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 42 

Abstract 43 

Working memory (WM) is assumed to consist of a process that sustains memory representations in an 44 

active state (maintenance) and a process that operates on these activated representations (manipulation). 45 

Prior fMRI studies have examined maintenance and manipulation in separate task conditions, whereas in real 46 

life these processes operate simultaneously. In the current study, the neural mechanisms of maintenance and 47 

manipulation were disentangled during the same task by parametrically varying these processes. During fMRI, 48 

participants maintained consonant letters in WM while sorting them in alphabetical order. Maintenance was 49 

investigated by varying the number of letters held in WM and manipulation by varying the number of moves 50 

required to sort the list alphabetically. The study yielded three main findings. First, the degree of both 51 

maintenance and manipulation demand had significant effects on behavior that were associated with different 52 

cortical regions: maintenance was associated with bilateral prefrontal and left parietal cortex, and manipulation 53 

with right parietal activity, a link that is consistent with the role of parietal cortex in symbolic computations. 54 

Second, univariate fMRI and tractography based on diffusion-weighted imaging showed that maintenance and 55 

manipulation regions are supported by two dissociable structural networks. Finally, maintenance and 56 

manipulation functional networks became increasingly segregated with increasing demand, possibly reflecting 57 

the protection of information held in WM from interference generated by manipulation operations. These results 58 

represent a novel approach to study the brain as an adaptive system that coordinates multiple ongoing 59 

cognitive processes.   60 

 61 
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 67 

Significance Statement  68 

Despite the importance of working memory (WM) in everyday life, little is known about how the brain is able 69 

to simultaneously maintain and manipulate information stored in short-term memory buffers. We examined 70 

evidence for two distinct, concurrent cognitive functions supporting maintenance and manipulation abilities by 71 

testing brain activity as participants performed a WM alphabetization task. We found behavioral and neural 72 

evidence in support of dissociable cognitive functions associated with these two operations. Furthermore, we 73 

found that connectivity between these networks was increasingly segregated as difficulty increased, and that 74 

this effect was positively related to individual WM ability. These results provide evidence that network 75 

segregation may act as a protective mechanism to enable successful performance under increasing WM 76 

demand. 77 

  78 
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 79 

Introduction 80 

Working memory (WM) is a fundamental ability that allows humans to process information not currently 81 

available to the senses. WM is typically assumed to consist of dissociable maintenance processes, which 82 

sustain information in an activated state, and manipulation processes, which operate on the maintained 83 

information (Baddeley, 2000). This distinction is fundamental for WM theory and it has been the focus of 84 

multiple fMRI studies (D'Esposito et al., 1999a; Postle et al., 2006; Rypma, 2006). However, most fMRI studies 85 

comparing maintenance and manipulation operations have been limited in three ways. First, maintenance and 86 

manipulation have usually been investigated in separate tasks or conditions (Rypma et al., 1999; Postle et al., 87 

2006), while in real life, they occur simultaneously. Second, the specific computations underlying manipulation 88 

have rarely been operationalized or examined. For example, in the typical manipulation task in which 89 

participants are asked to put letters in alphabetical order (D'Esposito et al., 1999b; Bunge et al., 2000), the 90 

critical operation is mentally shifting the position of each letter into a new order. The difficulty of this process 91 

depends on the number of “sorting steps” needed to achieve the reordering, which is a factor that has not been 92 

investigated in behavioral or fMRI studies of WM. Finally, most WM maintenance-manipulation fMRI studies 93 

have focused on univariate activity and have not examined functional interactions among multiple regions. 94 

Given that WM requires rapid exchange of information among many regions, characterizing the connectivity 95 

patterns between these systems is essential for understanding the processes that enable maintenance and 96 

manipulation of information in WM. 97 

The current study addressed these three problems. To address the first two interrelated limitations, this 98 

study investigated maintenance and manipulation during the same Delayed Response Alphabetization Task 99 

(DRAT), which utilizes both forms of WM processing. Here maintenance was examined by assessing 100 

parametric changes in the number of letters held in WM (Set Size) and manipulation, by assessing the number 101 

discrete moves required to alphabetize the letters (Sorting Steps), both during the delay period. It was 102 

hypothesized that Set Size and Sorting Steps would have distinct effects on performance and elicit distinct 103 

parametric patterns of univariate activity. Based on neuroimaging evidence linking Set Size to prefrontal cortex 104 
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(PFC; for review, see Rypma and D'Esposito, 1999), and abstract symbol manipulations to the superior 105 

parietal lobule (SPL; Postle et al., 2006), a dissociation between these two regions was expected.  106 

Lastly, to address the limited focus of previous maintenance-manipulation fMRI studies on univariate 107 

activity, we also examined network dynamics. Graph measures of network segregation and reconfiguration 108 

(D'Esposito et al., 1999b; Han and Kim, 2004; Eriksson et al., 2015) were used to describe the dynamics of 109 

maintenance and manipulation networks as a function of maintenance or manipulation demands. Changes in 110 

the relational complexity of a task have been associated with variations in the segregation of PFC regions 111 

(Harvey et al., 2013; Cohen and D'Esposito, 2016), as well as to more global alterations in the organization of 112 

whole-brain partitions (Chan et al., 2014; Cohen et al., 2014). The present study offers an intermediate 113 

approach between these local and global scales, defining widespread, task-related networks that represent 114 

concurrent maintenance and manipulation operations. Given that the goal of maintenance is to sustain 115 

information in the same state whereas the goal of manipulation is to alter this state, it was expected that 116 

negative association would exist between networks supporting these processes. Moreover, it was also 117 

expected that this segregation of processing would increase with task difficulty.  118 

In sum, we hypothesized that Set Size and Sorting Steps would (1) have differential effects on WM 119 

performance, (2) be associated with univariate activations in different brain regions (e.g., PFC vs. SPL), and 120 

(3) be supported by dissociable neural networks. We expected that the answer to these hypotheses would 121 

clarify the neural mechanisms underlying the two main types of cognitive operations mediating working 122 

memory function, maintenance and manipulation.  123 

Materials and Methods  124 

Participants 125 

Forty-four young adults aged 18 to 35 (mean 22.8 ± 4.6, 23 F) participated in the study for monetary 126 

compensation and consented to the protocol approved by the Duke Medical School IRB. Participants had no 127 

history of psychiatric or neurological disorders and were not using psychoactive drugs. These participants were 128 

enrolled in a 6-day TMS protocol, but only data from the Screening session (Day 1) and MR Imaging (Day 2) 129 

are reported here. Three individuals were excluded because of poor functional imaging quality (due to 130 

excessive movement or falling asleep during the scan), and hence 41 participants are included in the analyses.  131 
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 132 

