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Abstract

Because multivariate autoregressive models have failed to adequately account for the

complexity of neural signals, researchers have predominantly relied on non-parametric

methods when studying the relations between brain and behavior. Using a database of

medial temporal lobe (MTL) recordings from 96 neurosurgical patients, we show that time

series models with volatility described by a multivariate stochastic latent variable process

and lagged interactions between signals in different brain regions provide new insights into

the dynamics of brain function. We estimate both the parameters describing the latent

variable processes and the directional correlations in volatility between brain regions using

Bayesian sampling techniques. The implied volatility inferred from our process positively

correlates with high-frequency spectral activity, a signal that correlates with neuronal

activity and is widely used to study brain function. We show that volatility features

derived from our model can reliably decode good vs. poor memory states, and that this

classifier performs as well as those using spectral features. Using the multivariate

stochastic volatility model, we uncovered hippocampal-perirhinal bidirectional connections

in the MTL regions that are associated with successful memory encoding.
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Multivariate Stochastic Volatility Modeling of Neural Data

Recent advances in neuroscience have enabled researchers to measure brain function with

both high spatial and temporal resolution, leading to significant advances in our ability to

relate complex behaviors to underlying neural signals. Because neural activities give rise to

electrical potentials, much of our knowledge concerning the neural correlates of cognition

derive from the analyses of multi-electrode recordings, which yield a multivariate time

series of voltage recorded at varying brain locations (denoted here as yt). Such signals may

be measured non-invasively, using scalp electroencephalography (EEG) methods, or

invasively, using subdural grids or intraparynchymal depth electrodes in human

neurosurgical patients. In recent years, intracranially recorded (iEEG) signals have yielded

detailed information on correlations between time-series measures and a wide range of

behaviors including perception, attention, learning, memory, language, problem solving and

decision making (Jacobs & Kahana, 2010).

Whereas other fields that grapple with complex multivariate time series have made

effective use of parametric models such as economics and engineering Kim et al. (1998);

Blanchard & Simon (2001); West (1996), neuroscientists abandoned early parametric

approaches (e.g., linear autoregressive models) in favor of non-parametric spectral

decomposition methods, as a means of uncovering features of neural activity that may

correlate with behavior. A strength of these non-parametric methods is that they have

enabled researchers to link fluctuations in iEEG signals to low-frequency neural oscillations

observed during certain behavioral or cognitive states, such as slow-wave sleep (Landolt et

al., 1996; Chauvette et al., 2011; Nir et al., 2011), eye closure (Klimesch, 1999; Goldman et

al., 2002; Laufs et al., 2003; Barry et al., 2007) or spatial exploration (Kahana et al., 2001;

Raghavachari et al., 2001; Caplan et al., 2003; Ekstrom et al., 2005; Byrne et al., 2007).

High-frequency neural activity, which has also been linked to a variety of cognitive and

behavioral states (Maloney et al., 1997; Herrmann et al., 2004; Canolty et al., 2006), is less

clearly oscillatory, and may reflect asynchronous stochastic volatility of the underlying
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EEG signal (Burke et al., 2015).

Although spectral analysis methods have been used extensively in the neuroscience

literature, they assume that there is unique information in each of a discrete set of

frequency bands. The number of bands and frequency ranges used in these methods have

been the subject of considerable controversy. Indeed, Manning et al. Manning et al. (2009)

have shown that broadband power often correlates more strongly with neuronal activity

than does power at any narrow band. Also, non-parametric methods implicitly assume

that the measured activity is observed independently during each observational epoch, and

at each frequency, an assumption which is easily rejected in the data, which show strong

temporal autocorrelation as well as correlations among frequency bands Von Stein &

Sarnthein (2000); Jensen & Colgin (2007); Axmacher et al. (2010). Moreover,

non-parametric methods applied to EEG signals are typically done in a univariate fashion

that neglects the spatial correlational structure. By simultaneously modeling the spatial

and temporal structure in the data, parametric models confer greater statistical power so

long as they are not poorly specified.

Parametric methods have been applied to various types of multivariate neural data

including EEG Hesse et al. (2003); Dhamala et al. (2008); Bastos et al. (2015),

magnetoencephalography (MEG) David et al. (2006), functional magnetic resonance

imaging (FMRI) Roebroeck et al. (2005); Goebel et al. (2003); David et al. (2008), and

local field potentials (LFP) Brovelli et al. (2004). These methods typically involve fitting

vector autoregressive (VAR) models to multivariate neural data that are assumed to be

stationary in a specific time interval of interest. The regression coefficient matrix derived

from the VAR models can be used to study the flow of information between neuronal

regions in the context of Granger causality (G-causality). Neuroscientists have used

