethylene 263

signaling in plants was reported to be associated with fruit ripening³⁹ and secondary growth in wood formation⁴⁰ and may be involved in either processes in SCT.

266

CAFE⁴¹ was used to assess OG expansions and contractions across (Fig. 3) the seed 267 plant phylogeny. Gene family size evolution was dynamic across the phylogeny, and 268 269 the branch leading to SCT did not exhibit significantly different numbers of 270 expansions and contractions. Enrichment of gene ontology terms revealed either 271 various different gene families sharing common functions or single gene families 272 undergoing large expansions (Supplementary Table 10 and 11). For example, the 273 expanded members of plant resistance (R) genes add up to "plant-type hypersensitive 274 response" (Supplementary Table 10). In contrast, the enriched gene ontology terms 275 from the contracted gene families of SCT branch (Supplementary Table 11) contains 276 members of ABC transporters, indole-3-acetic acid-amido synthetase, xyloglucan 277 endotransglucosylase/hydrolase and auxin-responsive protein, all of which are part of 278 the "response to auxin".

279

280 Resistance (R) genes

281 The SCT genome annotation included 387 resistance gene models, 82% of which 282 belong to nucleotide-binding site leucine-rich repeat (NBS-LRR) or coiled-coil 283 NBS-LRR (CC-NBS-LRR) types. This result is consistent with a previous report that 284 LRR is one of the most abundant protein domains in plants and it is highly likely that 285 SCT is able to recognize and fight off pathogen products of avirulence (Avr) genes⁴². 286 Among the sampled 13 genomes, SCT harbors the highest number of R genes among 287 non-cultivated plants (Supplementary Fig. 18). The phylogenetic tree constructed 288 from 2,465 NBS domains also suggested that clades within the gene family have 289 diversified independently within the eudicots, monocots and magnoliids. Interestingly, 290 the most diverse SCT NBS gene clades were sister to depauperate eudicot NBS gene 291 clades (Supplementary Fig. 19).

292

293 Terpene synthase gene family

One of the most striking features of the SCT genome is the large number of terpene synthase (TPS) genes (*CkTPSs*). A total of 101 *CkTPSs* were predicted and annotated, the largest number for any other genome to date. By including transcriptome dataset of two more species from magnoliids (*Persea americana* and *Saruma henryi*), phylogenetic analyses of TPS from 15 species were performed to place *CkTPSs* among six of seven TPS subfamilies that have been described for seed plants⁴³⁻⁴⁵ (Fig. 6, Table 2 and Supplementary Fig. 20–25). *CkTPS* genes placed in the TPS-c (2) and TPS-e (5) 301 subfamilies likely encode diterpene synthases such as copalyl diphosphate synthase (CPS) and *ent*-kaurene synthase (KS)⁴⁶. These are key enzymes catalyzing the 302 303 formation of the 20-carbon isoprenoids (collectively termed diterpenoids; C20), which was thought to be eudicot-specific⁴⁵ and serve primary functions like regulating plant 304 305 primary metabolism. The remaining 94 predicted *CkTPSs* likely code for the 10-carbon 306 monoterpene (C10) synthases, 15-carbon sesquiterpene (C15) synthases, and additional 307 20-carbon diterpene (C20) synthases (Table 2). With 25 and 58 homologs, respectively, 308 TPS-a and TPS-b subfamilies are most diverse in SCT, presumably contributing to the mass and mixed production of volatile C15s and C10s⁴⁷. *CkTPSs* are not uniformly 309 310 distributed throughout the chromosomes (Supplementary Table 12) and clustering of 311 members from individual subfamilies were observed as tandem duplicates 312 (Supplementary Fig. 26). For instance, scaffold 7 contains 29 CkTPS genes belonging 313 to several subfamilies including all of the eight CkTPS-a, 12 CkTPS-b, five CkTPS-e 314 and three *CkTPS-f* (Supplementary Fig. 26). In contrast, only two members of *CkTPS-c* 315 reside in scaffold 1. Twenty-four *CkTPSs* locate in other smaller scaffolds, 22 of which 316 code for subfamily TPS-b (Supplementary Fig. 21).

317

318 It is noteworthy that the TPS gene tree resolved Lauraceae-specific TPS gene clades 319 within the TPS-a, -b, -f, and -g subfamilies (Supplementary Fig. 20–23). This pattern 320 of TPS gene duplication in a common ancestor of Persea and Cinnamomum and 321 subsequent retention may indicate subfunctionalization or neofunctionalization of 322 duplicated TPSs within the Lauraceae. A magnoliids-specific subclade in the TPS-a 323 subfamily was also identified in analyses including more magnoliid TPS genes with 324 characterized functions (Supplementary Fig. 20). Indeed, we detected positive 325 selection in the Lauraceae-specific TPS-f -I and -II subclades implying functional 326 divergence (Supplementary Table 13). Together, these data suggest increasing 327 diversification of magnoliid TPS genes both before and after the origin of the 328 Lauraceae. The distribution of TPS genes in the SCT genome suggests that both 329 segmental (including WGD) and tandem duplication events contributed to 330 diversification of TPS enzymes in the SCT lineage and the terpenoids they produce.

331

332 **Discussion**

It is now challenging to find a wild SCT population making the conservation and basic study of this tree a priority. SCTs have been intensively logged since the 19th 335 century initially for hardwood properties and association with fungus Antrodia 336 cinnamomea. The apparent runs of homozygosity have been observed due to anthropogenic selective pressures or inbreeding in several livestock⁴⁷, though 337 inbreeding as a result of recent population bottleneck may be a more likely 338 339 explanation for SCT. Interestingly, continuous decline in effective population size 340 was inferred since 9 Ma. These observations may reflect a complex population history 341 of SCT and Taiwan itself after origination and mountain building of the island that occurred around late Miocene (9 Ma) and 5-6 Ma, respectively²⁵. The availability of 342 the SCT genome will help the development of precise genetic monitoring and tree 343 344 management for the survival of SCT's natural populations.

345

346 The placement of SCT as sister to the eudicots has important implications for comparative genomic analyses of evolutionary innovations within the eudicots, which 347 comprise ca. 75% of extant flowering plants⁴⁸. For example, the SCT genome will 348 349 serve as an important reference outgroup for reconstructing the timing and nature of 350 polyploidy event that gave rise to the hexaploid ancestor of all core eudicots $(Pentapetalae)^{49,50}$. Within the magnoliids we identified the timing of two independent 351 352 rounds of WGD events that contributed to gene family expansions and innovations in 353 pathogen, herbivore and mutualistic interactions.

354

355 Gene tree topologies for each of the six angiosperm TPS subfamilies revealed 356 diversification of TPS genes and gene function in the ancestry of SCT. The C20s 357 producing TPS-f genes were suggested to be eudicot-specific because both rice and sorghum lack genes in this subfamily⁴⁵. Our data clearly indicate that this subfamily 358 359 was present in the last common ancestor of all but was lost from the grass family (Table 360 2). Massive diversification of the TPS-a and TPS-b subfamilies within the Lauraceae is 361 consistent with a previous report that the main constituents of 58 essential oils produced 362 in *Cinnamomum* leaves are C10s and C15s⁴⁷. These findings are in congruent with the 363 fact that fruiting bodies of the SCT-specific parasitic fungus, Antrodia cinnamomea, 364 can produce 78 kinds of terpenoids, including 31 structure-different triterpenoids (C30s)⁵¹, many of which are synthesized via the mevalonate pathway as are C10s and 365 C15s followed by cyclizing squalenes ($C_{30}H_{50}$) into the skeletons of C30s⁵². It is 366 367 reasonable to suggest that this fungus obtained intermediate compounds through 368 decomposing trunk matters from SCT.

369

The 101 *CkTPSs* identified in the SCT genome are unevenly distributed across the 12 chromosomal scaffolds, and tandem arrays include gene clusters from the same subfamily (Supplementary Fig. 26). In the *Drosophila melanogaster* genome, "tandem duplicate overactivity" has been observed with tandemly duplicated *Adh* genes showing 2.6-fold greater expression than single copy *Adh* genes⁵³.

375

In summary, the availability of SCT genome establishes a valuable genomic foundation that will help unravel the genetic diversity and evolution of other magnoliids, and a better understanding of flowering plant genome evolution and diversification. At the same time, the reference-quality SCT genome sequence will enable efforts to conserve genome-wide genetic diversity in this culturally and economically important tree species.

382

383

384

385

386 Methods

387

388 Plant Materials

All plant materials used in this study were collected from a 12-year-old SCT growing in Ershui Township, Changhua County, Taiwan (23°49'25.9"N,120°36'41.2"E) during April to July of 2014–2016. The tree was grown up from a seedling obtained from Forestry Management Section, Department of Agriculture, Taoyuan City. The specimen (voucher number: Chaw 1501) was deposited in the Herbarium of Biodiversity Research Center, Academia Sinica, Taipei, Taiwan (HAST).