Figure 1. Illustration of Delayed Response Alphabetization Task with (A) stimulus sequence and (B) and a schematic illustration of 133 

the variation in the minimum number of necessary sorting steps across two different Set Sizes. Notice that while the 2nd and 3rd trials 134 

have an equal number of letters, the minimum number of steps necessary to alphabetize the array increases from 1 to 2. 135 

 136 

Behavioral procedures 137 

The study investigated a Delayed Response Alphabetization Task (Figure 1). In this task, an array 138 

consisting of 3-9 consonant letters was presented for 3 seconds followed by a 5-second delay period during 139 

which participants mentally reorganized letters into alphabetical order. Vowels were excluded to prevent 140 

chunking. After the delay period, a letter and number were presented together for 4 seconds and the 141 

participants pressed one of three buttons to indicate if the probe letter (1) appeared in the position indicated by 142 

the number in the alphabetized list (Valid, 40% of trials), (2) was part of original set but the number did not 143 

match the position in the alphabetized list (Invalid, 40% of trials), or (3) was not part of the original set (New, 144 

20% of trials). These three types of trials occurred in random order. For all three conditions, the probe was 145 

never from the first half of the alphabetized array, and in the Invalid condition, to exclude obvious differences 146 

between correct and incorrect position, the number above the letter was always within 1 step of the letter’s 147 
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actual alphabetized position. During the subject-specific titration on Day 1 (see the following paragraph for 148 

more information), the response phase was followed by a 5-second (mean) inter-trial interval (ITI). During 149 

practice (10 trials), participants were given feedback during this ITI on the accuracy of their previous trial 150 

response. Twenty-five trials were included in each of the 6 blocks with a brief, self-paced rest interval between 151 

blocks. 152 

As part of the overall protocol, subjects participated in 6 experimental sessions, but only the first two are 153 

relevant to this study. In the first session, participants performed the DRAT outside the scanner, while seated 154 

at a computer terminal, in order to identify the range of Set Size optimal to each participant. The optimal Set 155 

Size was identified using 2-down-1-up staircase procedure: when a trial was answered correctly, the Set Size 156 

was increased by 1, and when it was answered incorrectly, the Set Size was decreased by 2. Accuracy data 157 

for each Set Size was then fitted to a sigmoid function, with Criterion set at 82% accuracy. The two Set Sizes 158 

with sigmoid-fitted accuracy immediately greater than Criterion were defined as Very Easy and Easy levels, 159 

and the two Set Sizes with accuracy below Criterion were defined as Medium and Hard levels. Thus, the four 160 

Set Size levels selected for an individual depended on his/her WM ability (e.g., 3-4-5-6 letters in one 161 

participant, 4-5-6-7 in another participant). This method balanced task demands across participants. To ensure 162 

that the psychometric function was not strongly influenced by noise for Set Sizes with a low number of trials, 163 

50% accuracy was used for the largest set sizes if less than 10 trials were tested. To achieve more stable 164 

curve fits, peripheral anchors were added by including points for Set Sizes of 1 and 2 at 100% accuracy and 165 

Set Sizes 10 and 11 at 50% accuracy.  166 

In the second session, participants performed the DRAT inside the scanner. Four blocks, each with 30 167 

trials, were performed using the 4 difficulty levels defined from session 1 performance, with equal numbers of 168 

trials for each of the 4 difficulty levels, pseudorandomly chosen across the 4 blocks. Stimuli were back-169 

projected onto a screen located at the foot of the MRI bed using an LCD projector. Subjects viewed the screen 170 

via a mirror system located in the head coil and the start of each run was electronically synchronized with the 171 

MRI acquisition computer. Trial-by-trial feedback was not given, but the overall accuracy was presented at the 172 

end of each block. Behavioral responses were recorded with a 4-key fiber-optic response box (Resonance 173 

Technology, Inc.). Scanner noise was reduced with ear plugs, and head motion was minimized with foam 174 

pads. When necessary, vision was corrected using MRI-compatible lenses that matched the distance 175 
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prescription used by the participant. The total scan time, including breaks and structural scans, was 176 

approximately 1 h 40 min. 177 

MRI scanning and data preprocessing  178 

MRI was performed in a 3-T GE scanner at the at Duke Brain Imaging Analysis Center (BIAC). Structural 179 

MRI and DWI scans were followed by performing 4 fMRI runs of the DRAT task. The anatomical MRI was 180 

acquired using a 3D T1-weighted echo-planar sequence (matrix = 2562, TR = 12 ms, TE = 5 ms, FOV = 24 181 

cm, slices = 68, slice thickness = 1.9 mm, sections = 248). In the fMRI runs, coplanar functional images were 182 

acquired using an inverse spiral sequence (64 × 64 matrix, time repetition [TR] = 2000 ms, time echo [TE] = 31 183 

ms, field of view [FOV] = 240 mm, 37 slices, 3.8-mm slice thickness, 254 images). Finally, DWI data were 184 

collected using a single-shot echo-planar imaging sequence (TR = 1700 ms, slices = 50, thickness = 2.0 mm, 185 

FOV = 256 × 256 mm2, matrix size 128 × 128, voxel size = 2 mm3, b value = 1000 s/mm2, diffusion-sensitizing 186 

directions = 36, total images = 960, total scan time = 5 min).  187 

Functional images were preprocessed using image processing tools, including FLIRT also from FSL, in a 188 

publicly available pipeline developed by the Duke Brain Imaging and Analysis Center 189 

(https://wiki.biac.duke.edu/biac:analysis:resting_pipeline). Images were corrected for slice acquisition timing, 190 

motion, and linear trend; motion correction was performed using FSL’s MCFLIRT, and 6 motion parameters 191 

estimated from the step were then regressed out of each functional voxel using standard linear regression. 192 

Images were then temporally smoothed with a high-pass filter using a 190s cutoff, and normalized to the 193 

Montreal Neurological Institute (MNI) stereotaxic space. White matter and CSF signals were also removed 194 

from the data, using WM/CSF masks generated by FAST and regressed from the functional data using the 195 

same method as the motion parameters. Spatial filtering with a Gaussian kernel of full-width half-maximum 196 

(FWHM) of 6mm was applied. 197 

Experimental Design and Statistical Analyses 198 

Behavioral Analyses 199 

Accuracy and response times (RTs) of correct DRAT trials were analyzed in terms of Set Size and Sorting 200 

Steps using linear mixed effects models, as implemented by R and lme4. Set Size had four levels, Very Easy, 201 