Gaussian VAR models to study the effective connectivity (directed influence) between

activated brain areas during cognitive and visuomotor tasks Zhou et al. (2009); Deshpande

et al. (2009); Graham et al. (2009); Roebroeck et al. (2005). Although VAR models and
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G-causality methods have been argued to provide useful insights into the functional

organization of the brain, their validity relies upon the assumptions of linearity,

stationarity, and homoskedasticity (constant variance over time) of the neural data. When

one of these assumptions is violated, the conclusions drawn from a G-causality analysis will

be inconsistent and misleading Stokes & Purdon (2017). One of the most common

violations is the assumption of homoskedasticity (Wong et al., 2006). Therefore, in the

present work we adopt a stochastic volatility approach in which volatility is assumed to

follow a stochastic process. Such models have been extremely useful in the analyses of

financial market data which, like neural data, exhibits high kurtosis Heston (1993); Bates

(1996); Barndorff-Nielsen (2002).

We propose a multivariate stochastic volatility (MSV) model with the aim of

estimating the time-varying volatility of multivariate neural data and its spatial

correlational structure. The MSV model assumes that the volatility series of iEEG signals

follows a latent variable vector autoregressive process and it allows for the lagged signals of

different brain regions to influence each other by specifying a full persistent matrix

(typically assumed to be diagonal) in the VAR process for volatility. We employed a

Bayesian approach to estimate the latent volatility series and the parameters of the MSV

model using the forward filtering backward sampling and Metropolis Hastings algorithms.

We validated the MSV model in a unique dataset comprising depth-electrode

recordings from 96 neurosurgical patients. These patients volunteered to participate in a

verbal recall memory task while they were undergoing clinical monitoring to localize the

epileptogenic foci responsible for seizure onset. Our analyses focused on the subset of

electrodes (n =718) implanted in the medial temporal lobe (MTL) regions, including

hippocampus, parahippocampal cortex, entorhinal cortex and perirhinal cortex. We chose

to focus on these regions given their prominent role in the encoding and retrieval of

episodic memories Davachi et al. (2003); Kirwan & Stark (2004); Kreiman et al. (2000);

Sederberg et al. (2007).
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We show that the MSV model with interactions between regions provides a

substantially superior fit to MTL recordings than univariate stochastic volatility (SV)

models. The implied volatility in these models positively correlates with non-parameter

estimates of spectral power, especially in the gamma frequency band. We demonstrate the

utility of our method for decoding cognitive states by using a logistic regression classifier

trained on the implied volatility data across MTL electrodes to predict which studied items

will be subsequently recalled. We find that the MSV-derived features outperform spectral

features in decoding cognitive states, supporting the value of this model-based time-series

analysis approach to the study of human cognition. Furthermore, using the MSV model to

construct a directional MTL connectivity network, we find that significant bidirectional

connectivity between the perirhinal cortex and the hippocampus predicts successful

memory encoding.

Multivariate Stochastic Volatility Models

Volatility, the instantaneous variance of a time series, has been used extensively in

financial applications to forecast aspects of future returns, price derivatives, and study

recessions, inflation and monetary policies Engle et al. (2001); Cogley & Sargent (2005);

Blanchard & Simon (2001). There is by now a large literature on stochastic volatility

models and methods for estimating these models either by closed-form solutions Heston

(1993); Heston & Nandi (2000) or by simulation Harvey & Shephard (1996); Kim et al.

(1998); Omori et al. (2007). In this study, we utilize a multivariate stochastic volatility

model with the aim of using volatility to study cognitive processes, in particular, ones that

are related to memory. One innovation that is made in this paper is that we allow for

volatility series of different regions in the brain to influence each other, thus, enabling us to

study the directionality of the correlational structure of the considered brain regions.

Specifically, we allow for the volatility series of different regions to Granger-cause each
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other. Let yt = (y1t, · · · , yNt)′ be a multivariate iEEG time-series at N electrodes1. We

model yjt, 1 ≤ j ≤ N , as follows:

yjt = exp(xjt2 )εyjt, (1)

and

xjt − µj =
N∑
k=1

βjk(xkt−1 − µk) + εxjt, (2)

where the error terms follow multivariate normal (MVN ) distributions:

εyt = (εy1t, · · · , εyNt) ∼MVN (0, IN), εxt = (εx1t, · · · , εxNt) ∼MVN (0,Σ). IN denotes the

identity matrix of dimension N , and Σ = diag(σ2
1, · · · , σ2

N) is assumed to be diagonal.