395

396 Genomic DNA extraction and sequencing

We used a modified high-salt method⁵⁴ to eliminate the high content of 397 polysaccharides in SCT leaves, followed by total DNA extraction with a modified 398 CTAB method⁵⁵. Three approaches were employed in DNA sequencing. First, 399 400 paired-end and mate-pair libraries were constructed using the Illumina TruSeq DNA 401 HT Sample Prep Kit and Illumina Nextera Mate Pair Sample Prep Kit following the 402 kit's instructions, respectively. All obtained libraries were sequenced on an Illumina 403 NextSeq 500 platform to generate ca. 278.8 Gb of raw data. Second, SMRT libraries 404 were constructed using the PacBio 20-Kb protocol (https://www.pacb.com/). After 405 loading on SMRT cells (SMRTTM Cell 8 Pac), these libraries were sequenced on a 406 PacBio RS-II instrument using P6 polymerase and C4 sequencing reagent (Pacific 407 Biosciences, Menlo Park, California). Third, a Chicago library was prepared by 408 Dovetail Genomics (Santa Cruz, California and sequenced on an Illumina HiSeq 2500 409 to generate 150 bp read pairs. Supplementary Table 1 summarizes the coverage and 410 information for the sequencing data.

411

412 **RNA extraction and sequencing**

413 Opening flowers, flower buds (two stages), immature leaves, young leaves, mature 414 leaves, young stems, and fruits were collected from the same individual 415 (Supplementary Fig. 1c) and their total RNAs were extracted⁵⁶. The extracted RNA 416 was purified using poly-T oligo-attached magnetic beads. All transcriptome libraries 417 were constructed using Illumina TruSeq library Stranded mRNA Prep Kit and 418 sequenced on an Illumina HiSeq 2000 platform. A summary of transcriptome data is 419 shown in Supplementary Table 2.

420

421 **Chromosome number assessment**

Root tips from cutting seedlings were used to examine the chromosome number based
on Suen *et al.*'s method⁵⁷. The stained samples were observed under a Nikon Eclipse
90i microscope (Supplementary Fig. 1a).

425

426 Genome size estimation

427 Fresh leaves of SCT were cut into tiny pieces and mixed well with 1 mL isolation buffer (200 mM Tris, 4 mM MgCl₂-6H₂O, and 0.5% Triton X-100)⁵⁸. The mixture 428 was filtered through a 42 µm nylon mesh, followed by incubation of the filtered 429 430 suspensions with a DNA fluorochrome (50 µg/ml propidium iodide and 50 µg/ml 431 RNase). The genome size was estimated using a MoFlo XDP flow cytometry 432 (Beckman Coulter Life Science, Indianapolis, Indiana) with chicken erythrocyte and 433 rice nuclei (BioSure, Grass Valley, California) as the internal standards (Supplementary Fig. 1b). Estimate of genome size from Illumina paired end 434 sequences was inferred using Genomescope⁵⁹ (based on k-mer 31). 435

436

437 De novo assembly of SCT

438 Illumina paired end and mate pair reads were trimmed with Trimmomatic⁶⁰ (ver. 0.32; options LEADING:30 TRAILING:30 SLIDINGWINDOW:4:30 MINLEN:50) and 439 subsequently assembled using Platanus⁶¹. Pacbio reads were assembled using the 440 FALCON⁶² assembler and the consensus sequences were improved using Quiver⁶³. 441 442 The Pacbio assembly was scaffolded using HiRISE scaffolder and consensus sequences were further improved using Pilon with one iteration⁶⁴. The genome 443 completeness was assessed using plant dataset of BUSCO²² (ver. 3.0.2). To identify 444 putative telomeric repeats, the assembly was searched for high copy number repeats 445 less than 10 base pairs using tandem repeat finder⁶⁵ (ver. 4.09; options: 2 7 7 80 10 50 446 447 500). The heptamer TTTAGGG was identified (Supplementary Table 6).

448

449

450 Gene predictions and functional annotation

Transcriptome paired end reads were aligned to the genome using STAR⁶⁶. 451 Transcripts were identified using two approaches: i) assembled de novo using 452 Trinity⁶⁷, ii) reconstructed using Stringtie⁶⁸ or CLASS2⁶⁹. Transcripts generated from 453 Trinity were remapped to the reference using GMAP⁷⁰. The three sets of transcripts 454 455 were merged and filtered using MIKADO (https://github.com/lucventurini/mikado). Proteomes from representative reference species (Uniprot plants; Proteomes of 456 Amborella trichopoda and Arabidopsis thaliana) were downloaded from Phytozome 457 (ver. 12.1; https://phytozome.jgi.doe.gov/)). The gene predictor Augustus⁷¹ (ver. 3.2.1) 458 and SNAP⁷² were trained either on the gene models data using BRAKER1⁷³ or 459 MAKER2²⁰. The assembled transcripts, reference proteomes, BRAKER1 and the 460 BUSCO predictions were combined as evidence hints for input of the MAKER2²⁰ 461 annotation pipeline. MAKER2²⁰ invoked the two trained gene predictors to generate a 462 final set of gene annotation. Amino acid sequences of the proteome were functionally 463 annotated using Blast2GO⁷⁴ and eggnog-mapper²¹. Nuclear plastid DNAs (NUPT) of 464 SCT was searched against its plastid genome (plastome; KR014245⁷⁵) using blastn 465 (parameters were followed from ref^{76}). 466

467

468 Analysis of genome heterozygosity

Paired end reads of SCT was aligned to reference using bwa mem⁷⁷ (ver. 469 0.7.17-r1188). PCR duplicates were removed using samtools⁷⁸ (ver. 1.8). 470 Heterozygous bi-allelic SNPs were called using samtools⁷⁸ and consensus sequences 471 were generated using bcftools⁷⁹ (ver. 1.7). Depth of coverage and minor allele 472 frequency plots were conducted using R ver. 3.4.2. Consensus sequence was fed to 473 the PSMC program²⁴ to infer past effective population size. All of the parameters used 474 475 for the PSMC program were at default with the exception of -u 7.5e-09 taken from A. *thaliana*⁸⁰ and -g 20 taken from *Neolitsea sericea* (Lauraceae)⁸¹. 476

477

478 **Identification of repetitive elements**

Repetitive elements were firstly identified by modeling the repeats using 479 RepeatModeler⁸² and then searched and quantified repeats using RepeatMasker⁸³. 480 Repeat types modeled as "Unknown" by RepeatModeler were further annotated using 481 TEclass⁸⁴. Tandem Repeats were identified using Tandem Repeats Finder⁶⁵. The 482 483 proportions of different types of repeats were quantified by dissecting the 12 largest 484 scaffolds into 100,000 bp chunks and calculating the total lengths and percentages of 485 the repetitive elements within the chunks. LTR-RT domains were extracted following Guan et al.'s method⁸⁵. Briefly, a two-step procedure was applied on the genomes. 486

487 The first was to find candidate LTR-RTs similar to known reverse transcriptase 488 domains and second was to identify other LTR-RTs using the candidates identified in

the first step. The identified LTR-RT domains were integrated with those downloaded 489

from the Ty1/Copia and Ty3/Gypsy trees of Guan et al.⁸⁵. Trees were built by 490 aligning the sequences using $MAFFT^{87}$ (ver. 7.310; --genafpair --ep 0) and applied

- 491
- FastTree⁸⁸ with JTT model on the aligned sequences, and were colored using APE 492 package⁸⁹. 493
- 494

495 Gene family / Orthogroup inference and analysis of protein domains

496 The amino acid and nucleotide sequences of 12 representative plant species were 497 downloaded from various sources: Aquilegia coerulea, Arabidopsis thaliana, Daucus 498 carota, Mimulus guttatus, Musa acuminata, Oryza sativa japonica, Populus 499 trichocarpa, Vitis vinifera and Zea mays from Phytozome (ver. 12.1; 500 https://phytozome.jgi.doe.gov/), Picea abies from the Plant Genome Integrative Explorer Resource⁹⁰ (http://plantgenie.org/), Ginkgo biloba from GigaDB⁹¹, and 501 Ensembl plants⁹² 502 Amborella trichopoda from (Release 39; 503 https://plants.ensembl.org/index.html). Gene families or orthologous groups of these species and SCT were determined by OrthoFinder²³ (ver. 2.2.0). Protein family 504 domains (Pfam) of each species were calculated from Pfam website (ver. 31.0; 505 506 https://pfam.xfam.org/). Pfam numbers of every species were transformed into 507 z-scores. Significant expansion or reduction of Pfams in SCT were based on its 508 z-score greater than 1.96 or less than -1.96, respectively. The significant Pfams were 509 sorted by Pfam numbers (Supplementary Fig. 16). Gene family expansion and loss were inferred using CAFE⁴¹ (ver. 4.1 with input tree as the species tree inferred from 510 the single copy orthologues). 511

512

513 **Phylogenetic analysis**

514 MAFFT⁸⁷ (ver. 7.271; option --maxiterate 1000) was used to align 13 sets of amino acid sequences of 211 single-copy OGs. Each OG alignment was used to compute a 515 maximum likelihood phylogeny using RAxML³⁰ (ver. 8.2.11: options: -m 516 PROTGAMMAILGF -f a) with 500 bootstrap replicates. The best phylogeny and 517 518 bootstrap replicates for each gene were used to infer a consensus species tree using ASTRAL-III³¹. A maximum likelihood phylogeny was constructed with the 519 520 concatenated amino acid alignments of the single copy OGs (ver. 8.2.11; options: -m 521 PROTGAMMAILGF - f a) also with 500 bootstrap replicates.