Easy, Medium, and Hard, which were defined based on data from the first session. Individual fitted accuracy 202 
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functions, centered around each subject’s individual Criterion, and determination of their Starting Set Size (i.e. 203 

Set Size value corresponding to the Very Easy condition) are shown in Figure 2A. Across the sample of 41 204 

participants, 12 had a Starting Set Size of 3; 19 had a Starting Set Size of 4; 9 had Starting Set Size of 5; and 205 

1 had a Starting Set Size of 6. In all future references, Relative Set Size refers to the individually titrated load of 206 

four Set Sizes for each subject (beginning with their Starting Set Size, then +1 item, +2 items, and +3 items) 207 

quantified across four discrete levels (1-4), whereas Absolute Set Size refers to the original number of letters in 208 

an array. 209 

Sorting Steps is the minimum number of discrete changes required to transform the initial random letter 210 

array into the alphabetized array. The number of sorting steps was estimated using the minimum number of 211 

sorting operations calculated from four sorting algorithms (Golde et al., 2010): insertion, selection, merge 212 

insertion, and merge selection. Insertion consists of processing each letter one-by-one and inserting it into the 213 

correct alphabetized position. Selection consists of identifying the earliest letter in the alphabet and swapping it 214 

with the letter occupying the correct position. Merge insertion and merge selection are similar to insertion and 215 

selection, respectively, but they subdivide the letter array into two sub-arrays, sorting within each of them, and 216 

then combining the results.  Assuming that participants used the most efficient strategy, sorting steps was 217 

calculated as the minimum number of reordering steps from among the four algorithms on each trial. Given the 218 

logical complexities in orthogonalizing Absolute Set Size and Sorting Step factors, letters were selected at 219 

random, approximating a normal distribution within each Absolute Set Size (Figure 2B). 220 
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 221 

 222 

Figure 2. Interaction of Absolute Set Size and Sorting Steps. (A) Individually-titrated (Relative) Set Sizes were determined using 223 

sigmoid curves fitted to individual performance data, based on accuracy from screening. (B) Distribution of Sorting Steps across the 224 

Absolute Set Sizes in the current paradigm (i.e., before adjusting to 4-levels based on session 1 titration). 225 

 226 

 Absolute Set Size and Sorting Steps were moderately correlated (r = 0.51). The distribution of Sorting 227 

Steps within each Absolute Set Size approximated a normal distribution within each level of Set Size (all 228 

Shapiro-Wilk tests, W = 0.81-.95), though increasing Set Size was naturally associated with a wider distribution 229 

in the number of Sorting Steps for that level (Figure 2B). To confirm that both Set Size and Sorting Steps had 230 

significant and independent effects on performance, linear (for RT) and logistic (for accuracy) regression 231 

analyses were conducted. In all subsequent analysis, Relative Set Size is used as the measure of Set Size to 232 

best standardize the level of difficulty across all subjects. RTs were analyzed only for correct trials using a 233 

linear restricted maximum likelihood model. Accuracy was analyzed using a binomial logistic model including 234 

all trials. For both models, Set Size and Sorting Steps were treated as fixed effects while individual subjects 235 

were treated as a random effect. In addition, for both RT and Accuracy models, the interaction term (Set Size 236 

by Sorting Steps) was tested in order to account for additional variance attributed to increasing Sorting Steps 237 

across the 4 levels of difficulty. In both models, R (R Core Team, 2012) and lme4 (Bates, Maechler & Bolker, 238 
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2012) were used to perform a linear mixed effects analysis; while Relative Set Size and Sorting Steps (with 239 

interaction term) were entered into the fixed effects model. Intercepts for subjects, as well as by-subject 240 

random slopes were entered for the random effects of Relative Set Size and Sorting Steps. Gender, age, and 241 

each subject’s Starting Set Size were also included to account for standardizing difficulty levels across 242 

subjects. Visual inspection of residual plots did not reveal any obvious deviations from homoscedasticity or 243 

normality. P-values were obtained by likelihood ratio tests of the full model with the effect in question against 244 

the model without the effect in question. There was no missing data, but participants failed to respond within 245 

the permitted 4-second time window on 1.6% of trials (79 out of 4920).  These trials were excluded from all 246 

analyses.  247 

fMRI analyses 248 

A parametric approach was used to investigate how activity varied as a function of Relative Set Size and 249 

Sorting Steps. First-level voxel time-series analysis was carried out using general linear modeling (GLM) 250 

implemented in the FEAT toolbox of FSL. Fixed effects models were carried out to examine the parametric 251 

effects of Set Size and the number of sorting operations necessary to alphabetize each trial; separate events 252 

were modeled for the array presentation (duration: 3s), delay period (duration: 5s), and response (duration: 253 

subject response time), each with an onset at the beginning of the event.  Weighted regressors during the 254 

delay period were used to model the difficulty associated with different WM operations. The first regressor 255 

increased linearly with the array’s Set Size to model the parametric increase in difficulty with increased letter 256 

load. The second weighted regressor reflected the minimum number of sorting steps needed on a given trial. 257 

Both of these parametric variables were orthogonalized to the non-parametric delay-period regressor, the trial 258 

period when maintenance and manipulation are likely to operate concurrently. Incorrect and non-response 259 

trials were modeled identically, but separately, and were not considered in the results below. Subsequent to 260 

individual-level models, random-effects analysis was performed on the parameter estimates of the parametric 261 

regressors (p < 0.005, cluster correction: z > 2.0).  262 

Cortical Parcellation 263 

Before either structural or functional matrices were constructed, consistent parcellation scheme were 264 

established across all subjects and all modalities (DWI, fMRI) that reflect an accurate summary of the full 265 

connectome effects (Cocchi et al., 2014). Subjects’ T1-weighted images were segmented using SPM12 266 
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(www.fil.ion.ucl.ac.uk/spm/software/spm12/), yielding a grey matter (GM) and white matter (WM) mask in the 267 

T1 native space for each subject. The entire GM was then parcellated into 471 regions of interest (ROIs), each 268 

representing a network node by using a subparcellated version of the Harvard-Oxford Atlas, (Braun et al., 269 

2015), defined originally in MNI space. The T1-weighted image was then nonlinearly normalized to the 270 

ICBM152 template in MNI space using fMRIB’s Non-linear Image Registration Tool (FNIRT, FSL, 271 

www.fmrib.ox.ac.uk/fsl/). The inverse transformations were applied to the HOA atlas in the MNI space, 272 

resulting in native-T1-space GM parcellations for each subject. Then, T1-weighted images were coregistered 273 

to native diffusion space using the subjects’ unweighted diffusion image as a target; this transformation matrix 274 

was then applied to the GM parcellations above, using FSL’s FLIRT linear registration tool, resulting in a 275 

native-diffusion-space parcellation for each subject. 276 

Structural connectivity 277 

DWI data were analyzed utilizing FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) and MRtrix (http://mrtrix.org) 278 

software packages. Data were de-noised with MRtrix, corrected with eddy current correction from FSL, and 279 

brain extraction was performed with both FSL and MRtrix, whereas bias-field correction was completed with 280 