That is, yjt is a time series whose conditional log-variance (log-volatility), xjt, follows an

AR(1) process that depends on its past value and the past values of other electrodes. The

series {y1t}Tt=1, · · · , {yNt}Tt=1 are assumed to be conditionally independent given their

log-volatility series {x1t}Tt=1, · · · , {xNt}Tt=1. The coefficient, bjk, models how the past value

of channel k affects the current value of channel j. We can rewrite Eqn. 2 in a matrix form,

xt − µ = B(xt−1 − µ) + εxt (3)

where xt = (x1t, · · · , xNt), µ = (µ1, · · · , µN) and B(j, k) = βjk. The vector error terms εyt

and εxt are assumed to be independent. The parameters in the system above are assumed

to be unknown and need to be estimated.

Following a Bayesian perspective, we assume that the parameters are not completely

unknown, but they follow some prior distributions. Then, using the prior distributions and

the information provided by the data, we can make inferences about the parameters from

their posterior distributions.

1We detrended the raw time-series using autoregressive models of order p, where p was selected based on

the Akaike information criterion (AIC).
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Priors and Estimation Method

We specify prior distributions for the set of parameters θ = (µ,B, σ2) of the MSV

model. The mean vector µ follows a multivariate normal distribution µ ∼MVN (bµ, Bµ).

Each entry of the persistence matrix Bij ∈ (−1, 1) is assumed to follow a beta distribution,

(Bij + 1)/2 ∼ Beta(a0, b0) Kim et al. (1998). For volatility of volatility, we utilize a gamma

prior, σj ∼ Γ(1/2, 1/2Bσ) Kastner & Frühwirth-Schnatter (2014), which is equivalent to

±
√
σ2
j ∼ N(0, Bσ). We estimated the latent volatility processes and the parameters of the

MSV model using a Metropolis-within-Gibbs sampler Kim et al. (1998); Omori et al.

(2007); Kastner & Frühwirth-Schnatter (2014) (See S.I. for derivation and for discussion

of parameter identification).

Results

We analyzed the behavioral and electrophysiological data of 96 subjects implanted

with subdural and depth electrodes during a free recall memory task. Subjects learned at

least 25 lists of 12 unrelated words presented on a screen, with each list followed by a short

arithmetic distractor task. Then, subjects recalled as many words from the previously

studied list as possible in any order (Fig. 1). For all of our analyses, we only considered the

encoding periods of the task. In addition, we focused our analyses on the MTL regions that

have been implicated in episodic memory encoding Squire & Zola-Morgan (1991);

E. Solomon et al. (2017a); Long & Kahana (2015). To assess a particular effect across

subjects, we utilized the maximum a posteriori (MAP) estimate by taking the posterior

mean of the variable of interest (whether it be the volatility time series xt or the regression

coefficient matrix B) Stephan et al. (2010).

[ Figure 1 about here ]
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Model Comparison

To establish the validity of the MSV model, we compared its performance to that of

univariate stochastic volatility models (equivalent to setting all the off-diagonal entries of

the matrix B in Eqn. 2 to 0) in fitting iEEG data. We applied the MSV model to the

multivariate neural data combined across encoding periods (regardless of whether the word

items were later recalled) and SV models to datasets of individual electrodes. We utilized

the deviance information criterion (DIC) Spiegelhalter et al. (2002); Gelman et al. (2014)

considered to be a Bayesian analogue of the Akaike information criterion (AIC) to evaluate

the performance of the models. The DIC consists of two components: the negative

log-likelihood, D̄ = Eθ,x|y[−2 log f(y | θ,x)], which measures the goodness-of-fit of the

model and the effective number of parameters,

pD = D̄ −D(θ̄, x̄) = Eθ,x|y[−2 log f(y | θ,x)] + 2 log f(y | θ̄, x̄), which measures the

complexity of the model. Where θ̄ and x̄ denote the posterior means of the latent volatility

series and the parameters of the MSV model. The DIC balances the trade-off between

model fit and model complexity. Models with smaller DICs are preferred. To account for

the varying amount of data each subject had, we averaged the DIC by the number of

events and electrodes. We found the MSV model to have a consistently lower DIC value

than the SV model with a mean difference of 23 (± 5.9 SEM). This indicates that the MSV

model is more than 150 times as probable as the SV models Kass & Raftery (1995),

suggesting that the MSV model is a more appropriate model for iEEG data.

Relation to Spectral Power

We next analyzed the relation between volatility and spectral power (see Materials &

Methods) over a wide range of frequencies, from 3 to 180 Hz in 1 Hz steps). For each

subject, we computed the correlation between volatility and spectral power for each

encoding event and then averaged these correlations across all events. Since spectral powers

of close frequencies are highly correlated, we utilized a Gaussian process model Rasmussen
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(2004) to estimate the correlation between volatility and spectral power as a function of

frequency. Fig. 2 indicates that the correlation between volatility and spectral power is

significantly positive across the spectrum and increasing in frequency. This illustrates the

broadband nature of the volatility measure, but also suggests that volatility may more

closely relate to previous neuroscientific findings observed for high-frequency as compared

with low-frequency activity. Having established that the MSV model outperforms the more

traditional SV approach, and having shown that the implied volatility of the series reliably

correlates with high frequency neural activity, we next asked whether we can use the

model-derived time series of volatility to predict subjects’ behavior in a memory task.