522

523 **Estimation of divergence time**

- Divergence time of each tree node was inferred using MCMCtree of PAML³² package 524 525 (ver. 4.9g; options: correlated molecular clock, JC69 model and rest being default). 526 The final species tree and the concatenated translated nucleotide alignments of 211 527 single-copy-orthologs were used as input of MCMCtree. The phylogeny was 528 calibrated using various fossil records or molecular divergence estimate by placing soft bounds at split node of: i) A. thaliana-V. vinifera (115–105 Ma)⁹³, ii) M. 529 acuminata-Z. mays (115-90 Ma)⁹³, iii) Ranunculales (128.63-119.6 Ma)³⁴, iv) 530 Angiospermae $(247.2-125 \text{ Ma})^{34}$, v) Acrogymnospermae $(365.629-308.14 \text{ Ma})^{34}$, and 531
- 532 v) a hard bound of 420 Ma of outgroup *P. patens*⁹⁴.
- 533

534 Analysis of genome synteny and whole genome duplication

- 535 Dot plots between SCT and A. trichopoda assemblies were produced using SynMap from Comparative Genomics Platform (Coge⁹⁵) to visualize the paleoploidy level of 536 SCT. Synteny blocks within SCT and between A. trichopoda and A. coerulea were 537 identified using DAGchainer⁹⁶ (same parameters as Coge⁹⁵: -E 0.05 -D 20 -g 10 -A 5). 538 Ks between syntenic group pairs were calculated using the DECIPHER⁹⁷ package in 539 R. Depth of the inferred syntenic blocks were calculated using Bedtools⁹⁸. Both the 540 541 Ks distribution and syntenic block depth were used to determine the paleopolyploidy level⁹⁹ of SCT. Using the quadruplicate or triplicate orthologues in the syntenic 542 543 blocks as backbones, as well as A. trichopoda regions showing up to four syntenic 544 regions, we identified the start and end coordinates of linkage clusters (Supplementary 545 Note).
- 546

547 **Resistance (R) genes**

R genes were identified based on the ref¹⁰⁰. Briefly, the predicted genes of the 13 548 sampled species were searched for the Pfam NBS (NB-ARC) protein family 549 (PF00931) using HMMER ver. 3.1b2¹⁰¹ with an e-value cutoff of 1e-5. Extracted 550 sequences were then checked for protein domains using InterproScan¹⁰² (ver. 551 552 5.19-58.0) to remove false positive NB-ARC domain hits. The NBS domains of the 553 genes that passed both HMMER and InterproScan were extracted according to the InterproScan annotation and aligned using MAFFT⁸⁷ (ver. 7.310; --genafpair --ep 0); 554 the alignment was then input into FastTree⁸⁸ with the JTT model and visualized using 555 EvolView¹⁰³. 556

557

558 **Terpene synthase genes**

In addition to the 13 species' proteome dataset used in this study, transcriptome data from one Chloranthaceae species, *Sarcandra glabra* and two magnollids representatives, *Persea americana* (avocado) and *Saruma henryi* (saruma), were

downloaded from oneKP transcriptome database¹⁰⁴. Previously annotated TPS genes of 562 four species: Arabidopsis thaliana¹⁰⁵, Oryza sativa⁴⁵, Populus trichocarpa¹⁰⁶, and Vitis 563 564 vinifera¹⁰⁷ were retrieved. For species without a priori TPS annotations, two Pfam domains: PF03936 and PF01397, were used to identify against the proteomes using 565 HMMER¹⁰⁸ (ver. 3.0; cut-off at e-values $< 10^{-5}$). Sequence lengths shorter than 200 566 amino acids were excluded from further analysis. 702 putative or annotated protein 567 sequences of TPS were aligned using MAFFT⁸⁷ (ver. 7.310 with default parameters) 568 and manually adjusted using MEGA¹⁰⁹ (ver. 7.0). The TPS gene tree was constructed 569 using FastTree¹¹⁰ (ver. 2.1.0) with 1,000 bootstrap replicates. Subfamily TPS-c was 570 571 designated as the outgroup. Branching nodes with bootstrap values < 80% were treated 572 as collapsed.

- 573
- 574

575 Figure and Table legends

576

Figure 1 | Stout camphor tree genome heterozygosity. a, Number of heterozygous bi-allelic SNPs per 100 kb non-overlapping windows is plotted along the largest 12 scaffolds. Indels were excluded. b, The history of effective population size was inferred using the PSMC method. 100 bootstraps were performed and the margins are shown in light red.

582

Figure 2 Genomic landscape of stout camphor tree chromosome 1. For every non-overlapping 100 kb window distribution is shown from top to bottom: gene density (percent of nucleotide with predicted model), transcriptome (percent of nucleotides with evidence of transcriptome mapping), three different classes repetitive sequences (percent of nucleotides with TE annotation) and heterozygosity (number of bi-allelic SNPs). The red T letter denote presence of telomeric repeat cluster at scaffold end.

590

591 Figure 3 | A species tree on the basis of 211 single copy orthologues from 13 592 plant species. Gene family expansion and contraction are denoted in numbers next to 593 plus and minus signs, respectively. Unless stated, bootstrap support of 100 is denoted 594 as blue circles.

595

Figure 4 | Evolutionary analysis of the stout camphor tree genome. a, Schematic representation of intragenomic relationship amongst the 637 synteny blocks in the stout camphor tree genome. Synteny blocks assigned unambiguously into 5 linkage clusters representing ancient karyotypes are color coded. b, Schematic representation

600	of the first linkage group within the stout camphor tree genome and their
601	corresponding relationship in A. trichopoda.
602	
603	Figure 5 Density plots of synonymous substitutions (Ks) of stout camphor tree
604	genome and other plant species. a, Pairwise orthologue duplicates identified in
605	synteny blocks within SCT, within A. coerulea and between SCT and A. coerulea. b,
606	Ks of intragenomic pairwise duplicates of the Lauraceae and the Magnoliales in the
607	1KP project ¹⁰⁴ . Dashed lines denote the two Ks peaks observed in SCT.
608	
609	Figure 6 Phylogenetic tree of putative or characterized TPS genes from the 13
610	sequenced land plant genomes and two magnoliids with available transcriptomic
611	data.
612	
613	Table 1 Statistics of stout camphor tree genome assemblies using different
614	sequencing technologies and final gene predictions.
615	
616	Table 2 Comparison of the known/predicted seven TPS subfamilies among 14
617	known genomes and three available transcriptomes of major seed plant lineages.
618	
619	
620	Authors contribution
621	Conceived the study: S.M.C
622	Genome assembly and annotation: I.J.T and H.M.K
623	Repeat Analysis: L.Y.C and Y.W.W
624	Plastid DNA analysis: E.S.
625	Conducted the experiments: C.S.W, L.N.W, H.T.Y., C.Y.H and S.M.C.
626	Comparative genomics analysis: I.J.T, Y.L, H.M.K, C.Y.I.L and J.L.M
627	Analysis of R genes: Y.W.W, M.H.H, K.P.W, S.M.C
628	Analysis of terpene gene family: H.Y.W, S.M.C, C.Y.H and Y.W.W
629	Wrote the manuscript: I.J.T, J.LM and S.M.C
630	
631	Data availability
632	All of raw sequence reads used in this study have been deposited in NCBI under the
633	BioProject accession number PRJNA477266. The assembly and annotation of SCT is
634	available under the accession number SAMN09509728.
635	
636	

