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Abstract	297	

Protein-coding	genetic	variants	that	strongly	affect	disease	risk	can	provide	298	

important	clues	into	disease	pathogenesis.	Here	we	report	an	exome	sequence	299	

analysis	of	20,791	type	2	diabetes	(T2D)	cases	and	24,440	controls	from	five	300	

ancestries.	We	identify	rare	(minor	allele	frequency<0.5%)	variant	gene-level	301	

associations	in	(a)	three	genes	at	exome-wide	significance,	including	a	T2D-302	

protective	series	of	>30	SLC30A8	alleles,	and	(b)	within	12	gene	sets,	including	those	303	

corresponding	to	T2D	drug	targets	(p=6.1×10-3)	and	candidate	genes	from	knockout	304	

mice	(p=5.2×10-3).	Within	our	study,	the	strongest	T2D	rare	variant	gene-level	305	

signals	explain	at	most	25%	of	the	heritability	of	the	strongest	common	single-306	

variant	signals,	and	the	rare	variant	gene-level	effect	sizes	we	observe	in	established	307	

T2D	drug	targets	will	require	110K-180K	sequenced	cases	to	exceed	exome-wide	308	

significance.	To	help	prioritize	genes	using	associations	from	current	smaller	sample	309	

sizes,	we	present	a	Bayesian	framework	to	recalibrate	association	p-values	as	310	

posterior	probabilities	of	association,	estimating	that	reaching	p<0.05	(p<0.005)	in	311	

our	study	increases	the	odds	of	causal	T2D	association	for	a	nonsynonymous	variant	312	

by	a	factor	of	1.8	(5.3).	To	help	guide	target	or	gene	prioritization	efforts,	our	data	313	

are	freely	available	for	analysis	at	www.type2diabetesgenetics.org.	314	

315	
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Introduction	316	

To	better	understand	or	treat	disease,	human	genetics	offers	a	powerful	approach	to	317	

identify	molecular	alterations	causally	associated	with	physiological	traits1.	318	

Common-variant	array-based	genome-wide	association	studies	(GWAS)	have	319	

discovered	thousands	of	genomic	loci	associated	with	hundreds	of	human	traits2,	320	

and	further	common	variant	analyses	indicate	that	most	complex	trait	heritability	is	321	

attributable	to	modest-effect	regulatory	variants3-5.	However,	non-coding	GWAS	322	

associations	are	challenging	to	localize	to	causal	variants	or	genes6-10.	323	

	324	

Protein-coding	variants	with	strong	effects	on	protein	function	or	disease	can	offer	325	

molecular	“probes”	into	the	pathological	relevance	of	a	gene13-15	and	potentially	326	

establish	a	direct	causal16,17	link	between	gene	gain	or	loss	of	function	and	disease	327	

risk18,19	–	especially	when	there	is	evidence	of	multiple	independent	variant	328	

associations	(an	“allelic	series”)	within	a	gene18-20.	Several	lines	of	argument11,12	329	

predict	that	strong-effect	variants	(allelic	odds-ratios	[OR]>2)	will	usually	be	rare	330	

(minor	allele	frequency	[MAF]<0.5%)	and,	in	many	cases,	difficult	to	accurately	331	

study	through	current	GWAS	and	imputation	strategies13,14.	Whole	genome	or	332	

exome	sequencing,	by	contrast,	allows	interrogation	of	the	full	spectrum	of	genetic	333	

variation.	334	

	335	

Previous	exome	sequencing	studies,	however,	have	identified	few	exome-wide	336	

significant	rare	variant	associations21-26	for	complex	diseases	such	as	type	2	337	

diabetes	(T2D)24,27.	This	paucity	of	findings	is	due	in	part	to	the	limited	sample	sizes	338	
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of	previous	studies,	the	largest	of	which	include	<10,000	disease	cases	and	fall	short	339	

of	the	sample	sizes	that	analytic12	and	simulation-based	calculations28-30	predict	are	340	

needed	to	identify	rare	disease-associated	variants	under	plausible	disease	models.	341	

To	expand	our	ability	to	use	rare	coding	variants	to	make	genetic	discoveries	and	342	

accelerate	clinical	translation,	we	collected	and	analyzed	exome	sequence	data	from	343	

20,791	T2D	cases	and	24,440	controls	of	multiple	ancestries,	representing	the	344	

largest	exome	sequence	analysis	to	date	for	T2D.		345	

	346	

Genetic	discovery	from	single-variant	and	gene-level	analysis		347	

	348	

Study	participants	(Supplementary	Table	1)	were	drawn	from	five	ancestries	349	

(Hispanic/Latino	[effective	size	(Neff)=14,442;	33.8%],	European	[Neff=10,517;	350	