[ Figure 2 about here ]

Classification of Subsequent Memory Recall

Extensive previous work on the electrophysiological correlates of memory encoding

has shown that spectral power, in both the low frequency (4-8 Hz) theta band and at

frequencies about 40 Hz (so called gamma activity), reliably predicts which studied words

will be subsequently recalled or recognized Sederberg et al. (2003). Here we ask whether

the implied volatility derived from the MSV model during word encoding can also reliably

predict subsequent recall. To benchmark our MSV findings we conducted parallel analyses

of wavelet-derived spectral power at frequencies ranging between 3-180 Hz. To aggregate

across MTL electrodes within each subject we applied an L2-penalized logistic regression

classifier using features extracted during the encoding period to predict subsequent

memory performance. To estimate the generalization of the classifier, we utilized a nested

cross-validation procedure in which we trained the model on N − 1 sessions using the

optimal penalty parameter selected via another inner cross-validation procedure on the

same training data. We then tested the classifier on a hold-out session collected on a

different day. We computed the receiver operating characteristic (ROC) curve, relating

true and false positives, as a function of the criterion used to assign regression output to
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response labels. We then use the AUC metric (area under the ROC curve) to characterize

model performance. We find that MSV-model implied volatility during item encoding

reliably predicts subsequent recall, yielding an average AUC of 0.53 (95% CI, from 0.51 to

0.55). AUCs reliably exceeded chance levels in 73 percent of subjects (33 out of 45 subjects

who contributed at least 3 sessions of data). Fig. 3 compares these findings against results

obtained using wavelet-derived power. Here we see that implied volatility does as well as,

or better than, spectral measures at nearly all frequencies. In order to capture the

correlation between spectral powers (thus their corresponding classifiers’ performances), we

fitted a Gaussian regression model to test the functional form of ∆AUC. We find that the

∆AUC function is significantly different from the 0 function (χ2
11 = 42, P < 10−5) Benavoli

& Mangili (2015), which indicates that on average volatility performs significantly better

than spectral power in predicting subsequent memory recall.

[ Figure 3 about here ]

Directional Connectivity Analysis

Having established that volatility is predictive of subsequent memory recall, we now

seek to identify directional connections between MTL subregions that are related to

successful memory encoding. To investigate the intra-MTL directional connectivity

patterns that correlate with successful memory encoding, we utilize a subsequent memory

effect (SME) paradigm in which we compare the MTL directional connectivity patterns

(regression coefficient matrix B) associated with recalled (R) word items to those associated

with non-recalled (NR) items. The SME paradigm has been widely used in the memory

literature to study neural correlates (typically spectral power in a specific frequency band)

that predict successful memory formation Sederberg et al. (2003); Long et al. (2014).

The intra-MTL connectivity SME was constructed using the following procedure.

First, we separated the word items into recalled and non-recalled items offline. Using the

MSV model, we constructed an intra-MTL connectivity network for each memory outcome.
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We compared the distribution of the elements of these matrices across subjects. For the

analysis, we considered four subregions of the MTL: hippocampus (Hipp), entorhinal

cortex (EC), perirhinal cortex (PRC), and parahippocampal cortex (PHC). We then

computed the contrast between the two intra-MTL networks corresponding to recalled and

non-recalled items for each ordered pair of subregions excluding the ones with fewer than

10 subjects contributing to the analysis. To compute the directional connectivity from

region I to region J , we took the average of the “influences” that electrodes in region I

have on electrodes in region J : ∆I→J = 1
|I||J |

∑
i∈I,j∈J(BR

ij −BNR
ij ), where |I| denotes the

number of electrodes in region I. Finally, we averaged the contrast for each ordered pair of

MTL subregions across sessions. Fig. 4 illustrates the intra-MTL connectivity SME for the

left and right hemispheres. Directed connections between the left hippocampus and the left

PRC reliably decreases (false-discovery-rate-corrected) during successful memory encoding

(∆Hipp→PRC = −0.04, t47 = −3.49, adj. P < 0.01 and ∆PRC→Hipp = −0.06, t47 = −2.66, adj.

P < 0.05). The difference between the directional connections between these two regions is

not significant (t47 = 0.53, P = 0.60). The decreases in the bi-directional connections

between the hippocampus and the perirhinal cortex are consistent with the findings in

E. Solomon et al. (2017a) which suggested that gamma networks desynchronize during

encoding. We did not, however, find any other significant directional corrections among the

remaining regions (Fig. 4, Tables 2 and 3).