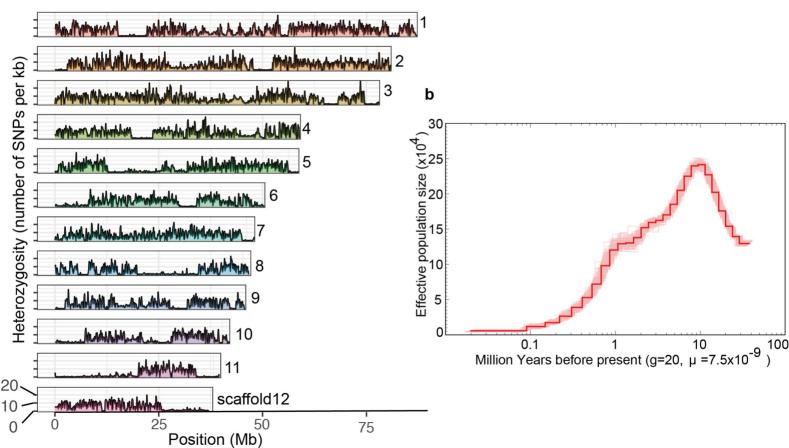
637 Acknowledgement

638 Chi-yuan Tsai for plant materials; Chih-Ming Hung for PSMC analysis. S.M.C was 639 funded by Investigators' Award and Central Academic Committee, Academia Sinica. 640 I.J.T was funded by Career Development Award, Academia Sinica. H.M.K, C.S.W 641 and C.Y.H were funded by postdoctoral fellowship, Academia Sinica. 642 643 References 644 645 1 Javaprakasha, G. K., Rao, L. J. & Sakariah, K. K. Chemical composition of 646 volatile oil from Cinnamomum zeylanicum buds. Z Naturforsch C 57, 990–993 647 (2002).648 2 Joshi, R., Satyal, P. & Setzer, W. Himalayan Aromatic medicinal plants: a 649 review of their ethnopharmacology, volatile phytochemistry, and biological 650 activities. Medicines 3, doi:10.3390/medicines3010006 (2016). 651 3 Kaul, P. N., Bhattacharya, A. K., Rajeswara Rao, B. R., Syamasundar, K. V. & 652 Ramesh, S. Volatile constituents of essential oils isolated from different parts 653 of cinnamon (Cinnamomum zeylanicum Blume). J Sci Food and Agric 83, 53– 654 55, doi:10.1002/jsfa.1277 (2003). 655 4 Shahlari, M., Hamidpour, M., Hamidpour, S. & Hamidpour, R. Camphor 656 (Cinnamomum camphora), a traditional remedy with the history of treating 657 several diseases. Int J Case Rep Images 4, 658 doi:10.5348/ijcri-2013-02-267-RA-1 (2013). 659 5 Christenhusz, M. J. M. & Byng, J. W. The number of known plants species in 660 the world and its annual increase. *Phytotaxa* 261, 661 doi:10.11646/phytotaxa.261.3.1 (2016). 662 6 Palmer, J. D., Soltis, D. E. & Chase, M. W. The plant tree of life: an overview 663 and some points of view. Am J Bot 91, 1437-1445, 664 doi:10.3732/ajb.91.10.1437 (2004). 7 665 Cui, L. et al. Widespread genome duplications throughout the history of 666 flowering plants. Genome Res 16, 738-749, doi:10.1101/gr.4825606 (2006). 667 8 Liu, Y. C., Lu, F. Y. & Ou, C. H. Trees of Taiwan. Monographic Publication 7, 668 105-131 (1988). 9 669 Fujita, Y. Classification and phylogeny of the genus *Cinnamomum* viewed 670 from the constituents of essential oils. Shokubutsugaku Zasshi 80, 261-271, 671 doi:10.15281/jplantres1887.80.261 (1967). 672 10 Chang, T. T. & Chou, W. N. Antrodia cinnamomea sp. nov. on Cinnamomum 673 kanehirai in Taiwan. Mycol Res 99, 756–758, 674 doi:https://doi.org/10.1016/S0953-7562(09)80541-8 (1995). 675 11 Wu, S. H., Ryvarden, L. & Chang, T. T. Antrodia camphorata

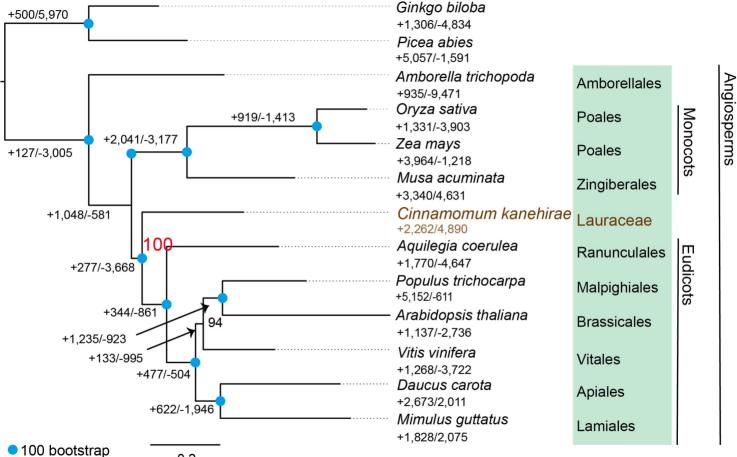
676		("niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Bot
677		<i>Stud</i> 38 , 273–275 (1997).
678	12	Hseu, Y. C., Chen, S. C., Yech, Y. J., Wang, L. & Yang, H. L. Antioxidant
679		activity of Antrodia camphorata on free radical-induced endothelial cell
680		damage. J Ethnopharmacol 118, 237-245, doi:10.1016/j.jep.2008.04.004
681		(2008).
682	13	Liao, P. C. et al. Historical spatial range expansion and a very recent
683		bottleneck of Cinnamomum kanehirae Hay. (Lauraceae) in Taiwan inferred
684		from nuclear genes. BMC Evol Biol 10, 124, doi:10.1186/1471-2148-10-124
685		(2010).
686	14	Hung, K. H., Lin, C. H., Shih, H. C., Chiang, Y. C. & Ju, L. P. Development,
687		characterization and cross-species amplification of new microsatellite primers
688		from an endemic species Cinnamomum kanehirae (Lauraceae) in Taiwan.
689		Conserv Genet Resour 6, 911-913, doi:10.1007/s12686-014-0239-z (2014).
690	15	Zerbe, P. & Bohlmann, J. Plant diterpene synthases: exploring modularity and
691		metabolic diversity for bioengineering. Trends Biotechnol 33, 419-428,
692		doi:10.1016/j.tibtech.2015.04.006 (2015).
693	16	Loreto, F., Dicke, M., Schnitzler, J. P. & Turlings, T. C. Plant volatiles and the
694		environment. Plant Cell Environ 37, 1905–1908, doi:10.1111/pce.12369
695		(2014).
696	17	Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv
697		Biochem Eng Biotechnol 148, 63-106, doi:10.1007/10_2014_295 (2015).
698	18	Gonzalez-Coloma, A., Reina, M., Diaz, C. E. & Fraga, B. M. in
699		Comprehensive Natural Products II (eds Liu, H. W. & Mander, L.) 237-268
700		(Elsevier, 2010).
701	19	Putnam, N. H. et al. Chromosome-scale shotgun assembly using an in vitro
702		method for long-range linkage. Genome Res 26, 342-350,
703		doi:10.1101/gr.193474.115 (2016).
704	20	Holt, C. & Yandell, M. MAKER2: an annotation pipeline and
705		genome-database management tool for second-generation genome projects.
706		BMC bioinformatics 12, 491, doi:10.1186/1471-2105-12-491 (2011).
707	21	Huerta-Cepas, J. et al. Fast genome-wide functional annotation through
708		orthology assignment by eggNOG-mapper. Mol Biol Evol 34, 2115-2122
709		doi:10.1093/molbev/msx148 (2017).
710	22	Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov,
711		E. M. BUSCO: assessing genome assembly and annotation completeness with
712		single-copy orthologs. Bioinformatics 31, 3210-3212,
713		doi:10.1093/bioinformatics/btv351 (2015).

714	23	Emms, D. M. & Kelly, S. OrthoFinder: solving fundamental biases in whole
715		genome comparisons dramatically improves orthogroup inference accuracy.
716		Genome Biol 16, 157, doi:10.1186/s13059-015-0721-2 (2015).
717	24	Li, H. & Durbin, R. Inference of human population history from individual
718		whole-genome sequences. Nature 475, 493-496, doi:10.1038/nature10231
719		(2011).
720	25	Sibuet, JC. & Hsu, SK. How was Taiwan created? Tectonophysics 379,
721		159-181, doi:10.1016/j.tecto.2003.10.022 (2004).
722	26	Dong, P. et al. 3D Chromatin architecture of large plant genomes determined
723		by local A/B Compartments. Mol Plant 10, 1497–1509,
724		doi:10.1016/j.molp.2017.11.005 (2017).
725	27	Watson, J. M. & Riha, K. Comparative biology of telomeres: where plants
726		stand. FEBS Lett 584, 3752-3759, doi:10.1016/j.febslet.2010.06.017 (2010).
727	28	Zeng, L. et al. Resolution of deep angiosperm phylogeny using conserved
728		nuclear genes and estimates of early divergence times. Nat Commun 5, 4956,
729		doi:10.1038/ncomms5956 (2014).
730	29	An update of the Angiosperm Phylogeny Group classification for the orders
731		and families of flowering plants: APG IV. Bot J Linean Soc 181, 1-20,
732		doi:doi:10.1111/boj.12385 (2016).
733	30	Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic
734		analyses with thousands of taxa and mixed models. Bioinformatics (Oxford,
735		England) 22, 2688–2690, doi:10.1093/bioinformatics/btl446 (2006).
736	31	Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree
737		estimation with many hundreds of taxa and thousands of genes. Bioinformatics
738		31 , 44–52, doi:10.1093/bioinformatics/btv234 (2015).
739	32	Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol
740		Evol 24, 1586–1591, doi:10.1093/molbev/msm088 (2007).
741	33	Massoni, J., Couvreur, T. L. & Sauquet, H. Five major shifts of diversification
742		through the long evolutionary history of Magnoliidae (angiosperms). BMC
743		Evol Biol 15, 49, doi:10.1186/s12862-015-0320-6 (2015).
744	34	Morris, J. L. et al. The timescale of early land plant evolution. Proc Natl Acad
745		Sci USA 115, E2274–E2283, doi:10.1073/pnas.1719588115 (2018).
746	35	Zhong, B. & Betancur-R, R. Expanded taxonomic sampling coupled with gene
747		genealogy interrogation provides unambiguous resolution for the evolutionary
748		root of angiosperms. Genome Biol Evol 9, 3154-3161,
749		doi:10.1093/gbe/evx233 (2017).
750	36	Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. GigaScience
751		3 , doi:10.1186/2047-217x-3-17 (2014).