24.6%],	African-American	[Neff=5,959;	13.9%],	East-Asian	[Neff=6,010;	14.1%],	351	

South-Asian	[Neff=5,833;	13.6%])	and	yielded	equivalent	statistical	power	to	detect	352	

association	as	a	balanced	study	of	~42,800	individuals	or	a	population-based	study	353	

(assuming	8%	T2D	prevalence)	of	~152,000	individuals.	Power	to	detect	354	

association	was	improved	compared	to	the	previous	largest	T2D	exome	sequencing	355	

study24	of	6,504	cases	and	6,436	controls,	increasing	(for	example)	from	5%	to	90%	356	

for	a	variant	with	MAF=0.2%	and	OR=2.5	(Supplementary	Figure	1).		357	

	358	

Exome	sequencing	to	40x	mean	depth,	variant	calling	using	best-practice	359	

algorithms,	and	extensive	data	quality	control	(Methods;	Supplementary	Figures	360	

2-5,	Supplementary	Table	2)	produced	a	dataset	with	6.33M	variants,	of	which	361	
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2.3%	are	common	(MAF>5%),	4.2%	low-frequency	(0.5%<MAF<5%),	and	93.5%	362	

rare	(MAF<0.5%)	(Supplementary	Table	3).	These	include	2.26M	nonsynonymous	363	

variants	and	871K	indels,	more	than	twice	the	numbers	analyzed	in	the	largest	364	

previous	T2D	exome	sequencing	study24.	365	

	366	

We	first	tested	whether	any	of	these	variants,	regardless	of	allele	frequency,	367	

exhibited	association	with	T2D	(“single-variant”	test;	Methods,	Supplementary	368	

Figure	6).	Based	on	a	previously	demonstrated	enrichment	of	coding	variants	for	369	

disease	associations31,	we	used	an	exome-wide	significance	threshold	of	p=4.3×10-7.	370	

Eighteen	variants	(ten	nonsynonymous)	in	seven	loci	reached	this	threshold;	13	of	371	

these	(eight	nonsynonymous)	reached	the	traditional	genome-wide	significance	372	

threshold	of	p<5×10-8	(Figure	1a,	Supplementary	Table	4).	These	18	associations	373	

represent	a	substantial	increase	over	the	one	association	reported	from	the	374	

previous	largest	T2D	exome	sequencing	study24.	However,	only	two	of	these	18	have	375	

not	been	previously	reported	by	(much	larger)	GWAS:	a	variant	in	SFI1	376	

(rs145181683,	p.Arg724Trp;	Supplementary	Figure	7)	that	failed	to	replicate	in	377	

an	independent	cohort	(N=4,522,	p=0.90,	Methods),	and	a	variant	in	MC4R	378	

(rs79783591,	p.Ile269Asn).		379	

	380	

MC4R	p.Ile269Asn	was	the	sole	variant	with	association	OR>2	(Hispanic/Latino	381	

MAF=0.89%;	p=3.4×10-7,	OR=2.17	[95%	CI:	1.63-2.89]).	MC4R	has	long	established	382	

effects	on	body-weight	and	diabetes32-34,	and	p.Ile269Asn	specifically	has	been	383	
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shown	to	decrease	MC4R	activity35,36	with	associations	to	obesity	and	T2D	in	384	

smaller	studies	of	a	United	Kingdom	family37	and	a	Native	American	population36.		385	

	386	

As	single-variant	analysis	has	limited	power	to	detect	associations	with	rarer	387	

variants12,	we	next	performed	tests	of	association	for	sets	of	variants	within	genes.	388	

We	performed	two	gene-level	association	tests:	(a)	a	burden	test,	which	assumes	all	389	

analyzed	variants	within	a	gene	are	of	the	same	effect,	and	(b)	SKAT38,	which	allows	390	

variability	in	variant	effect	size	(and	direction).		391	

	392	

Following	previous	studies22-24,	we	separately	tested	seven	different	“masks”	of	393	

variants	grouped	by	similar	predicted	severity.	As	this	analysis	strategy	led	to	394	