MRtrix. Constrained spherical deconvolution (CSD) was utilized in calculating the fiber orientation distribution 281 

(FOD). This FOD was used along with the brain mask to generate whole brain tractography, with seeding done 282 

at random within the mask (Knuth, 1976; Beynel et al., in review). Relevant parameters regarding track 283 

generation are as follows: seed = at random within mask; step-size = 0.2 mm; 10,000,000 tracts. After tracts 284 

were generated, they were filtered using SIFT (spherical-deconvolution informed filtering of tractograms). This 285 

process utilizes an algorithm which determines whether a streamline should be removed or not based off of 286 

information obtained from the FOD, which improves the selectivity of structural connectomes by using a cost-287 

function to eliminate false positive tracts (Yeh et al., 2016). Tracts were SIFTed until 1 million tracts remained.  288 

Prior to connectome generation, subject-specific MNI-space brains were created by an affine registration 289 

between the MNI T1 2mm brain template and b0s using FSL's FLIRT. The MNI subject-specific brains then 290 

underwent another affine registration to the Harvard-Oxford 471 ROI template.  291 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/371294doi: bioRxiv preprint 

http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://www.fmrib.ox.ac.uk/fsl/
https://doi.org/10.1101/371294


 12 

Functional connectivity 292 

Functional connection matrices representing task-related connection strengths were estimated using a 293 

correlational psychophysical interaction (cPPI) analysis used previously by us (Tzourio-Mazoyer et al., 2002) 294 

and others (Tournier et al., 2007) to estimate a whole-brain connectivity matrix that describes task-related 295 

interactions between brain regions. Briefly, the model relies on the calculation of a PPI regressor for each 296 

region (or node), based on the product of that region’s timecourse and a task regressor of interest, in order to 297 

generate a term reflecting the psychophysical interaction between the seed region’s activity and the specified 298 

experimental manipulation.  299 

 300 

Network definition 301 

In the current study, subjects’ T1-weighted images were segmented using SPM12 302 

(www.fil.ion.ucl.ac.uk/spm/software/spm12/), yielding a grey matter (GM) and white matter (WM) mask in the 303 

T1 native space for each subject. The entire GM was then parcellated into 471 regions of interest (ROIs), each 304 

representing a network node by using a subparcellated version of the Harvard-Oxford Atlas, (Tournier et al., 305 

2004), defined originally in MNI space. The T1-weighted image was then nonlinearly normalized to the 306 

ICBM152 template in MNI space using fMRIB’s Non-linear Image Registration Tool (FNIRT, FSL, 307 

www.fmrib.ox.ac.uk/fsl/). The inverse transformations were applied to the HOA atlas in the MNI space, 308 

resulting in native-T1-space GM parcellations for each subject. Next, the convolved task regressors from the 309 

univariate model described above were used as the psychological regressor, which were originally coded as 310 

either a) the unmodulated (weight = 1) delay for each trial, b) the Set-Size-modulated delay regressor (range = 311 

1-4), or c) the Sorting Operations-modulated delay regressor (range = 0-7); all regressors are mean-adjusted 312 

in FSL. Additional psychological regressors were modeled on the onsets for encoding (i.e., letter array) and 313 

response (i.e., cue) periods, but were not used in the connectivity analysis. The delay-period regressors were 314 

each multiplied with two network timecourses for region i and 𝑗. Partial correlations 𝜌𝑃𝑃𝐼𝑖,𝑃𝑃𝐼𝑗 ∙ 𝑧 were then 315 

computed by removing the variance 𝑧, which includes both the psychological regressor and the time courses 316 

for regions i and 𝑗, as well as constituent noise regressors including 6 motion parameters and noise regressors 317 

coding for the concurrent signal in white matter and CSF during each run. In order to compare equally reliable 318 

estimates of connectivity delineated by either Set Size or Sorting Steps, the distribution of Sorting Steps within 319 
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each individual from 0-7 to 1-4 level was interpolated, such that an equal number of trials were used to 320 

estimate connectivity values in each parameter. This cPPI analysis resulted in 8 separate output matrices, 321 

comprising connectivity delineated by Set Size (4 levels), or Sorting Steps (also 4 levels). Task-related 322 

connectivity was estimated from the resulting output matrices; negative connections were included in these 323 

analyses, as they may inform important, explicit interpretations about how networks may be segregated (Yeh 324 

et al., 2016). Graph metrics, including modularity (describing the modular organization of the whole-brain 325 

graph) and strength (describing a sum of the connectivity strengths for each node) were computed using the 326 

Brain Connectivity Toolbox as described previously (Davis et al., 2017) and, when appropriate, summed 327 

across all nodes within a task-related network.  328 

Maintenance and Manipulation networks were defined by using both functional and structural information. 329 

First, parametric univariate activity from voxelwise maps was averaged within individual regions of interest 330 

(ROI) within the 471-ROI Harvard-Oxford brain atlas, and ranked by mean z-score. This information was used 331 

to identify the top 5% nodes for each parametric effect. Both networks were constructed with equal numbers of 332 

nodes, in order to ensure that the main network metrics (within- or between-network correlations, see below) 333 

were not biased by the number of regions contributing to that aggregate measure. Each ROI was ranked by its 334 

mean parametric effect z-score and the top 5% of nodes were classified as either Maintenance or Manipulation 335 

network nodes. Lastly, structural connectivity information (FA of each pairwise connection) between all network 336 

nodes (5% of 471 = 23 Maintenance nodes, 23 Manipulation nodes) was assessed for both within- and 337 

between-network connection strength. 338 

 339 

Network segregation and reorganization measures 340 

Lastly, in order to summarize the more system-wide behavior of the two task-related networks, two derived 341 

measures of overall network organization were calculated. First, a previously reported (Fornito et al., 2012) 342 

measure of system segregation was used. This measure was calculated as the difference between the mean 343 

magnitudes of between-system correlations from the within-system correlations as a proportion of mean within-344 

system correlation.  345 

𝑆𝑒𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛 =  
Ζ̅𝑤 − Ζ̅𝑏

Ζ̅𝑤
 346 
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Where Ζ̅𝑤 is the mean r-values between nodes of one partition, module, or system (similar to within-module 347 

degree or WMD), and Ζ̅𝑏 is the mean of r-values between nodes of separate partitions (similar to between-348 