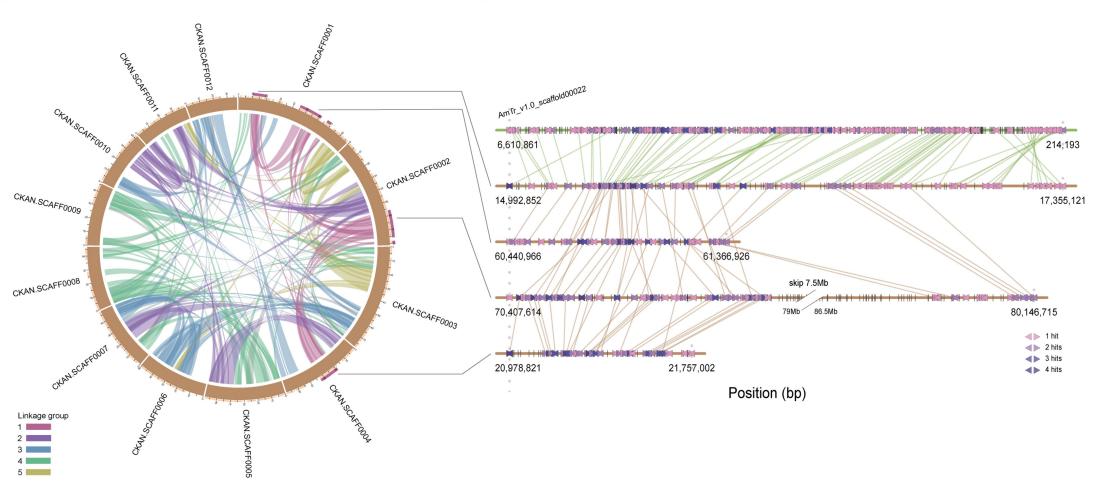
752	37	Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res 42,
753		D222-230, doi:10.1093/nar/gkt1223 (2014).
754	38	Lang, T. et al. Protein domain analysis of genomic sequence data reveals
755		regulation of LRR related domains in plant transpiration in Ficus. PLoS One 9,
756		e108719, doi:10.1371/journal.pone.0108719 (2014).
757	39	Jourda, C. et al. Expansion of banana (Musa acuminata) gene families
758		involved in ethylene biosynthesis and signalling after lineage-specific
759		whole-genome duplications. New Phytol 202, 986-1000,
760		doi:10.1111/nph.12710 (2014).
761	40	Seyfferth, C. et al. Ethylene-related gene expression networks in wood
762		formation. Front Plant Sci 9, 272, doi:10.3389/fpls.2018.00272 (2018).
763	41	De Bie, T., Cristianini, N., Demuth, J. P. & Hahn, M. W. CAFE: a
764		computational tool for the study of gene family evolution. <i>Bioinformatics</i> 22,
765		1269-1271, doi:10.1093/bioinformatics/btl097 (2006).
766	42	Dodds, P. N. et al. Direct protein interaction underlies gene-for-gene
767		specificity and coevolution of the flax resistance genes and flax rust avirulence
768		genes. Proc Natl Acad Sci USA 103, 8888-8893,
769		doi:10.1073/pnas.0602577103 (2006).
770	43	Trapp, S. C. & Croteau, R. B. Genomic organization of plant terpene synthases
771		and molecular evolutionary implications. Genetics 158, 811-832 (2001).
772	44	Gershenzon, J. & Dudareva, N. The function of terpene natural products in the
773		natural world. Nat Chem Biol 3, 408, doi:10.1038/nchembio.2007.5 (2007).
774	45	Chen, F., Tholl, D., Bohlmann, J. & Pichersky, E. The family of terpene
775		synthases in plants: a mid-size family of genes for specialized metabolism that
776		is highly diversified throughout the kingdom. Plant J 66, 212-229,
777		doi:10.1111/j.1365-313X.2011.04520.x (2011).
778	46	Martin, D. M., Fäldt, J. & Bohlmann, J. Functional characterization of nine
779		Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of
780		the TPS-d Subfamily. Plant Physiol 135, 1908–1927,
781		doi:10.1104/pp.104.042028 (2004).
782	47	Cheng, SS. et al. Chemical polymorphism and composition of leaf essential
783		oils of Cinnamomum kanehirae using gas chromatography/mass spectrometry,
784		cluster analysis, and principal component analysis. J Wood Chem Tech 35,
785		207-219, doi:10.1080/02773813.2014.924967 (2015).
786	48	Liping, Z. et al. Resolution of deep eudicot phylogeny and their temporal
787		diversification using nuclear genes from transcriptomic and genomic datasets.
788		New Phytol 214, 1338–1354, doi:doi:10.1111/nph.14503 (2017).
789	49	Jiao, Y. et al. A genome triplication associated with early diversification of the

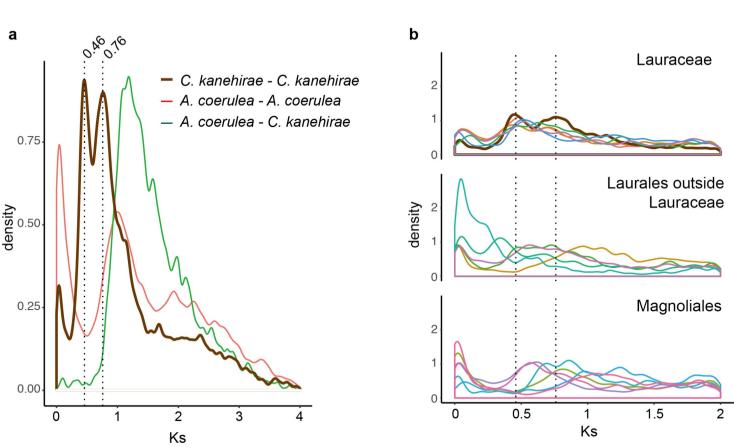

790		core eudicots. Genome Biol 13, R3–R3, doi:10.1186/gb-2012-13-1-r3 (2012).
791	50	Chanderbali, A. S., Berger, B. A., Howarth, D. G., Soltis, D. E. & Soltis, P. S.
792		Evolution of floral diversity: genomics, genes and gamma. Philos Trans R Soc
793		Lond B Biol Sci 372, doi:10.1098/rstb.2015.0509 (2017).
794	51	Geethangili, M. & Tzeng, Y. M. Review of pharmacological effects of
795		Antrodia camphorata and its bioactive compounds. Evidence-Based
796		<i>Complement Alternat Med</i> 2011 , 17, doi:10.1093/ecam/nep108 (2011).
797	52	Lu, M. Y. <i>et al</i> . Genomic and transcriptomic analyses of the medicinal fungus
798		Antrodia cinnamomea for its metabolite biosynthesis and sexual development.
799		Proc Natl Acad Sci USA 111, E4743–4752, doi:10.1073/pnas.1417570111
800		(2014).
801	53	Loehlin, D. W. & Carroll, S. B. Expression of tandem gene duplicates is often
802		greater than twofold. Proc Natl Acad Sci USA 113, 5988–5992,
803		doi:10.1073/pnas.1605886113 (2016).
804	54	Sandbrink, J. M., Vellekoop, P., Vanham, R. & Vanbrederode, J. A method for
805		evolutionary studies on RFLP of chloroplast DNA, applicable to a range of
806		plant species. <i>Biochem Syst Ecol</i> 17 , 45–49, doi:Doi
807		10.1016/0305-1978(89)90041-0 (1989).
808	55	Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small
809		quantities of fresh leaf tissue. <i>Phytochemical Bulletin</i> 19 , 11–15,
810		doi:citeulike-article-id:678648 (1987).
811	56	Kolosova, N., Gorenstein, N., Kish, C. M. & Dudareva, N. Regulation of
812		circadian methyl benzoate emission in diurnally and nocturnally emitting
813		plants. Plant Cell 13, 2333–2347 (2001).
814	57	Suen, D. F. et al. Assignment of DNA markers to Nicotiana sylvestris
815		chromosomes using monosomic alien addition lines. Theor Appl Genet 94,
816		331–337, doi:DOI 10.1007/s001220050420 (1997).
817	58	Dolezel, J., Greilhuber, J. & Suda, J. Estimation of nuclear DNA content in
818		plants using flow cytometry. Nat Protoc 2, 2233–2244,
819		doi:10.1038/nprot.2007.310 (2007).
820	59	Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from
821		short reads. <i>Bioinformatics</i> 33 , 2202–2204, doi:10.1093/bioinformatics/btx153
822		(2017).
823	60	Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for
824		Illumina sequence data. Bioinformatics (Oxford, England), 1-7,
825		doi:10.1093/bioinformatics/btu170 (2014).
826	61	Kajitani, R. et al. Efficient de novo assembly of highly heterozygous genomes
827		from whole-genome shotgun short reads. Genome res 24, 1384–1395,