2×7=14	p-values	for	each	gene,	we	developed	two	methods	to	consolidate	these	395	

results	for	each	test	(Methods;	Supplementary	Figures	8-10).	First,	we	retained	396	

only	the	smallest	p-value	but	corrected	for	the	effective	number	of	independent	397	

masks	tested39,	on	average	3.6	per	gene	(“minimum	p-value	test”).	Second,	we	tested	398	

all	nonsynonymous	variants	(i.e.	missense,	splice	site,	and	protein	truncating)	but	399	

weighted	each	variant	according	to	its	estimated	probability	of	causing	gene	400	

inactivation12	(“weighted	test”,	in	essence	assessing	the	effect	of	gene	401	

haploinsufficiency	from	combined	analysis	of	protein-truncating	and	missense	402	

variants;	Methods).	We	verified	that	the	minimum	p-value	and	weighted	403	

consolidation	methods	were	both	well-calibrated	(Supplementary	Figure	11)	and	404	

between	them	produced	broadly	consistent	but	distinct	results:	across	the	ten	most	405	

significantly-associated	genes,	p-values	were	nominally	significant	under	both	406	
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methods	for	eight	genes	but	varied	by	one-to-three	orders	of	magnitude	407	

(Supplementary	Table	5).	We	employed	a	conservative	Bonferroni-corrected	408	

gene-level	exome-wide	significance	threshold	of	p=0.05/(2	tests	×	2	consolidation	409	

methods	×	19,020	genes)=6.57×10-7.	410	

	411	

Using	this	strategy,	gene-level	associations	reached	exome-wide	significance	for	412	

MC4R,	SLC30A8,	and	PAM	(Figure	1b,	Supplementary	Tables	5-6).	All	three	genes	413	

lie	within	previously	T2D	GWAS	loci	and	contain	previously	identified	coding	single-414	

variant	signals:	p.Arg325Trp	and	a	series	of	12	protective	protein	truncating	415	

variants	(PTVs)	for	SLC30A819,40,	p.Asp563Gly	and	p.Ser539Trp	for	PAM24,41,	and	416	

p.Ile269Asn	for	MC4R.	417	

	418	

In	addition	to	11	previously	observed	PTVs,	the	SLC30A8	gene-level	signal	includes	419	

92	variants	(103	in	total	with	combined	MAF=1.4%;	p.Arg325Trp	was	not	included	420	

in	gene-level	analysis)	and	is	associated	with	T2D	protection	(weighted	p=1.3×10-8,	421	

OR=0.40	[0.28-0.55]).	Many	variants	contributed	to	this	signal:	when	we	422	

progressively	removed	variants	with	the	smallest	single-variant	p-values,	removal	423	

of	33	was	required	to	extinguish	nominal	(p<0.05)	gene-level	significance	(Figure	424	

1cd,	Supplementary	Figure	12).	Although	SLC30A8	(and	its	protein	product	ZnT8)	425	

were	first	implicated	in	T2D	over	a	decade	ago40,	their	molecular	disease	426	

mechanism(s)	remain	poorly	understood42,43	–	in	part	because	of	seemingly	427	

conflicting	observations	of	the	common	risk-increasing	allele	p.Arg325Trp	428	

(suggested	to	decrease	protein	activity44)		and	the	rare	risk-decreasing	PTVs	(also	429	
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thought	to	decrease	protein	activity19).	The	protective	allelic	series	from	our	430	

analysis	argues	that	decreased,	rather	than	increased,	risk	is	the	more	typical	effect	431	

of	SLC30A8	genetic	variation,	and	it	further	provides	many	alleles	that	could	be	432	

characterized	to	offer	mechanistic	insight.	433	

	434	

The	MC4R	(combined	MAF=0.79%;	minimum	p=2.7×10-10,	OR=2.07	[1.65-2.59])	and	435	

PAM	(combined	MAF=4.9%;	weighted	p=2.2×109,	OR=1.44	[1.28-1.62])	gene-level	436	

signals	are	due	largely	–	but	not	entirely	–	to	effects	from	individual	variants	437	

(p.Ile269Asn	for	MC4R,	p.Asp563Gly	and	p.Ser539Trp	for	PAM).	For	MC4R,	gene-438	

level	association	decreased	but	remained	significant	after	removing	p.Ile269Asn	439	

(p=8.6×10-3;	Supplementary	Figure	13).	Similarly,	as	shown	previously34,45,	440	

association	was	less	significant	after	conditioning	on	sample	BMI,	both	for	the	441	

p.Ile269Asn	single-variant	signal	(p=1.0×10-5)	and	the	gene-level	signal	not	442	

attributable	to	p.Ile269Asn	(p=0.035).	443	

	444	

The	gene-level	signal	in	PAM	also	remained	nominally	significant	(p<0.05)	even	445	

after	removing	the	35	strongest	individually	associated	PAM	variants,	indicating	a	446	

contribution	from	substantially	more	variants	than	p.Asp563Gly	and	p.Ser539Trp	447	