module degree or BMD, Tzourio-Mazoyer et al., 2002). Accordingly, values greater than 0 reflect relatively 349 

lower between-system correlations in relation to within-system correlations (i.e., stronger segregation of 350 

systems), and values less than 0 reflect higher between-system correlations relative to within-system 351 

correlations (i.e., diminished segregation of systems). 352 

Second, a network reconfiguration measure was developed to describe the similarity in functional 353 

connectivity across the task conditions. While the segregation measure above is descriptive of network 354 

behavior at discrete levels of difficulty, network reconfiguration describes the overall similarity between task 355 

conditions, i.e., between network states. Network reconfiguration represents a direct comparison between 356 

network states, and in this case represents an average of the correlation values between all functional 357 

connection matrices for a given subject.  358 

𝑅𝑒𝑜𝑟𝑔𝑎𝑛𝑖𝑧𝑎𝑡𝑖𝑜𝑛 = 1 −  
1

𝑛 × (𝑛 − 1)
∑ 𝜌𝑖,𝑗

𝑖≠𝑗
 359 

Where n is the number of states (e.g., 4 in this case), and 𝜌𝑖,𝑗 represents the Spearman’s correlation 360 

between the complex functional connectivity profiles representing two brain states 𝑖 and 𝑗 (e.g., functional 361 

connectivity matrices representing Easy and Medium difficulty levels in this case). Thus, highly correlated 362 

matrices represent low reconfiguration (closer to 0), while weakly correlated matrices represent high 363 

reconfiguration across task conditions (closer to 1). Given the explicit hypotheses concerning segregation and 364 

integration of the putative Maintenance and Manipulation networks, reconfiguration within a subset of 365 

connections that describe a) connections within the Maintenance network, b) connections within the 366 

Manipulation network, and c) connections between both networks were examined.  367 

Results 368 

Behavioral results 369 

Figure 3 presents accuracy and RT data. Based on likelihood ratio tests of the full model with a null model 370 

removing the relevant term (Table 1), both Relative Set Size (4 load levels titrated to individual performance) 371 

and Sorting Steps made significant and distinct contributions to both accuracy and RTs. Specifically, the binary 372 
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logistic regression of accuracy revealed a significant effect of Relative Set Size (χ2 = 80.07, p = 2.2e-14) and 373 

Sorting Steps (χ2 = 22.14, p = 2.5e-6), as well as a significant Relative Set Size by Sorting Steps interaction (χ2 374 

= 12.35, p = 4e-4). The linear mixed effects regression applied to RT data revealed a similar pattern of 375 

findings, such that both Relative Set Size (χ2 = 45.73, p = 1.4e-11), Sorting Steps (χ2 = 12.39, p = 4.3e-4), and 376 

their interaction (χ2 = 10.66, p = 1.1e-3) demonstrated significant effects. Effects of Gender and Starting Set 377 

Size were nonsignificant in both models (p>0.05), which is not surprising given the inclusion of intercepts for 378 

subjects, as well as by-subject random slopes for the effect of Relative Set Size and Sorting Steps. These 379 

findings therefore support the approach of using these two measures to disentangle maintenance and 380 

manipulation WM mechanisms. 381 

 382 

Figure 3. Mean values and standard error across subjects for accuracy (A) and RTs (B) across Relative Set Size, reflecting the 383 

number of items to be retained in WM across a 5s delay (adjusted across subjects to 4 levels), and Sorting Steps, reflecting the number 384 

of sorting operations required to alphabetize a given letter array. Note: Statistical significance was determined by linear mixed-effects 385 

models. 386 

 387 

Table 1. ANOVA of factors affecting accuracy and RTs 388 

Effect Estimate Std.Error χ2 Value Pr > |t| 

Accuracy     

Intercept 4.10 0.32   

Set Size -0.94 0.11 77.43 2.2e-14 

Sorting Steps -0.49 0.10 23.46 2.1e-6 
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Set Size * Sorting Steps 0.11 0.03 12.35 0.0004 

     

Reaction times       

Intercept 1129.17 206.66   

Set Size 284.36 37.05 45.73 1.4e-11 

Sorting Steps 89.22 25.22 12.39 0.0004 

Set Size * Sorting Steps -29.14 8.86 10.66 0.0031 
Note: χ2 statistics and p-values were obtained by likelihood ratio tests of the full model with the effect in question against the model 389 

without the effect in question. 390 

 391 

fMRI results 392 

Univariate activity 393 

Univariate analyses were used to identify regions where delay-period activity increased parametrically as a 394 

function of Relative Set Size or Sorting Steps. As shown by Figure 4A and Table 2, models with concurrent 395 

parametric regressors show that Relative Set Size was associated with increased activity in bilateral PFC 396 

(including the middle and inferior frontal gyri—MFG and IFG), ventral parietal cortex (VPC), and the anterior 397 

cingulate cortex (ACC), whereas Sorting Steps were associated with activations in superior parietal lobule 398 

(SPL), ACC, the posterior cingulate cortex (PCC), the superior temporal gyrus (STG), and the hippocampus. 399 

Comparison of non-competing parametric maps at the single subject level confirmed that both maintenance 400 

and manipulation parameters elicited activity in overlapping middle-cingulate regions. 401 

 402 

Table 2. Parametric fMRI effects of Set Size and Sorting Steps 403 

Region Hemi x y z Z size 

Set Size        

MFG L -32 48 10 2.65 24 

                R 41 40 16 2.09 21 

IFG L -44 8 12 2.28 18 

ACC L/R -4 26 38 2.14 19 
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Sorting steps       

SPL R 30 -53 68 3.14 33 

ACC L/R -4 58 24 3.12 43 

PCC L/R -2 -45 40 2.94 67 

STG R 63 -24 12 3.15 41 

Hippocampus R 32 6 -32 3.48 39 

       

Conjunction       

ACC L/R -2 55 20 3.51 32 

MFG L -35 49 12 2.87 18 

The coordinates reported here indicate the centers of clusters of parametric activity identified within each anatomical region. 404 

Identification of anatomical regions was confirmed via conversion of MNI coordinates to Talairach coordinates with the mni2tal MATLAB 405 

routine of Matthew Brett (http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html). Note: MFG: middle frontal gyrus; IFG: inferior frontal 406 

gyrus; SPL: superior parietal lobule; ACC: anterior cingulate cortex; PCC: posterior cingulate cortex; STG: superior temporal gyrus. 407 

 408 

 409 

Figure 4. Parametric effects during the Delay period of Set Size, reflecting the number of letters in the encoding array, and Sorting 410 