828		doi:10.1101/gr.170720.113 (2014).
829	62	Chin, C. S. et al. Phased diploid genome assembly with single-molecule
830		real-time sequencing. Nat Methods 13, 1050-1054, doi:10.1038/nmeth.4035
831		(2016).
832	63	Chin, C. S. et al. Nonhybrid, finished microbial genome assemblies from
833		long-read SMRT sequencing data. Nat Methods 10, 563-569,
834		doi:10.1038/nmeth.2474 (2013).
835	64	Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial
836		variant detection and genome assembly improvement. PLoS ONE 9, e112963,
837		doi:10.1371/journal.pone.0112963 (2014).
838	65	Benson, G. Tandem repeats finder: a program to analyze DNA sequences.
839		Nucleic Acids Res 27, 573–580 (1999).
840	66	Dobin, A., Davis, C. & Schlesinger, F. STAR: ultrafast universal RNA-seq
841		aligner. Bioinformatics, 1-7 (2013).
842	67	Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq
843		using the Trinity platform for reference generation and analysis. Nat Protoc 8,
844		1494-1512, doi:10.1038/nprot.2013.084 (2013).
845	68	Pertea, M. et al. StringTie enables improved reconstruction of a transcriptome
846		from RNA-seq reads. Nat Biotechnol 33, 290–295, doi:10.1038/nbt.3122
847		(2015).
848	69	Song, L., Sabunciyan, S. & Florea, L. CLASS2: accurate and efficient splice
849		variant annotation from RNA-seq reads. Nucleic Acids Res 44, e98,
850		doi:10.1093/nar/gkw158 (2016).
851	70	Wu, T. D. & Watanabe, C. K. GMAP: a genomic mapping and alignment
852		program for mRNA and EST sequences. Bioinformatics 21, 1859-1875,
853		doi:10.1093/bioinformatics/bti310 (2005).
854	71	Stanke, M., Tzvetkova, A. & Morgenstern, B. AUGUSTUS at EGASP: using
855		EST, protein and genomic alignments for improved gene prediction in the
856		human genome. Genome Biol 7 Suppl 1, S11.11-18,
857		doi:10.1186/gb-2006-7-s1-s11 (2006).
858	72	Korf, I. Gene finding in novel genomes. BMC Bioinformatics 5, 59,
859		doi:10.1186/1471-2105-5-59 (2004).
860	73	Hoff, K. J., Lange, S., Lomsadze, A., Borodovsky, M. & Stanke, M.
861		BRAKER1: unsupervised RNA-Seq-Based genome annotation with
862		GeneMark-ET and AUGUSTUS. Bioinformatics 32, 767-769,
863		doi:10.1093/bioinformatics/btv661 (2016).
864	74	Conesa, A. et al. Blast2GO: a universal tool for annotation, visualization and
865		analysis in functional genomics research. Bioinformatics 21, 3674–3676,

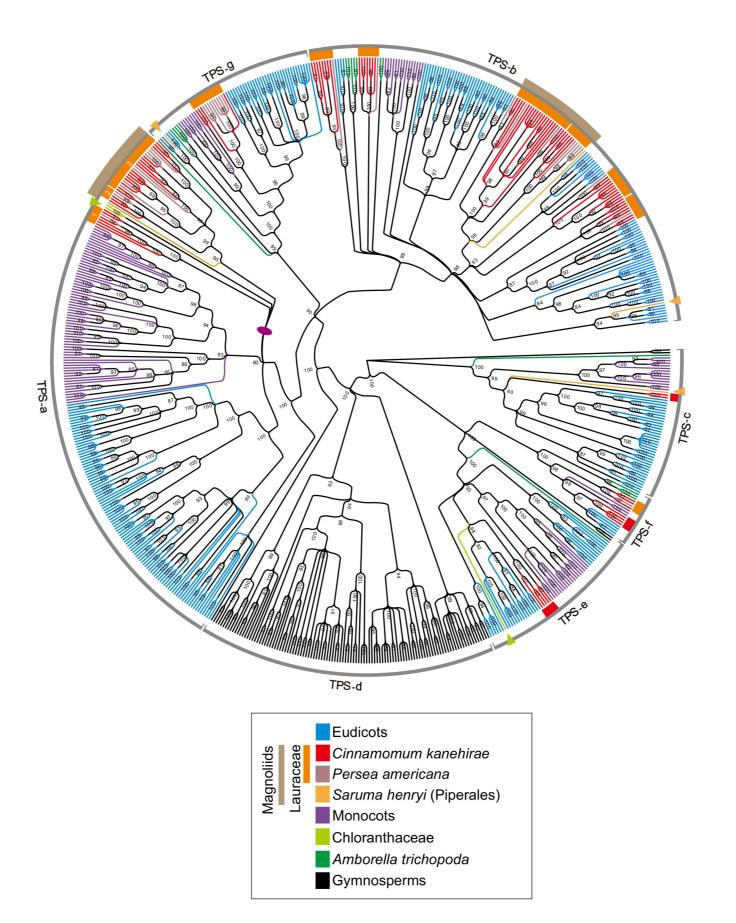

866		doi:10.1093/bioinformatics/bti610 (2005).
867	75	Wu, C. C., Ho, C. K. & Chang, S. H. The complete chloroplast genome of
868		Cinnamomum kanehirae Hayata (Lauraceae). Mitochondr DNA 27, 2681–
869		2682, doi:10.3109/19401736.2015.1043541 (2016).
870	76	Smith, D. R., Crosby, K. & Lee, R. W. Correlation between nuclear plastid
871	, ,	DNA abundance and plastid number supports the limited transfer window
872		hypothesis. <i>Genome Biol Evol</i> 3 , 365–371, doi:10.1093/gbe/evr001 (2011).
873	77	Li, H. & Durbin, R. Fast and accurate short read alignment with
874		Burrows-Wheeler transform. <i>Bioinformatics</i> 25 , 1754–1760,
875		doi:10.1093/bioinformatics/btp324 (2009).
876	78	Li, H. <i>et al.</i> The Sequence Alignment/Map format and SAMtools.
877		Bioinformatics (Oxford, England) 25, 2078–2079,
878		doi:10.1093/bioinformatics/btp352 (2009).
879	79	Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27,
880		2156–2158, doi:10.1093/bioinformatics/btr330 (2011).
881	80	Buschiazzo, E., Ritland, C., Bohlmann, J. & Ritland, K. Slow but not low:
882		genomic comparisons reveal slower evolutionary rate and higher dN/dS in
883		conifers compared to angiosperms. BMC Evol Biol 12, 8,
884		doi:10.1186/1471-2148-12-8 (2012).
885	81	Cao, Y. N. <i>et al.</i> Inferring spatial patterns and drivers of population divergence
886		of Neolitsea sericea (Lauraceae), based on molecular phylogeography and
887		landscape genomics. <i>Mol Phylogenet Evol</i> 126 , 162–172,
888		doi:10.1016/j.ympev.2018.04.010 (2018).
889	82	Smit, A. & Hubley, R. RepeatModeler Open-1.0, http://www.repeatmasker.org
890		(2008–2015).
891	83	Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0,
892		http://www.repeatmasker.org (2013–2015).
893	84	Abrusan, G., Grundmann, N., DeMester, L. & Makalowski, W. TEclassa tool
894		for automated classification of unknown eukaryotic transposable elements.
895		Bioinformatics 25, 1329-1330, doi:10.1093/bioinformatics/btp084 (2009).
896	85	Guan, R. et al. Draft genome of the living fossil Ginkgo biloba. Gigascience 5,
897		49, doi:10.1186/s13742-016-0154-1 (2016).
898	86	Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software
899		version 7: improvements in performance and usability. Mol Biol Evol 30, 772-
900		780, doi:10.1093/molbev/mst010 (2013).
901	87	Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2approximately
902		maximum-likelihood trees for large alignments. PLoS One 5, e9490,
903		doi:10.1371/journal.pone.0009490 (2010).