[ Figure 4 about here ]

Discussion

The ability to record electrophysiological signals from large numbers of brain

recording sites has created a wealth of data on the neural basis of behavior and a pressing

need for statistical methods suited to the properties of multivariate, neural, time-series

data. Because neural data strongly violate homoskedasticity assumptions underlying

standard approaches, such as Granger causality Stokes & Purdon (2017), researchers have
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generally eschewed these model-based approaches and embraced non-parameter data

analytic procedures. The multivariate stochastic volatility framework that we propose

allows for non-stationarity while taking full advantage of the Granger-causality approach.

This framework allows us to explicitly model the time-varying variance of neural signals.

Similar stochastic volatility models have been used extensively in the financial economics

literature to characterize a wide range of phenomena.

Applying MSV models to recordings from indwelling electrodes in 96 neurosurgical

patients allowed us to model neural connectivity among medial-temporal lobe (MTL)

subregions, and show how changes in connectivity predicted successful memory encoding.

We further demonstrated how the implied volatility extracted from these models correlated

with spectral power over a wide range of frequencies. We found that volatility is

significantly positively correlated with spectral power, and this correlation increases with

frequency.

We further verified that neural volatility estimated during word encoding reliably

predicts subsequent recall. By comparing a penalized logistic-regression classifier on

volatility features to one trained on spectral power, we found that volatility performs at

least as well as spectral power at any frequency in predicting subsequent recall. Using

Gaussian process regression we were able to confirm that our MSV model-derived volatility

features significantly outperformed the spectral features in decoding memory processes in

the human brain.

A key strength of the MSV approach is its ability to identify directed interactions

between brain regions without assuming stationarity. We thus used this approach to

determine the directional connections between MTL sub-regions that correlate with

successful memory encoding. Using the regression coefficient matrix of the multivariate

volatility process, we found that periods of decreased connectivity between the

hippocampus and the perirhinal cortex generally predicted successful memory encoding.

Prior studies provide some precedent for this result by showing that brain regions often
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exhibit desynchronization of high-frequency activity during memory encoding E. Solomon

et al. (2017b); Burke et al. (2015).

To model the complex dynamics of neural time-series data signals, MSV models

require a large amount of data to accurately estimate the latent volatility process and

model parameters. Although such large datasets are not always available, high-frequency

neural recordings provide an excellent testbed for application and further development of

this class of models. By presenting a first application of this approach to neural time-series

data, we believe researchers will be able to further extend these models to broader classes

of neural recordings, and exploit their statistical power to substantially increase our

understanding of how behavior emerges from the complex interplay of neural activity

across many brain regions.

Materials and Methods

Participants. Ninety six patients with drug-resistant epilepsy undergoing intracranial

electroencephalographic monitoring were recruited in this study. Data were collected as

part of a study of the effects of electrical stimulation on memory-related brain function at

multiple medical centers. Surgery and iEEG monitoring were performed at the following

centers: Thomas Jefferson University Hospital (Philadelphia, PA), Mayo Clinic (Rochester,

MN), Hospital of the University of Pennsylvania (Philadelphia, PA), Emory University

Hospital (Atlanta, GA), University of Texas Southwestern Medical Center (Dallas, TX),

Dartmouth-Hitchcock Medical Center (Lebanon, NH), Columbia University Medical Center

(New York, NY) and the National Institutes of Health (Bethesda, MD). The research

protocol was approved by the Institutional Review Board at each hospital and informed

consent was obtained from each participant. Electrophysiological signals were collected

from electrodes implanted subdurally on the cortical surface and within brain parenchyma.

The neurosurgeons at each clinical site determined the placement of electrodes to best

localize epileptogenic regions. Across the clinical sites, the following models of depth and
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grid electrodes (electrode diameter in pararentheses) were used: PMT Depthalon (0.86

mm); Adtech Spencer RD (0.86mm); Adtech Spencer SD (1.12mm); Adtech Behnke-Fried

(1.28mm); Adtech subdural and grids (2.3mm). The dataset can be requested at

http://memory.psych.upenn.edu/RAM_Public_Data.

Free-recall task. Each subject participated in a delayed free-recall task in which they

were instructed to study a list of words for later recall test. The task is comprised of three

parts: encoding, delay, and retrieval. During encoding, the subjects were presented with a

list of 12 words that were randomly selected from a pool of nouns

(http://memory.psych.upenn.edu/WordPools). Each word presentation lasts for 1600 ms

followed by a blank inter-stimulus interval (ISI) of 800 to 1200 ms. To mitigate the recency

effect (recalling last items best) and the primacy effect (recalling first items better than the

middle items), subjects were asked to perform a math distraction task immediately after

the presentation of the last word. The math problems were of the form A+B+C = ?,

where A,B,C were randomly selected digits. The delay math task lasted for 20 seconds,

after which subjects were asked to recall as many words as possible from the recent list of

words, in any order during the 30-second recall period. Subjects performed up to 25 lists

per session of recording (300 words). Multiple sessions were recorded over the course of the

patient’s hospital stay.