(Supplementary	Figure	14).	Cellular	characterization	of	p.Asp563Gly	and	448	

p.Ser539Trp	recently	identified	a	novel	mechanism	for	T2D	risk	through	altered	449	

insulin	storage	and	secretion46.	Our	results	provide	many	more	genetic	variants	–	450	

identifiable	only	through	sequencing17	–	that	could	be	characterized	for	further	451	

insights	into	the	T2D	risk	mechanism	mediated	by	PAM.		452	
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	453	

We	finally	assessed	the	50	most-significant	gene-level	associations	(as	measured	by	454	

minimum	p-value	across	our	four	analyses;	Methods)	in	two	independent	exome	455	

sequence	datasets:	14,118	individuals	(3,062	T2D	cases	and	9,405	controls	of	456	

European	or	African-American	ancestry)	from	the	CHARGE	discovery	sequence	457	

project47	(CHARGE,	Supplementary	Table	7;	50	genes	available)	and	49,199	458	

individuals	(12,973	T2D	cases	and	36,226	controls	of	European	ancestry)	from	the	459	

Geisinger	Health	System	(GHS,	Supplementary	Table	8;	44	genes	available).	In	460	

each	replication	study,	MC4R,	SLC30A8,	and	PAM	all	showed	burden	test	461	

associations	directionally	consistent	with	those	from	our	analysis.	MC4R	(minimum	462	

p=0.0058)	and	SLC30A8	(minimum	p=0.043)	further	demonstrated	nominally	463	

significant	associations	in	the	GHS	burden	analysis,	and	MC4R	(minimum	p=0.026)	464	

achieved	nominal	significance	in	the	CHARGE	SKAT	analysis.	The	weaker	465	

associations	in	the	replication	studies	compared	to	our	study	(Supplementary	466	

Tables	7	and	8)	could	be	due	to	a	winner’s	curse	effect	combined	with	differences	467	

in	procedures	for	variant	calling,	quality	control,	annotation,	and	association	testing.	468	

	469	

More	broadly,	across	the	genes	with	replication	results	available	and	with	burden	470	

p<0.05	in	our	analysis,	we	observed	an	excess	of	directionally	consistent	burden	test	471	

associations	(31	of	46	in	CHARGE,	one-sided	binomial	p=0.013;	23	of	40	in	GHS,	472	

one-sided	binomial	p=0.21;	overall	one-sided	binomial	p=0.011;	Supplementary	473	

Table	9).	Future	studies	may	therefore	enable	several	more	of	the	top	gene-level	474	

signals	from	our	analysis	to	reach	exome-wide	significance.	475	
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	476	

Further	insights	from	gene-level	analysis	477	

	478	

SLC30A8,	MC4R,	and	PAM	illustrate	how	exome-wide	significant	gene-level	479	

associations	provide	allelic	series	that	could	be	characterized	for	pathogenic	480	

insights	into	previously	T2D-associated	but	still	incompletely	understood	genes.	We	481	

next	investigated	the	utility	of	less	significant	gene-level	associations	to	either	(a)	482	

genetically	prioritize	genes	with	no	prior	evidence	of	T2D	association,	(b)	predict	483	

the	effector	gene	at	established	T2D	GWAS	loci,	or	(c)	predict	whether	loss	or	gain	of	484	

protein	function	increases	disease	risk.	We	conducted	this	analysis	at	the	level	of	16	485	

sets	of	genes	connected	to	T2D	from	different	evidence	sources	(e.g.	genes	486	

harboring	diabetes-associated	Mendelian	or	common	variants,	T2D	drug	targets48,	487	

or	genes	implicated	in	diabetes-related	phenotypes	from	mouse	models49;	488	

Supplementary	Table	10;	Methods).	489	

	490	

First,	for	each	gene	set,	we	asked	whether	its	genes	had	more	significant	gene-level	491	

associations	than	expected	by	chance.	We	used	a	one-sided	Wilcoxon	Rank-Sum	492	

Test	to	compare	gene-level	p-values	within	each	gene	set	to	those	for	random	sets	of	493	

genes	with	similar	numbers	of	variants	and	aggregate	frequencies	(Methods).	494	

Twelve	of	the	16	gene	sets	achieved	p<0.05	set-level	associations	(Figure	2a-e,	495	