 evolution in R language. <i>Bioinformatics</i> 20, 289–290 (2004). Sundell, D. <i>et al.</i> The plant genome integrative explorer resource: PlantGenlE.org. <i>New Phytol</i> 208, 1149–1156, doi:10.1111/nph.13557 (2015). So Sneddon, T. P., Li, P. & Edmunds, S. C. GigaDB: announcing the GigaScience database. <i>Gigascience</i> 1, 11, doi:10.1186/2047-217X-1-11 (2012). Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. <i>Methods Mol Biol</i> 1374, 115–140, doi:10.1007/978-1-4939-3167-5_6 (2016). Ya Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. <i>Mol Biol Evol</i> 34, 1812–1819, doi:10.1093/molbev/msx116 (2017). Pryer, K. M. <i>et al.</i> Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). Yuyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England)</i> 20, 3643–3646, doi:10.1093/bioinformatics/bt4397 (2004). Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). Wright, E. Using DECIPHER v2.0 to analyze big. doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Kung, R. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). Lozano	904	88	Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and
 PlantGenIE.org. New Phytol 208, 1149–1156, doi:10.1111/nph.13557 (2015). Sneddon, T. P., Li, P. & Edmunds, S. C. GigaDB: announcing the GigaScience database. Gigascience 1, 11, doi:10.1186/2047-217X-1-11 (2012). Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. <i>Methods Mol Biol</i> 1374, 115–140, doi:10.1007/978-1-4939-3167-5 (6 (2016). Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. <i>Mol Biol Evol</i> 34, 1812–1819, doi:10.1093/molbev/msx116 (2017). Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics (Oxford, England)</i> 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/bth397 (2004). Ming, R. <i>et al.</i> The pincapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Eddy, S. R. Accelerated profile H	905		evolution in R language. Bioinformatics 20, 289-290 (2004).
 90 Sneddon, T. P., Li, P. & Edmunds, S. C. GigaDB: announcing the GigaScience database. <i>Gigascience</i> 1, 11, doi:10.1186/2047-217X-1-11 (2012). 91 Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. <i>Methods Mol Biol</i> 1374, 115–140, doi:10.1007/978-1-4939-3167-5_6 (2016). 92 Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. <i>Mol Biol Evol</i> 34, 1812–1819, doi:10.1093/molbev/msx116 (2017). 93 Pryer, K. M. <i>et al.</i> Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.118/s12864-015-1554-9 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in	906	89	Sundell, D. et al. The plant genome integrative explorer resource:
 database. <i>Gigascience</i> 1, 11, doi:10.1186/2047-217X-1-11 (2012). Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. <i>Methods Mol Biol</i> 1374, 115–140, doi:10.1007/978-1-4939-3167-5_6 (2016). Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. <i>Mol Biol Evol</i> 34, 1812–1819, doi:10.1093/molbev/msx116 (2017). 93 Pryer, K. M. <i>et al.</i> Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 924 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 95 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7	907		PlantGenIE.org. New Phytol 208, 1149-1156, doi:10.1111/nph.13557 (2015).
 910 91 Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants: integrating tools for visualizing, mining, and analyzing plant genomics data. <i>Methods Mol Biol</i> 1374, 115–140, doi:10.1007/978-1-4939-3167-5_6 (2016). 92 Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. <i>Mol Biol Evol</i> 34, 1812–1819, doi:10.1093/molbev/msx116 (2017). 93 Pryer, K. M. <i>et al.</i> Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England)</i> 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, <lie1002195, (2<="" doi:10.1371="" journal.pcbi.1002195="" td=""><td>908</td><td>90</td><td>Sneddon, T. P., Li, P. & Edmunds, S. C. GigaDB: announcing the GigaScience</td></lie1002195,>	908	90	Sneddon, T. P., Li, P. & Edmunds, S. C. GigaDB: announcing the GigaScience
 911 integrating tools for visualizing, mining, and analyzing plant genomics data. 912 Methods Mol Biol 1374, 115–140, doi:10.1007/978-1-4939-3167-5_6 (2016). 913 92 Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for 914 timelines, timetrees, and divergence times. Mol Biol Evol 34, 1812–1819, 915 doi:10.1093/molbev/msx116 (2017). 93 Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the 94 closest living relatives to seed plants. Nature 409, 618–622, 918 doi:10.1038/35054555 (2001). 94 Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis 920 and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol 9148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 922 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a 923 tool for mining segmental genome duplications and synteny. Bioinformatics 924 (Oxford, England) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 925 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in 926 R. The R Journal 8, 352–359 (2016). 927 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for 928 comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842, 929 doi:10.1093/bioinformatics/btq033 (2010). 93 98 Ming, R. et al. The pineapple genome and the evolution of CAM 94 photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015). 95 100 Eddy, S. R. Accelerated profile HMM searches. PLoS Comput Biol 7, 96 e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 97 101 Finn, R. D. et al. InterPro in 2017-beyond protein family and domain 98 annotations. Nucleic Acids Res 45, D190–D199, doi:10.1093/nar/gkw1107 99 (2017). 90 He, Z. et al. Evolview v2: an online visualization and management t	909		database. Gigascience 1, 11, doi:10.1186/2047-217X-1-11 (2012).
912Methods Mol Biol 1374, 115–140, doi:10.1007/978-1-4939-3167-5_6 (2016).91392Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for914timelines, timetrees, and divergence times. Mol Biol Evol 34, 1812–1819,915doi:10.1093/molbev/msx116 (2017).91693Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the917closest living relatives to seed plants. Nature 409, 618–622,918doi:10.1038/35054555 (2001).91994Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis920and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol921148, 1772–1781, doi:10.1104/pp.108.124867 (2008).92295Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a923tool for mining segmental genome duplications and syntemy. Bioinformatics924(Oxford, England) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004).92596Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in926R. The R Journal 8, 352–359 (2016).92797Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for938comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842,949doi:10.1093/bioinformatics/btq033 (2010).950Ming, R. et al. The pineapple genome and the evolution of CAM951photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015).95299Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and <td>910</td> <td>91</td> <td>Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants:</td>	910	91	Bolser, D., Staines, D. M., Pritchard, E. & Kersey, P. Ensembl Plants:
 913 92 Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for timelines, timetrees, and divergence times. <i>Mol Biol Evol</i> 34, 1812–1819, doi:10.1093/molbev/msx116 (2017). 93 Pryer, K. M. <i>et al.</i> Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 93 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 91 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	911		integrating tools for visualizing, mining, and analyzing plant genomics data.
914timelines, timetrees, and divergence times. Mol Biol Evol 34, 1812–1819,915doi:10.1093/molbev/msx116 (2017).9169393Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the917closest living relatives to seed plants. Nature 409, 618–622,918doi:10.1038/35054555 (2001).91994Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis920and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol921148, 1772–1781, doi:10.1104/pp.108.124867 (2008).92295Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a923tool for mining segmental genome duplications and synteny. Bioinformatics924(Oxford, England) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004).92596Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in926R. The R Journal 8, 352–359 (2016).92797Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for928comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842,929doi:10.1093/bioinformatics/btq033 (2010).93098Ming, R. et al. The pineapple genome and the evolution of CAM931photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015).93299Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and933distribution of the NBS-LRR gene family in the Cassava genome. BMC944Genomics 16, 360, doi:10.1186/s12864-015-1554-9 (2015). <tr< td=""><td>912</td><td></td><td>Methods Mol Biol 1374, 115-140, doi:10.1007/978-1-4939-3167-5_6 (2016).</td></tr<>	912		Methods Mol Biol 1374, 115-140, doi:10.1007/978-1-4939-3167-5_6 (2016).
915doi:10.1093/molbev/msx116 (2017).91693Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the917closest living relatives to seed plants. Nature 409, 618–622,918doi:10.1038/35054555 (2001).91994Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis920and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol921148, 1772–1781, doi:10.1104/pp.108.124867 (2008).92295Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a923tool for mining segmental genome duplications and synteny. Bioinformatics924(Oxford, England) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004).92596Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in926R. The R Journal 8, 352–359 (2016).92797Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for928comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842,929doi:10.1093/bioinformatics/btq033 (2010).93098Ming, R. et al. The pineapple genome and the evolution of CAM931photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015).93299Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and933distribution of the NBS-LRR gene family in the Cassava genome. BMC944Genomics 16, 360, doi:10.1186/s12864-015-1554-9 (2015).955100Eddy, S. R. Accelerated profile HMM searches. PLoS Comput Biol 7,937 <td< td=""><td>913</td><td>92</td><td>Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for</td></td<>	913	92	Kumar, S., Stecher, G., Suleski, M. & Hedges, S. B. TimeTree: a resource for
 916 93 Pryer, K. M. <i>et al.</i> Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 910 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	914		timelines, timetrees, and divergence times. Mol Biol Evol 34, 1812-1819,
 closest living relatives to seed plants. <i>Nature</i> 409, 618–622, doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 400 Ho2 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	915		doi:10.1093/molbev/msx116 (2017).
 doi:10.1038/35054555 (2001). 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 97 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 40 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	916	93	Pryer, K. M. et al. Horsetails and ferns are a monophyletic group and the
 919 94 Lyons, E. <i>et al.</i> Finding and comparing syntenic regions among <i>Arabidopsis</i> and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 400 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	917		closest living relatives to seed plants. Nature 409, 618-622,
 and the outgroups papaya, poplar, and grape: CoGe with rosids. <i>Plant Physiol</i> 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics</i> (<i>Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Jozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 400 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	918		doi:10.1038/35054555 (2001).
 148, 1772–1781, doi:10.1104/pp.108.124867 (2008). Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	919	94	Lyons, E. et al. Finding and comparing syntenic regions among Arabidopsis
 922 95 Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a tool for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). 925 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 927 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 97 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	920		and the outgroups papaya, poplar, and grape: CoGe with rosids. Plant Physiol
 bol for mining segmental genome duplications and synteny. <i>Bioinformatics</i> (<i>Oxford, England</i>) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England</i>) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	921		148, 1772–1781, doi:10.1104/pp.108.124867 (2008).
 (Oxford, England) 20, 3643–3646, doi:10.1093/bioinformatics/bth397 (2004). Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. The R Journal 8, 352–359 (2016). Qiuinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC Genomics 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Eddy, S. R. Accelerated profile HMM searches. PLoS Comput Biol 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. et al. Evolview v2: an online visualization and management tool for 	922	95	Haas, B. J., Delcher, A. L., Wortman, J. R. & Salzberg, S. L. DAGchainer: a
 96 Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in R. <i>The R Journal</i> 8, 352–359 (2016). 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 935 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	923		tool for mining segmental genome duplications and synteny. Bioinformatics
 R. <i>The R Journal</i> 8, 352–359 (2016). Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	924		(Oxford, England) 20, 3643-3646, doi:10.1093/bioinformatics/bth397 (2004).
 927 97 Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. <i>Bioinformatics (Oxford, England)</i> 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 935 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	925	96	Wright, E. Using DECIPHER v2.0 to analyze big biological sequence data in
928comparing genomic features. Bioinformatics (Oxford, England) 26, 841–842, doi:10.1093/bioinformatics/btq033 (2010).93098Ming, R. et al. The pineapple genome and the evolution of CAM photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015).93199Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. BMC934Genomics 16, 360, doi:10.1186/s12864-015-1554-9 (2015).935100Eddy, S. R. Accelerated profile HMM searches. PLoS Comput Biol 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011).937101Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190–D199, doi:10.1093/nar/gkw1107 (2017).940102He, Z. et al. Evolview v2: an online visualization and management tool for	926		R. The R Journal 8, 352–359 (2016).
 doi:10.1093/bioinformatics/btq033 (2010). 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM 931 photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and 93 distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> 934 <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 935 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 939 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	927	97	Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
 930 98 Ming, R. <i>et al.</i> The pineapple genome and the evolution of CAM 931 photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and 93 distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> 934 <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 935 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, 936 e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain 938 annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 939 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	928		comparing genomic features. Bioinformatics (Oxford, England) 26, 841-842,
 photosynthesis. <i>Nat Genet</i> 47, 1435–1442, doi:10.1038/ng.3435 (2015). 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	929		doi:10.1093/bioinformatics/btq033 (2010).
 932 99 Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> 934 <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 935 100 Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	930	98	Ming, R. et al. The pineapple genome and the evolution of CAM
 distribution of the NBS-LRR gene family in the Cassava genome. <i>BMC</i> <i>Genomics</i> 16, 360, doi:10.1186/s12864-015-1554-9 (2015). Eddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	931		photosynthesis. Nat Genet 47, 1435–1442, doi:10.1038/ng.3435 (2015).
934 Genomics 16, 360, doi:10.1186/s12864-015-1554-9 (2015). 935 100 Eddy, S. R. Accelerated profile HMM searches. PLoS Comput Biol 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). 937 101 Finn, R. D. et al. InterPro in 2017-beyond protein family and domain annotations. Nucleic Acids Res 45, D190–D199, doi:10.1093/nar/gkw1107 939 (2017). 940 102 He, Z. et al. Evolview v2: an online visualization and management tool for	932	99	Lozano, R., Hamblin, M. T., Prochnik, S. & Jannink, J. L. Identification and
 Beddy, S. R. Accelerated profile HMM searches. <i>PLoS Comput Biol</i> 7, e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	933		distribution of the NBS-LRR gene family in the Cassava genome. BMC
 e1002195, doi:10.1371/journal.pcbi.1002195 (2011). Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	934		Genomics 16, 360, doi:10.1186/s12864-015-1554-9 (2015).
 937 101 Finn, R. D. <i>et al.</i> InterPro in 2017-beyond protein family and domain 938 annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 939 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	935	100	Eddy, S. R. Accelerated profile HMM searches. PLoS Comput Biol 7,
 annotations. <i>Nucleic Acids Res</i> 45, D190–D199, doi:10.1093/nar/gkw1107 (2017). He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	936		e1002195, doi:10.1371/journal.pcbi.1002195 (2011).
 939 (2017). 940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for 	937	101	Finn, R. D. et al. InterPro in 2017-beyond protein family and domain
940 102 He, Z. <i>et al.</i> Evolview v2: an online visualization and management tool for	938		annotations. Nucleic Acids Res 45, D190-D199, doi:10.1093/nar/gkw1107
	939		(2017).
941 customized and annotated phylogenetic trees. <i>Nucleic Acids Res</i> 44 , W236–	940	102	He, Z. et al. Evolview v2: an online visualization and management tool for
	941		customized and annotated phylogenetic trees. Nucleic Acids Res 44, W236-