Electrophysiological Recordings and Data Processing. iEEG signals were recorded

from subdural and depth electrodes at various sampling rates (500, 1000, or 1600 Hz)

based on the the amplifier and the preference of the clinical team using one of the following

EEG systems: DeltaMed XlTek (Natus), Grass Telefactor, and Nihon-Kohden. We applied

a 5 Hz band-stop fourth order Butterworth filter centered on 60 Hz to attenuate signal

from electrical noise. We re-referenced the data using the common average of all electrodes

in the MTL to eliminate potentially confounding large-scale artifacts and noise. We used

Morlet wavelet transform (wave number = 5) to compute power as a function of time for

our iEEG signals. The frequencies were sample linearly from 3 to 180 Hz with 1 Hz
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increments. For each electrode and frequency, spectral power was log-transformed and then

averaged over the encoding period. Within a session of recording, the spectral power was

z-scored using the distribution of power features across events. To extract volatility feature,

we applied the MSV model to the dataset constructed from concatenating encoding events

within a session. The implied volatility was then averaged over the encoding period.

Anatomical Localization. The MTL electrodes were anatomically localized using the

following procedure. Hippocampal subfields and MTL cortices were automatically labeled

in a pre-implant 2 mm thick T2-weighted MRI using the Automatic segmentation of

hippocampal subfields (ASHS) multi-atlas segmentation method Yushkevich et al. (2015).

A post-implant was co-registered with the MRI using Advanced Normalization Tools

Avants et al. (2008). MTL depth electrodes that were visible in the CT were then localized

by a pair of neuroradiologists with expertise in MTL anatomy.

Statistical Analyses. To assess an effect across subjects, we applied classical statistical

tests on the maximum a posteriori (MAP) estimate of the parameter of interest . This

approach has been used in many Bayesian applications to FMRI studies Stephan et al.

(2010) to test an effect across subjects. For analyses concerning frequencies, we applied

Gaussian regression models Rasmussen (2004) to take the correlations among frequencies

into account. We used the Matern (5/2) kernel function for all analyses that used Gaussian

regression models. p-values were FDR-corrected at α = 0.05 significance level when

multiple tests were conducted.

Supplementary Materials

MCMC Algorithm for MSV Models

In this section, we derive an MCMC algorithm, which consists of Metropolis-Hastings

steps within a Gibbs sampler, for estimating the latent volatility process and its

parameters. As before, let xt denote the latent multivariate volatility time-series and

θ = (µ,B, σ2) the parameters in the MSV model. Following Kim et al. (1998); Omori et al.
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(2007), we log-transform Eqn. 1

y∗jt = xjt + log((εyjt)2), (4)

where y∗jt = log(y2
jt + c) with a fixed offset constant c = 10−4 to avoid values equal to 0.

Eqn. 4 is linear but non-Gaussian. To ameliorate the non-Gaussianity problem, we

approximate the log-transformed error term log((εyjt)2) ∼ log(χ2
1) by a mixture of 10 normal

distributions as in Omori et al. (2007):

log(χ2
1) ∼

10∑
k=1

pkN(mk, v
2
k).

The values of pk,mk and vk are tabulated in Omori et al. (2007). As a result, we introduce

a latent mixture component indicator variable, rjt, for channel j at time t such that

log((εy)2) | (rjt = k) ∼ N(mk, v
2
k). The indicator variable is also estimated in the MCMC

sampler. Given the mixture indicator rt and the vector parameter θ, the latent volatility

series xt can be sampled using a forward-filtering and backward-sampling (FFBS)

procedure West (1996). The mixture indicator rt can be sampled from a multinomial

distribution

P (rjt = k | xt, θ) ∝ P (rjt = k) 1
vk

exp
{
− (ỹjt − xjt −mk)2

2v2
k

}
. (5)

Finally, the vector parameter θ can be sampled using an ancillarity-sufficiency interweaving

strategy (ASIS) Yu & Meng (2011); Kastner & Frühwirth-Schnatter (2014) which involves

sampling the vector parameter θ given the unstandardized volatility series xjt via a

Metropolis-Hasting step (non-centered step) and then sampling θ again given the

standardized volatility series x̃jt = xjt − µj
σj

(centered step). Yu & Meng (2011) argued

that by alternating between the non-centered and centered steps, we obtain a more efficient

MCMC sampler that has a better mixing rate and converges faster. In addition, Kastner &

Frühwirth-Schnatter (2014) showed that the ASIS can accurately sample latent volatility

time-series that have low persistences, which is often the case for iEEG signals.