Supplementary	Figure	15),	including	those	for	T2D	drug	targets	(p=6.1×10-3)	and	496	

for	genes	reported	from	mouse	models	of	non-autoimmune	diabetes	(p=5.2×10-3)	or	497	

impaired	glucose	tolerance	(p=7.2×10-6).	Following	a	previous	study	that	498	
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retrospectively	validated	drug	targets	from	the	genetic	effects	of	PTVs27,	these	499	

results	demonstrate	the	value	of	gene-level	associations	to	prioritize	candidate	500	

genes	–	e.g.	those	that	emerge	from	high-throughput	experimental	screens50,51	–	for	501	

further	investigation.	Our	study	emphasizes	the	added	power	of	including	missense	502	

variants	in	this	analysis:	set-level	p-values	from	analysis	of	PTVs	alone	were	p>0.05	503	

for	almost	all	gene	sets	(although,	notably,	the	drug	target	gene	set	remained	504	

significant	at	p=0.0061;	Supplementary	Figure	16).	505	

	506	

Next,	we	investigated	whether	effector	genes	that	mediate	GWAS	associations	–	507	

which	mostly	correspond	to	variants	of	uncertain	regulatory	effects	–	were	also	508	

enriched	for	coding	variant	gene-level	associations.	We	tested	for	associations	509	

within	two	sets	of	predicted	effector	genes:	a	curated	list	of	11	genes	harboring	510	

likely	causal	common	coding	variants	(reported	from	a	recent	study17	with	511	

posterior	probability	of	causal	association	>0.25	from	genetics	alone;	Methods),	and	512	

20	genes	significant	in	a	transcript	association	analysis	with	T2D52.	Genes	with	513	

likely	causal	coding	variants	demonstrated	a	significant	set-level	association	relative	514	

to	comparison	gene	sets	(p=8.8×10-3)	and	to	genes	within	the	same	loci	(p=0.028;	515	

Figure	2e),	even	when	we	conditioned	gene-level	associations	on	all	significant	516	

common	variant	signals.	Most	of	this	signal	was	due	to	the	gene-level	SLC30A8	and	517	

PAM	associations	(p=0.082	for	the	other	nine	genes).	By	contrast,	the	transcript-518	

association	based	gene	set	did	not	exhibit	a	significant	association	(p=0.72).	519	

	520	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/371450doi: bioRxiv preprint 

https://doi.org/10.1101/371450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 24	

Extending	this	analysis,	we	curated	a	list	of	94	T2D	GWAS	loci,	and	595	genes	that	521	

lay	within	250	kb	of	any	T2D	GWAS	index	variant,	from	a	2016	T2D	genetics	522	

review53.	Among	these	595	genes,	40	achieved	a	p<0.05	gene-level	signal	523	

(Supplementary	Table	11),	greater	than	the	595×0.05=29.75	expected	by	chance	524	

(p=0.038).	These	40	genes	had	among	them	significantly	more	indirect	protein-525	

protein	interactions	(DAPPLE54	p=0.03;	observed	mean=11.4,	expected	mean=4.5)	526	

than	did	the	184	genes	implicated	based	on	proximity	to	GWAS	tag	SNPs	(DAPPLE	527	

p=0.64),	consistent	with	a	gene	set	of	greater	biological	coherence.	Rare	coding	528	

variants	could	therefore,	in	principle,	complement	common	variant	fine	mapping6,55	529	

and	experimental	data7,56	to	help	interpret	T2D	GWAS	associations,	although	our	530	

results	indicate	that	much	larger	sample	sizes	will	be	required	to	clearly	implicate	531	

specific	effector	genes.	532	

	533	

Finally,	we	assessed	whether	gene-level	analysis	could	help	predict	whether	gene	534	

inactivation	increases	or	decreases	T2D	risk	(i.e.	the	T2D	“directional	535	

relationship”18,19).	For	each	gene	set,	we	compared	the	ORs	estimated	from	gene-536	

level	weighted	analysis	of	predicted	damaging	coding	alleles	(Methods)	to	537	

directional	relationships	previously	reported.	Gene-level	ORs	were	100%	538	

concordant	with	the	known	relationships	for	the	set	of	eight	T2D	drug	targets	(4/4	539	

inhibitor	targets	OR<1,	4/4	agonist	targets	OR>1;	one-sided	binomial	p=3.9×10-3;	540	

Figure	2f).		541	

	542	
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Conversely,	concordances	between	gene-level	OR	estimates	and	mouse	knockout	543	

observations	were	more	equivocal	(7/11	diabetes	genes	with	OR>1,	binomial	544	

p=0.27;	137/240	increased	circulating	glucose	genes	with	OR>1,	p=0.016;	545	

Supplementary	Figure	17).	The	relatively	low	concordances	for	these	gene	sets,	546	

despite	a	clear	trend	toward	lower-than-expected	gene-level	p-values	within	them	547	