Steps, reflecting the minimum number of reorganizing operations required to alphabetize an array. Images thresholded at p < 0.005, 411 

cluster correction FWE p < 0.05 412 

The strength of these unique effects is surprising, given the moderate collinearity between Set Size and 413 

Sorting Steps noted above. To investigate possible overlaps between the parametric effects of Set Size and 414 

Sorting Steps, whole-brain conjunction analysis was performed at the subject level, using parametric fMRI 415 

models with either Set Size or Sorting Steps (but not both regressors). Significant overlapping voxels were 416 
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observed only in mid-cingulate cortex and anterior SFG, indicating that these regions are sensitive to both 417 

maintenance and manipulation.  418 

Furthermore, the model fit for each ROI was examined to infer explicit evidence for collinearity between the 419 

convolved parametric Set Size and Sorting Step regressors. In order to test explicitly for the nature of the 420 

collinearity between these terms, the average Variance Inflation Factor (VIF) was calculated across runs, for 421 

each ROI. A VIF is the ratio of variance in a model with multiple terms, divided by the variance of a model with 422 

one term alone (Braun et al., 2012); large VIFs are a measure of multicollinearity, and thus a test of the specific 423 

parametric factors can help validate whether these terms carry unique information. VIFs were calculated on the 424 

full first-level models (i.e., each run), comprising convolved regressors for all parametric and nonparametric 425 

events; VIFs for parametric Set Size and Sorting Steps effects were then averaged across runs. These 426 

analyses revealed that the VIF for both Set Size (2.58, SD = +/- 0.48 across subjects) and Sorting Steps (VIF = 427 

2.49, SD = +/- 0.48 across subjects) remained well within established guidelines for the VIF (general VIF < 5; 428 

see Rubinov and Sporns, 2010; Chan et al., 2014).  429 

 430 

 431 

Figure 5. Converting univariate information into multivariate topology. Thresholded parametric maps (Fig. 4), using average 432 

responses within all voxels in each ROI in the HOA471, were used in order to identify regions responsive to Set Size or Sorting Steps 433 

(A). (B) The top 5% nodes of each network were then assigned to either Maintenance or Manipulation networks, based on the 434 

parametric effect (z-score) within these nodes (p < 0.005).(C) Structural network connectivity is stronger within than between networks, 435 

helping to validate the task-based network parcellation. Independent of any functional information, nodes selected within the 436 

Maintenance or Manipulation networks showever greater connectivity than between the two putative task-related networks. 437 

 438 
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Network analyses 439 

The network-level analyses are organized into 3 stages: network identification and validation, basic 440 

network description, and segregation & reconfiguration analysis. These analyses began by identifying 441 

Maintenance and Manipulation networks, by relying on both functional and structural information to define and 442 

validate the task-based connectivity approach. These networks were constructed with equal numbers of nodes, 443 

in order to ensure that the main network metrics (within- or between-network correlations, see below) were not 444 

biased by the number of regions contributing to that aggregate measure. First, masked parametric univariate 445 

activity (Figure 5A) with the 471-ROI Harvard-Oxford brain atlas was used in order to identify the top 5% 446 

nodes (n = 23) for each parametric effect (Figure 5B), as determined by the z-statistic from the parametric 447 

map within a given ROI/node; no overlapping nodes were found. To ensure an equal number of ROIs in the 448 

two networks, each ROI was ranked by its mean z-score in parametric analyses and identified the top 5% of 449 

nodes (a more liberal top-10% or top-20% threshold [n = 46, 92 nodes in each network] also revealed no 450 

overlap in networks). The Maintenance (blue) and Manipulation (blue) networks are visualized both as the 451 

nodes and as the connections between these nodes in Figure 6A.  452 

 453 

Structural network validation 454 

Before analyzing functional within- and between-network connectivity, averaged across the putative task-455 

related networks, patterns of structural connectivity between nodes was examined in order to test the validity of 456 

the task-based node definitions. If these networks form reliable task-based parcellations, structural network 457 

connectivity should be weaker between-networks than within-networks. Consistent with this idea, structural 458 

connection strength (measured using fractional anisotropy) was weaker between-networks than within-459 

network, in either Maintenance (t28 = 20.5; p = 2.2e-18) and Manipulation (t28 = 12.7; p = 3.5e-13) networks 460 

(Figure 5C). This result suggests a structural basis for functional connectivity patterns within each task-related 461 

network, and points to a clear structural hurdle to between-network connections. While these effects may be at 462 

least partially due to greater mean distance between nodes (Maintenance network: 57.1mm; Manipulation 463 

network: 73.7mm; between-network: 82.4mm), this difference is not incompatible with community membership 464 

(regions closer together are often more likely to form coherent neurocognitive networks). Thus, subsequent 465 

network analysis results are characterized in terms of two discrete networks, the "Maintenance network" and 466 
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"Manipulation network". While we have demonstrated that this task-based community assignment has both 467 

functional and structural foundations, we do not assume that the same Maintenance and Manipulation 468 

networks operate for every particular WM paradigm and stimulus type. 469 

 470 

Effects of Set Size and Sorting Steps on summary measures of functional network connectivity 471 

Next we return to our two principle measures of Maintenance and Manipulation functions, and examine the 472 

effects of increasing Set Size or Sorting Steps, respectively, on within- and between-network connections 473 

(Figure 6A) were examined in the same discrete Maintenance and Manipulation networks defined above. 474 

Here, two reliable patterns were found that helped explain how increasing computational complexity in the 475 

behavioral domain manifests as a more segregated cortical system in which local networks predominate over 476 

more global connectivity. As illustrated by Figure 6B a significant main effect of Network Connection Type on 477 

connectivity (i.e., mean correlation value, F1,39 = 215.23, p < 0.001) was found, such that the mean correlation 478 

values were stronger in the Maintenance and Manipulation networks than between the networks. When 479 

difficulty was split by Set Size, within-network connectivity in both the Maintenance and Manipulation networks 480 

was consistently positive (one-sample t collapsing across levels were 5.31 and 4.43, respectively, both p < 481 

0.001), as may be expected for networks defined by their task-relatedness. Splitting these same networks by 482 

Sorting Steps elicited similar effects. Chi-squared tests accounting for subject-level differences in mean 483 

connectivity demonstrated no effect of difficulty on within-network connectivity in either Maintenance or 484 

Manipulation network, whether difficulty was defined by Set Size (χ2 = 0.3, χ2 = 0.5, respectively for each 485 

network, both p > 0.1) or by increasing number of Sorting Steps (χ2 = 0.6, χ2 = 0.2, respectively, both p > 0.1). 486 