942		241, doi:10.1093/nar/gkw370 (2016).
943	103	Matasci, N. et al. Data access for the 1,000 Plants (1KP) project. Gigascience
944		3 , 17, doi:10.1186/2047-217X-3-17 (2014).
945	104	Aubourg, S., Lecharny, A. & Bohlmann, J. Genomic analysis of the terpenoid
946		synthase (AtTPS) gene family of Arabidopsis thaliana. Mol Genet Genomics
947		267 , 730–745, doi:10.1007/s00438-002-0709-y (2002).
948	105	Irmisch, S., Jiang, Y., Chen, F., Gershenzon, J. & Köllner, T. G. Terpene
949		synthases and their contribution to herbivore-induced volatile emission in
950		western balsam poplar (Populus trichocarpa). BMC Plant Biol 14, 270,
951		doi:10.1186/s12870-014-0270-y (2014).
952	106	Martin, D. M. et al. Functional annotation, genome organization and
953		phylogeny of the grapevine (Vitis vinifera) terpene synthase gene family based
954		on genome assembly, FLcDNA cloning, and enzyme assays. BMC Plant Biol
955		10, 226, doi:10.1186/1471-2229-10-226 (2010).
956	107	Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile
957		HMMs. Bioinformatics 29, 2487-2489, doi:10.1093/bioinformatics/btt403
958		(2013).
959	108	Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary
960		genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874,
961		doi:10.1093/molbev/msw054 (2016).
962	109	Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum
963		evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26,
964		1641–1650, doi:10.1093/molbev/msp077 (2009).
965		
966		
967		



0.2



b

а

bioRxiv preprint doi: https://doi.org/10.1101/371112; this version posted July 18, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

	Illumina (v1)	Pacbio (v2)	Pacbio + HiC (v3)
Assembly feature			
Size (Mb)	714.7	728.3	730.7
Num. scaffolds	48,650	5,210	2,153
Average (Kb)	15	140	339
Largest scaffold (Mb)	6.2	12.8	87.0
N50 (Mb)	0.6	0.9	50.4
L50 (n)	254	185	6
N90 (Mb)	0.003	0.058	37.1
L90 (n)	6,123	1,709	12
Genome annotation			
Num. genes (n)			27,899
Gene model (Mb)			235.6
Exons (Mb)			36.4
Intron length (Mb)			199.2
Num. genes in 12 largest scaffold	ls		26,692
BUSCO completeness (%)			88.5

 Table 1. Statistics of the stout camphor tree genome assemblies using different sequencing technologies and final gene predictions.

		Primary M	letabolism	Secondary Metabolism					
TPS subfamilies	Genome size (Mb)	c	e	a	b	d ²	f	g	Total no
Function Species		CPS, C20¹	KS, C20	C15	IspS, C10	C10,15,20	C20	C10	
Gymnosperms									
Ginkgo biloba	10,609	1	1	_	_	49	_	-	51
Picea abies	12,301	2	1	-	-	59	-	-	62
Angiosperms									
Amborella trichopoda	706	1	1	-	7	-	3	5	17
Chloranthaceae									
Sarcandra glabra ³	-	-	1	2	-	-	-	-	3
Magnoliids									
Lauraceae									
Cinnamomum kanehirae	731	2	5	25	58	-	7	4	101
Persea americana ³	-	-	-	11	12	-	1	9	33
Piperales									
Saruma henryi ³	-	1	-	1	2	-	-	1	5
Monocots									
Musa acuminate	473	2	2	21	13	-	3	3	44
Oryza sativa	375	3	10	19	-	-	-	1	33
Zea mays	2,068	8	6	30	2	-	-	5	51
Eudicots									
Aquilegia coerulea	307	15	13	12	34	-	-	8	82
Rosids									
Arabidopsis thaliana	120	1	1	23	5	-	1	1	32

 Table 2. Numbers of TPS subfamilies in the 14 genomes and three transcriptomes of major seed plant lineages.

Populus trichocarpa	473	2	2	16	14	-	1	3	38
Vitis vinifer a^4	434	2	1	29	10	-	2	14	58 ⁴
Asterids									
Daucus carota	422	3	2	1	15	-	1	7	29
Mimulus guttatus	313	13	13	19	17	-	-	1	63

¹ The "C" and "Arabic number" within the parenthesis designate C10: monoterpene; C15: sesquiterpenes; C20: dipterids. CPS: copalyl diphosphate synthase; KS: kaurene synthase; IspS: isoprene synthase.
² TPS-d subfamily is gymnosperm-specific.
³ Transcriptome data of these three taxa were highly likely incomplete for covering all TPS transcripts, so that their total numbers of TPS were not reliable but for reference only.
⁴ These two TPS-f were previously characterized from grape floral cDNA without identical genomic *VvTPS* genes (Martin et al., 2010); *VvTPS* sequences that labeled as unknown (Martin et al., 2010) in the TPS gene tree were not counted.