(Supplementary	Figure	15),	highlight	how	coding	variants	might	be	used	to	assess	548	

seemingly	promising	preclinical	results	(particularly	given	the	known	limitations	of	549	

animal	models57,58).	For	example,	the	protective	gene-level	ATM	signal	we	observe	550	

(burden	test	of	PTVs	OR=0.50,	p=0.003)	questions	previous	expectations,	based	on	551	

insulin	resistance	and	impaired	glucose	tolerance	in	Atm	knockout	mice59,	that	ATM	552	

loss-of-function	should	increase	T2D	risk.	Evidence	is	even	less	favorable	that	ATM	553	

haploinsufficiency	strongly	increases	T2D	risk,	rejecting	(for	example)	OR>2	at	554	

p=1.3×10-8.	This	observation	could	be	relevant	in	the	ongoing	characterization	of	555	

ATM	as	a	potential	metformin	target60-62	or	if	ATM	activators	are	considered	to	treat	556	

cardiovascular	disease63.	557	

	558	

Comparison	of	rare	and	common	variants	in	T2D	genetic	analyses	559	

	560	

The	substantial	number	of	rare	coding	variant	T2D	associations	we	observed	561	

prompted	us	to	re-evaluate	arguments13,14,16,64	about	their	value	in	genetic	studies	562	

relative	to	common	variants,	which	have	the	advantage	of	being	efficiently	studied	563	

(in	many	more	samples	than	currently	can	be	sequenced)	through	array-based	564	

association	studies55,65.	While	recent	studies	have	emphasized	the	main	565	
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contribution	of	common	variants	to	T2D	heritability17,21,24,66,	they	have	lacked	566	

power	to	fully	evaluate	the	relative	merits	of	rare	versus	common	variants	(or,	by	567	

implication,	sequencing	versus	array-based	studies)	to	discover	disease-associated	568	

loci,	explain	disease	heritability,	or	elucidate	allelic	series.	569	

	570	

For	a	fair	comparison	of	discoveries	possible	from	sequencing	and	array-based	571	

studies,	we	collected	genome-wide	array	data	within	the	same	individuals	we	572	

sequenced	(available	for	34,529	[76.3%	of]	individuals;	18,233	cases	and	17,679	573	

controls).	We	then	imputed	variants	using	best-practice	reference	panels67,68	and	574	

conducted	single-variant	analysis	following	the	same	protocol	as	for	the	sequence	575	

data	(“imputed	GWAS”;	Supplementary	Table	12,	Methods).	Eight	of	the	ten	576	

exome-wide	significant	nonsynonymous	single-variant	associations	from	our	577	

sequence	analysis	were	detectable	in	the	imputed	GWAS	analysis,	together	with	578	

genome-wide	significant	noncoding	variant	associations	in	14	additional	loci	579	

(Figure	3a,	Supplementary	Table	13).	All	ten	single-variant	sequence	associations	580	

were	also	present	on	the	Illumina	Exome	Array	(Methods),	implying	the	ability	of	581	

array-based	association	studies	to	detect	exome-wide	significant	single-variant	582	

associations	at	equivalent	significance	and	at	far	lest	cost	than	exome	sequence	583	

association	studies.	584	

	585	

We	next	compared	the	contributions	to	T2D	heritability	from	the	strongest	586	

(common)	single-variant	associations	from	the	imputed	GWAS	to	those	from	the	587	

strongest	(mostly	rare	variant)	gene-level	associations	from	the	sequence	analysis.	588	
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Using	a	genetic	liability	model69	in	which	all	damaging	variants	in	a	gene	have	the	589	

same	direction	of	effect	(Methods),	the	three	exome-wide	significant	gene-level	590	

signals	explain	an	estimated	0.11%	(MC4R),	0.092%	(PAM),	and	0.072%	(SLC30A8)	591	

of	T2D	genetic	variance.	These	estimates	are	only	10-20%	of	the	variances	592	

explained	by	the	three	strongest	independent	common	variant	associations	in	the	593	

imputed	GWAS	of	the	same	samples	(TCF7L2,	0.89%;	KCNQ1,	0.81%;	and	CDC123,	594	

0.35%)	and	if	anything	overstate	the	heritability	explained	by	rare	variants	in	the	595	

gene-level	signals,	since	the	MC4R	and	PAM	estimates	are	attributable	mostly	to	the	596	

low-frequency	p.Ile269Asn	(70.9%	of	the	gene-level	total)	and	p.Asp563Gly	(83.3%)	597	