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/371203doi: bioRxiv preprint 

https://doi.org/10.1101/371203


MSV 18

Parameter Identification

To demonstrate that the Gibbs sampler can accurately estimate the latent volatility

process and its associated parameters, we conducted a simulation study in which we

generated N = 5 time series of length T = 50, 000 according to Eqn. 1 and 2 with various

signal-to-noise ratios (SNR), which is controlled by varying the volatility of the volatility

series, to mimic the typical length and the number of electrodes in our iEEG datasets. The

SNR is calculated by taking the ratio of the average volatility of volatility across electrodes

to the expected standard deviation of the noise term in Eqn. 4. We sampled 10,000

posterior draws and discarded the first 5,000 draws as a burn-in period to allow for

convergence to the stationary distribution. Table 1 reports the posterior means of the

parameters of the MSV model. Throughout the simulation, we use priors whose means are

equal to the true values of the parameters. We observe that the Gibbs sampler can

reliably estimate the parameters of the MSV model from datasets with various

signal-to-noise ratios. The identification of the parameters in the MSV model comes from

the strength of our large iEEG datasets which typically have tens of thousands of data

points, an amount of data that rarely exists in financial applications.

Model Fit Plots

We provide a visualization of the latent volatility series. Fig. 5 illustrates the

recordings from a hippocampal electrode during encoding of a list of 12 word items from a

subject performing a verbal free-recall task at the University of Pennsylvania Hospital. The

top panels show the detreneded iEEG series using AR(p) models. The bottom panels show

the respective latent volatility series associated with the detrened signals. We observe that

the latent volatility series capture the instantaneous variance of the original series.
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Output Tables of Statistical Tests

This section reports the statistical tests for directional connection SME that contain

at least 10 subjects. Tables 2 and 3 show the results of these tests for the left and right

hemispheres.
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Table 1

Simulation Study.

Truth MSV

Dataset SNR Channel α b1 b2 b3 b4 b5 σ α b1 b2 b3 b4 b5 σ

1 0.16 1 3.39 0.85 0.20 0.00 0.00 0.00 0.17 3.39 0.86 0.19 0.00 -0.04 0.00 0.17

2 3.60 0.00 0.88 -0.10 0.00 0.00 0.19 3.60 0.00 0.87 -0.10 -0.00 -0.01 0.19

3 3.55 0.00 0.00 0.87 0.30 0.00 0.19 3.53 -0.00 -0.00 0.85 0.29 0.01 0.20

4 3.51 0.00 0.00 0.00 0.71 0.00 0.12 3.51 0.01 -0.00 0.01 0.69 -0.03 0.14

5 3.38 0.00 0.00 0.00 0.00 0.80 0.15 3.38 0.00 -0.01 -0.01 0.06 0.79 0.15

2 0.27 1 3.60 0.95 0.20 0.00 0.00 0.00 0.21 3.93 0.95 0.19 -0.00 0.00 0.00 0.24

2 3.74 0.00 0.90 -0.10 0.00 0.00 0.25 3.82 -0.00 0.90 -0.10 0.00 -0.00 0.25

3 3.89 0.00 0.00 0.93 0.30 0.00 0.29 3.81 -0.00 0.00 0.93 0.30 0.00 0.29

4 3.05 0.00 0.00 0.00 0.91 0.00 0.28 3.04 -0.00 0.01 0.01 0.91 0.00 0.28

5 3.96 0.00 0.00 0.00 0.00 0.95 0.22 3.97 -0.00 0.00 0.00 -0.00 0.94 0.22

3 0.42 1 3.25 0.52 0.20 0.00 0.00 0.00 0.42 3.25 0.51 0.20 0.01 -0.02 0.01 0.43

2 3.64 0.00 0.57 -0.10 0.00 0.00 0.46 3.63 0.01 0.55 -0.14 0.02 0.02 0.46

3 3.18 0.00 0.00 0.58 0.30 0.00 0.31 3.18 0.03 0.01 0.56 0.32 0.03 0.31

4 3.44 0.00 0.00 0.00 0.65 0.00 0.41 3.45 0.00 -0.00 -0.00 0.64 0.00 0.41

5 3.26 0.00 0.00 0.00 0.00 0.60 0.36 3.26 -0.02 -0.00 0.00 -0.01 0.60 0.36

We generated 3 datasets with different signal-to-noise ratios. The observed multivariate time-series yt was

simulated according to the data-generating process specified by the MSV model with pre-specified

parameters (truth). We then applied the MSV model to the simulated series yt to recover the parameters

of the MSV model. In this simulation study, the non-zero off-diagonal entries of the matrix B were fixed

across datasets. The diagonal elements of B were generated from a uniform distribution on [0.7, 0.9],