This result suggests that the connectivity between nodes within each network was consistent across all levels 487 

of difficulty, and that any difficulty-related changes are driven largely by between-network connections. 488 

Interestingly, in contrast with the positive within-network connections (range for Maintenance network: r = 489 

0.22-0.25, Manipulation network: r =0.11-0.13), between-network correlations were consistently negative 490 

(mean r across levels = -0.04; one-sample t-test collapsing across levels: t40 = -3.57, p = 4.62e-3). 491 

Furthermore, the mean connectivity between networks demonstrated a negative decline with increasing Set 492 

Size (χ2 = 3.81, p = 4.5e-2) or increasing number of Sorting Steps (χ2 = 3.51, p = 5.4e-2), indicating that the 493 
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correlation between nodes in these two task networks declines linearly with increasing complexity, signifying a 494 

behaviorally meaningful relationship.  495 

 496 

Figure 6. Parametric effects of Set Size and Sorting Steps on nodes within the Maintenance and Manipulation networks, 497 

respectively. (A) Schematic describes the organization of either within (red, blue) or between (grey) network connections.The 498 
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Maintenance network is generally described as a bilateral frontal network (with specific connections to left IPS), while the Manipulation 499 

network connects larely right SPL and midline frontal regions. (B) Within the Maintenance and Manipulation networks, within-network 500 

connections remain consistently positive, while all between-network connections are negative, with a negative trend with increasing Set 501 

Size or Sorting Steps. (C) Both Maintentance and Manipulation networks became increasingly segregated with increasing Set Size, 502 

suggesting that the negative relationship between these two networks was behaviorally meaningful. Note: Statistical significance was 503 

determined by linear mixed-effects models, which may not be reflected in the averages and standard errors displayed here. 504 

 505 

Network re-organization and its behavioral consequence 506 

To examine system-level organization, two derived measures of overall network organization were 507 

calculated. Segregation, which describes the difference between within- and between- network correlations as 508 

a proportion of mean within-system correlation, is defined by the segregation coefficient, a node-level measure 509 

describing the degree to which local nodes become more connected to other local nodes within a network 510 

compared to nodes outside the local network (Figure 6C). Within both the Maintenance and Manipulation 511 

networks, the segregation coefficient showed a clear linear increase with increasing Set Size (χ2 = 4.53, χ2 = 512 

4.48, respectively, both p < 0.05), further supporting the idea that the global organization tended towards 513 

increasingly segregated network nodes. In contrast, increasing Sorting Steps did not elicit the same effect in 514 

either the Maintenance or Manipulation networks (χ2 = 2.34, χ2 = 0.1, respectively, both p > 0.1), suggesting 515 

that the segregation effect was driven by changes in Set Size. 516 

Lastly, network reconfiguration was analyzed using a summary statistic that describes the individual 517 

differences in network reconfiguration across the task conditions (Figure 7A). Here, it was found that network 518 

reconfiguration was greater in connections between Maintenance and Manipulation networks than within either 519 

task network alone (t = 9.84, p = 4.1e-12; t = 11.10, p = 1.2e-13, respectively; see marginal rug plots in Figure 520 

7B). Furthermore, network reconfiguration in these between-network connections was predictive of subjects’ 521 

individual Criterion for the WM task, which describes the idealized 82% level of behavioral performance (r39 = 522 

0.39, p = 0.012), while within-network reconfiguration was not (r39 = 0.17 and 0.30 for Maintenance and 523 

Manipulation networks, respectively, both p > 0.05). Results were similar when splitting networks by the 524 

number of Sorting Steps, with a slight increase in the correlation between between-network reconfiguration and 525 

Criterion (r39 = 0.41, p = 0.007). The direction of these effects demonstrates that individuals with higher working 526 
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memory capacity have greater changes in between-network functional connectivity in response to increasingly 527 

difficult task conditions, suggesting that network reconfiguration in working-memory related regions is adaptive 528 

to task demands. 529 

 530 

 531 

Figure 7. Network Reconfiguration. (A) While the segregation measure above is descriptive of network behavior at discrete levels 532 

of difficulty, network reconfiguration describes the overall similarity between task conditions, i.e., between network states. Network 533 

reconfiguration represents a direct comparison between network states, and in this case represents an average of the correlation 534 

values between all functional connection matrices for a given subject. (B) Network reconfiguration was higher in between- than within-535 

network connections (B), and predictive of individual differences in working memory ability (i.e., Criterion).  536 

 537 

Discussion 538 

Going beyond previous fMRI studies on WM maintenance versus manipulation, the current study 539 

investigated these processes using a novel behavioral paradigm in which maintenance and manipulation are 540 

assessed by indexing maintenance in terms of Set Size (number of letters) and manipulation in terms of 541 

Sorting Steps (number of sorting operations to alphabetize a letter array). The study yielded three main 542 

findings. First, it was found that Set Size and Sorting Steps made significant and independent contributions to 543 

accuracy and RTs, supporting the distinction between maintenance and manipulation. Second, maintenance 544 

and manipulation recruited distinct frontal-parietal patterns of univariate activity: maintenance was associated 545 
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with a bilateral fronto-parietal network, as typical in WM tasks, whereas manipulation was associated with 546 

greater activity in the right SPL, a region associated with symbolic computations. Third, summary measures of 547 

the functional connectivity between the Maintenance and Manipulation networks demonstrated a negative 548 

association which increased with task demand, suggesting the action of a protective mechanism against 549 

interference of the cognitive operations within the two networks. These three main findings are discussed 550 

below. 551 

 552 

WM maintenance and manipulation are dissociable in behavior  553 

The first goal of this study was to provide evidence that distinct, concurrent processes underlie basic 554 

working memory operations. To the authors’ knowledge, this is the first study in which WM maintenance and 555 

manipulation have been investigated during the same task. Moreover, it is also the first instance in which WM 556 

manipulation has been linked to a specific measure of the computation required by the task, namely the 557 

alphabetization of letters which requires individuals to sort letters into an ordered array. Here, the number of 558 

sorting steps was quantified using established algorithms from the computer science literature (insertion sort, 559 

selection sort, etc.). Although Set Size and Sorting Steps measures were correlated, it was possible to 560 

disentangle their effects on WM behavior (accuracy and RTs) and brain activity. In particular, regression 561 

analyses showed that both these measures significantly involved in WM performance, but their effects were 562 

independent, consistent with the idea that neural mechanisms of maintenance and manipulation are 563 

dissociable.  564 

 565 

Distinct univariate brain activity for concurrent maintenance and manipulation operations 566 