alleles.	We	obtained	similar	results	in	a	broader	comparison	between	all	(19)	598	

previously	identified	index	SNPs	achieving	p<5×10-8	in	the	imputed	GWAS	and	the	599	

top	19	gene-level	signals	from	our	sequence	analysis	(Figure	3b).		600	

	601	

These	results	argue	against	a	large	contribution	to	T2D	heritability	from	rare	602	

variants	in	the	strongest	observed	gene-level	signals,	with	one	caveat:	as	gene-level	603	

tests	may	include	benign	alleles	that	can	dilute	evidence	for	association,	their	604	

aggregate	effects	might	underestimate	the	true	contribution	of	rare	functional	605	

variants	to	T2D	heritability12.	However,	when	we	analyzed	all	possible	subsets	of	606	

variation	in	the	three	most	significant	gene-level	signals	(Methods),	none	explained	607	

more	than	20%	of	the	heritability	of	the	single-variant	TCF7L2	association	608	

(maximum	of	0.18%	for	MC4R,	0.15%	for	PAM,	0.17%	for	SLC30A8).		609	

	610	
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We	finally	assessed	whether	an	array-based	study	could	have	detected	the	allelic	611	

series	we	observed	from	exome	sequence	analysis.	Among	the	variants	contributing	612	

to	the	exome-wide	significant	gene-level	associations	in	SLC30A8,	MC4R,	and	PAM,	613	

95.3%	were	not	imputable	(r2>0.4;	Methods)	from	the	1000	Genomes	multi-614	

ancestry	reference	panel67,	and	74.6%	of	those	in	Europeans	were	not	imputable	615	

from	the	larger	European-focused	Haplotype	Reference	Consortium	panel68.	616	

Similarly,	90.2%	of	variants	(79.7%	of	European	variants)	are	absent	from	the	617	

Illumina	Exome	Array.		618	

	619	

Additionally,	gene	set	associations	using	gene	“scores”70	(Methods)	from	imputed	620	

GWAS	associations	were	suggestive	(four	gene	sets	achieving	p<0.05,	nine	achieving	621	

p<0.1;	Supplementary	Figure	18)	but	weaker	than	gene	set	associations	from	our	622	

sequence	analysis.	Some	of	these	gene	set	associations	can	be	recaptured	in	larger	623	

array-based	studies:	scores	from	a	published	multi-ancestry	GWAS	of	~110K	624	

samples	produced	p<0.05	for	12	of	the	16	gene	sets	we	studied	(Supplementary	625	

Figure	19,	Methods).	However,	even	here	the	genes	(and	corresponding	variants)	626	

responsible	for	the	gene	set	associations	were	broadly	different	between	the	array	627	

and	sequence-based	studies,	as	the	two	methods	often	produced	uncorrelated	rank-628	

orderings	of	genes	within	gene	sets	(e.g.	r=-0.11,	p=0.57	for	the	mouse	diabetes	gene	629	

set;	Figure	3c).	Collectively,	these	results	argue	that	array-based	GWAS	and	exome	630	

sequencing	are	complementary,	favoring	locus	discovery	and	enabling	full	631	

enumeration	of	potentially	informative	alleles,	respectively.	632	

	633	
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Use	of	nominally	significant	associations	in	translational	decision	support	634	

	635	

The	T2D	drug	targets	we	analyzed	exemplify	the	opportunities	and	challenges	of	636	

using	current	exome	sequence	datasets	in	translational	research.	Gene-level	637	

associations	are	significant	across	these	targets	as	a	set	(Figure	2b),	and	rare	638	

variants	predict	the	correct	disease	directional	relationship	for	each	gene	(Figure	639	

2f).	However,	rare	variant	gene-level	signals	for	these	genes	are	nowhere	near	640	

detectable	at	exome-wide	significance	in	our	current	sample	size:	80%	power	would	641	

require	110,000-180,000	sequenced	cases	(220,000-360,000	exomes	in	a	balanced	642	

study,	equivalent	in	effective	sample	size	to	750,000-1,200,000	exomes	from	a	643	

population	with	T2D	prevalence	8%;	Figure	4a).	644	

	645	

Consequently,	many	of	the	more	modest	associations	(e.g.	p=0.05)	in	current	sample	646	

sizes	may	in	fact	point	to	therapeutically	relevant	variants	or	genes	647	

(Supplementary	Figure	20)71,72.	If	the	false	positive	rate	for	these	associations	–	648	

which	is	expected	to	be	greater	than	that	for	associations	exceeding	exome-wide	649	

significance71-73	–	can	be	quantified74,75,	then	a	modest	association	signal	may	650	