[0.9, 1.0], and [0.5, 0.7] respectively. The volatilities of volatility of the electrodes were generated from a

uniform distribution on [0.1, 0.2], [0.2, 0.3], and [0.3, 0.5] respectively.
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Table 2

intra-MTL directional connectivity in the left hemisphere

region I → region J mean ∆I→J se t N p adj. p

Hipp → PRC -0.044 0.013 -3.494 48 0.001 0.009**

PRC → Hipp -0.060 0.022 -2.667 48 0.011 0.045*

Hipp → EC 0.010 0.032 0.312 14 0.768 0.953

EC → Hipp -0.077 0.067 -1.158 14 0.285 0.569

PHC → PRC -0.006 0.040 -0.146 16 0.889 0.953

PRC → PHC -0.037 0.028 -1.348 16 0.212 0.564

PRC → EC 0.001 0.022 0.061 21 0.953 0.953

EC → PRC 0.005 0.030 0.168 21 0.872 0.953
Table 3

intra-MTL directional connectivity in the right hemisphere

region I → region J mean ∆I→J se t N p adj. p

Hipp → PRC -0.010 0.020 -0.471 40 0.645 0.838

PRC → Hipp -0.016 0.029 -0.575 40 0.574 0.838

Hipp → EC 0.011 0.030 0.361 14 0.733 0.838

EC → Hipp 0.054 0.047 1.144 14 0.290 0.838

Hipp → PHC -0.027 0.032 -0.837 15 0.432 0.838

PHC → Hipp 0.044 0.035 1.232 15 0.254 0.838

PRC → EC 0.020 0.052 0.378 14 0.722 0.838

EC → PRC -0.002 0.081 -0.020 14 0.985 0.985
∗ : P< 0.05, ∗∗ : P< 0.01, adjusted p-values were calculated using the Benjamini-Hochberg procedure.
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Figure 1 . Figure reproduced from E. A. Solomon et al. (2018). Task Design and Analysis.

(A) Subjects performed a verbal free-recall which consists of three phases: (1) countdown

(orange), (2) word encoding (blue), and (3) free recall (gray). (B) 96 Participants were

implanted with depth electrodes in the medial temporal lobe (MTL) with localized

subregions: CA1, CA3, dentate gyrus (DG), subiculum (Sub), perirhinal cortex (PRC),

entorhinal cortex (EC), or parahippocampal cortex (PHC). (C) For each subject, we

applied the MSV model to the iEEG time-series recorded during the word encoding period

to estimate the latent volatility series and the parameters of the MSV model.
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Figure 2 . Correlation between volatility and spectral power over a frequency range from 3

to 180 Hz. We fitted a Gaussian process model to estimate the functional form of the

correlation function between volatility and spectral power (solid blue line) and its 95%

confidence bands (dashed gray lines). The red line shows the null model. We observe a

significantly positive correlation between volatility and spectral power, and the correlation

increases with frequency.
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A B B

Figure 3 . (A) Average AUC of the classifier trained on spectral power across 45 subjects

with at least 3 sessions of recording (blue). The red line indicates the average AUC of the

classifier trained on volatility. (B) ∆AUC = AUCvol - AUCpower as a function of frequency

estimated by using a Gaussian regression model (dashed gray lines indicate 95% confidence

bands). The red line shows the null model. We observe that the classifier trained on

volatility performs at least as well as the one trained on spectral power across the

frequency spectrum. We find that functional form of ∆AUC is significantly different from

the 0 function (χ2
11 = 42, P < 10−5) using a Gaussian process model, suggesting that the

difference in performance between the volatility classifier and the spectral power classifier is

significant.
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Figure 4 . MTL Directional Connectivity Network. The MTL electrodes were divided into

four subregions: hippocampus (Hipp.), parrahippocampal cortex (PHC), entorhinal cortex

(EC), and perirhinal cortex (PRC). The directional connectivity from region I to region J,

CI→J , was calculated by averaging the entries of the sub-matrix of the regression coefficient

matrix B, whose rows and columns correspond to region I and J respectively. We

computed the contrast bewteen the directional connectivity of recalled and non-recalled

events: ∆I→J = CR
I→J − CNR

I→J for each subject. Solid lines show significant

(FDR-corrected) connections between two regions and dashed lines show trending but

insignificant connections. Red indicates positive changes and blue indicates negative

changes. The directional connectivity from Hipp. to PRC is significant (adj. P < 0.01) and

the reverse directional connectivity is also significant (adj. P < 0.05).

.
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Model Fit Sample Plots for Subject R1002P

Figure 5 . Model fit plots for a hippocampal electrode. The upper panels show the

detrended iEEG signals using an AR(p) model for encoding periods of a list of words. The

lower panels show the associated estimated latent volatility processes. The red lines

indicate the average volatility during the encoding period. Red words are later recalled and

blue words are not recalled.
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