Satisfying the second goal of this study, strong evidence was found for concurrent univariate brain activity 567 

tracking separate maintenance and manipulation operations during the WM task. Set Size was associated with 568 

activations in bilateral frontal and parietal regions, whereas Sorting Steps was associated with selective 569 

recruitment of a right SPL region, as well as activations in ACC, STG, and hippocampus. Below, we consider 570 

the two sets of regions associated with maintenance and manipulation. 571 

The finding that maintenance was associated with bilateral fronto-parietal is consistent with fMRI evidence 572 

linking these regions to WM capacity (Kraha et al., 2012).. Within PFC, the current results linked maintenance 573 
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to dorsolateral PFC (DLPFC). In previous studies, maintenance—as indexed by Set Size or load—has been 574 

sometimes linked to ventrolateral PFC activity (Braver et al., 1997; Mumford et al., 2015), but this linked has 575 

been challenged (De Pisapia and Braver, 2008). Also, several studies have linked DLPFC to manipulation, not 576 

to maintenance (Ranganath et al., 2004b; Ranganath et al., 2004a; Postle et al., 2006; Libby et al., 2014). 577 

However, these studies investigated maintenance and manipulation in separate tasks. A problem with this 578 

general isolated approach to maintenance and manipulation is that, compared to maintenance tasks (e.g., 579 

holding letters in order), manipulation tasks (e.g., alphabetizing) involve not only greater manipulation (e.g., 580 

sorting) but also greater maintenance (e.g., holding both original and reorganized letter sequences), as well as 581 

interference that may arise between the two processes. Thus, the differential involvement of DLPFC in 582 

manipulation tasks could reflect increased maintenance demands, rather than specific manipulation 583 

operations.  584 

The finding that Sorting Steps during alphabetization was associated with right SPL is intriguing because 585 

this is not a region typically associated with WM manipulation. However, the link between Sorting Steps and 586 

right SPL is consistent with the role of this region in symbol computation. For example, activations in right SPL 587 

have been reported in almost every neuroimaging study of numerosity, including tasks primarily involved in 588 

basic quantity processing (Postle et al., 2006; Schedlbauer et al., 2014), as well as more precise number 589 

processing and numerical operations (Overath et al., 2015; Hullett et al., 2016). However, the role of SPL is not 590 

limited to number-based operations. There is also evidence of this region being similarly activated across tasks 591 

manipulating both numbers and letters, which may be the result of one or more underlying computational 592 

processes shared across domains of symbol manipulation (Cantlon et al., 2006). Thus, although right SPL is 593 

more commonly associated with number processing, its engagement in this task is likely the result of a more 594 

general process involved in all symbol-based computation.  595 

In addition to right SPL, the number of Sorting Steps were also associated with STG and hippocampus. 596 

The hippocampus is commonly associated with successful spatial WM (Wylie et al., 2004), and STG is often 597 

related to auditory processing (Christodoulou et al., 2001; Eldreth et al., 2006). In this task, the activation in 598 

hippocampus may be associated with the mental rearrangement of the letters in space, and the STG with 599 

imagery of the letters’ while alphabetization was taking place. The involvement of this constellation of regions 600 
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therefore suggests that symbol computation and rehearsal may be an intrinsic part of working memory 601 

manipulation. 602 

 603 

WM Maintenance and Manipulation networks are negatively associated 604 

The third goal of this study was to investigate whether maintenance and manipulation differ not just on 605 

univariate activity but also on network interactions, as measured using graph theory. It was found that nodes in 606 

the Maintenance and Manipulation networks were consistently segregated across task conditions, such that 607 

summary measures of between-network connectivity were consistently negative. In addition to this general 608 

negative correlation, nodes between the two networks showed a consistent linear decrease in connectivity with 609 

increasing number of items, and increasing segregation with increasing task difficulty. These results suggest 610 

that these two dissociable networks maintain segregated, but significant interactions in order to dissociate the 611 

cognitive processes. The increasingly negative relationship with increasing difficulty suggests that these 612 

networks become more segregated to combat the interference of these processes as cognitive demand 613 

increases.  614 

Recent empirical work has begun to focus on how selective network properties change between 615 

increasingly complex task conditions (Piazza et al., 2007; Stevens et al., 2012; Park et al., 2014), and how 616 

such changes in the modular structure of functional brain networks relate to behavior. While changes in 617 

modular structure in response to task difficulty have been observed now in a number of studies, one 618 

discrepancy is in the direction of the effect: both increases (Gruber et al., 2001) and decreases (Braun et al., 619 

2015; Hearne et al., 2017) in modularity have been reported with increasing task complexity. The discrepancy 620 

in these findings may be related to the use of global network variables (e.g., global efficiency) and global 621 

network assignments (e.g., default mode network, salience network, etc.), both of which may conflate task-622 

specific operations with operations or regions unrelated to the task at hand. In this context, the task-specific 623 

network approach used here first identified specific cortical nodes with relevance to the task, and then offered 624 

a clear mechanistic demonstration that the interaction between these systems is modulated by the task 625 

demands. This is supported by the increasing network segregation with task difficulty, suggesting that the 626 

maintenance of the letter arrays in working memory is increasingly protected from the interference generated 627 

by the manipulation of this information. Nonetheless, one result which unites these findings is that the degree 628 
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to which individual subjects are able to make flexible adjustments in functional network structure is a strong 629 

predictor of behavioral performance (Cole et al., 2013; Simony et al., 2016). In particular, individuals who 630 

showed greater dynamic reconfiguration across maintenance or manipulation levels had better working 631 

memory capacity (as estimated by the subject-level Criterion values). Furthermore, this effect was limited to 632 

the reconfiguration of between-network connections (Figure 7), highlighting the key role of internetwork 633 

connectivity in mediating flexible behaviors. How such modular architecture supports the dynamic integration of 634 

many high-level cognitive functions remains far from understood, but the present results highlight the 635 

importance of task-related connectivity in WM maintenance and manipulation.  636 

 637 

Conclusions 638 

The current study presents evidence and arguments for two distinct cognitive functions supporting WM 639 

processing during short delays. We examined evidence for significant and independent contributions of Set 640 

Size and Sorting Steps in a WM alphabetization task, contributions reflecting Maintenance and Manipulation 641 

operations, respectively. These dissociable operations were mirrored in the univariate fMRI results, such that 642 

distinct patterns of bilateral fronto-parietal (Maintenance) and right-lateralized SPL (Manipulation) networks 643 

were activated. Lastly, we found that connectivity between these networks was increasingly segregated as 644 

difficulty increased, and that this effect was positively related to individual WM ability. This analysis therefore 645 

suggests the action of a protective mechanism against interference of the cognitive operations within 646 

dissociable components of the WM system. 647 

  648 
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