motivate	further	experimentation	on	a	gene	while	complete	absence	of	an	651	

association	may	reduce	enthusiasm	for	its	study.	For	example,	the	expected	value	of	652	

the	experiment	can	be	calculated	based	on	the	likelihood	of	true	association,	the	653	

cost	of	the	experiment,	and	the	benefit	of	its	success76,77	(Figure	4b).	654	

	655	
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We	sought	to	quantify	the	false	positive	association	rate	for	nonsynonymous	656	

variants	observed	in	our	dataset,	depending	on	the	p-value	observed	in	single-657	

variant	analysis.	We	developed	a	method	to	use	the	consistency	of	single-variant	658	

association	statistics	between	our	sequence	analysis	and	a	previous24	exome	array	659	

study	(re-analyzed	to	include	only	the	41,967	individuals	not	in	our	current	study;	660	

Methods),	together	with	published	estimates	of	the	fraction	of	nonsynonymous	661	

associations	that	are	causal	for	disease17,78,79,	to	estimate	the	posterior	probability	662	

of	true	and	causal	association	(PPA)	for	variants	reaching	different	levels	of	663	

statistical	significance.	We	provide	an	overview	of	this	method	in	Figure	4c-f,	a	664	

detailed	description	in	Methods,	and	its	sensitivity	to	modeling	assumptions	in	665	

Supplementary	Figure	21.		666	

	667	

We	applied	this	method	to	three	classes	of	variants:	genome-wide,	within	T2D	668	

GWAS	loci,	and	within	genes	implicated	in	T2D	through	prior	(non-genetic)	669	

evidence.	Model	parameters	in	the	middle	of	the	range	we	explored	(Methods)	670	

predict	that	1.5%	(95%	CI:	0.74%-2.2%)	of	nonsynonymous	variants	that	achieve	671	

p<0.05	are	truly	and	causally	associated	with	T2D,	increasing	to	3.6%	(1.4%-5.9%)	672	

for	variants	with	p<0.005,	and	9.7%	(3.9%-15.0%)	for	variants	with	p<5×10-4	673	

(Supplementary	Figure	22).	Under	this	model,	541	(270-810)	of	the	36,604	674	

nonsynonymous	variants	with	p<0.05	in	our	dataset	represent	true	and	causal	675	

associations.	676	

	677	
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Within	the	set	of	94	T2D	GWAS	loci,	we	observed	evidence	of	a	greater	enrichment	678	

of	true	associations:	61.3%	of	nonsynonymous	variants	achieving	sequence	p<0.05	679	

were	directionally	consistent	in	the	independent	exome	array	analysis	(compared	to	680	

51.9%	outside	of	GWAS	loci).	We	re-calculated	a	mapping	between	sequence	single-681	

variant	p-value	and	PPA	using	only	nonsynonymous	variants	within	these	loci.	The	682	

resulting	model	predicts	that	2.0%	(0.048%-4.0%)	of	such	variants	overall,	8.1%	683	

(3.6%-12.4%)	with	sequence	p<0.05,	and	17.2%	(7.7%-24.1%)	with	sequence	684	

p<0.005	represent	true	and	causal	T2D	associations.	This	suggests	that	our	dataset	685	

contains	a	large	number	of	potentially	strong-effect	variants	in	T2D	GWAS	loci	686	

achieving	nominal	significance:	of	1059	variants	with	p<0.05,	we	estimate	roughly	687	

60	(26-93)	of	746	with	estimated	OR>2	and	41	(18-63)	of	503	with	estimated	OR>3	688	

are	true	and	causal	associations	(Supplementary	Tables	14-15).	689	

	690	

Beyond	GWAS	loci,	many	other	genes	have	evidence	–	for	example	from	animal80	or	691	

cellular	studies50,56	–	that	may	lead	a	researcher	to	(often	subjectively)	believe	they	692	

are	involved	in	T2D	pathogenesis.	We	extended	our	approach	for	PPA	estimation	to	693	

incorporate	prior	evidence	that	a	gene	is	relevant	to	T2D81,	calibrating	it	from	a	694	

model	of	the	prior	association	likelihood	within	T2D	GWAS	loci	(Figure	4e-f;	695	

Methods).	Under	our	model	(Supplementary	Table	16),	a	prior	belief	that	a	gene	696	

has	(for	example)	probability	25%	of	being	involved	with	T2D	yields	estimates	that	697	

variants	within	it	achieving	p<0.05	and	p<0.005	have	10.7%	and	26.2%	698	

probabilities	of	being	true	and	causal	T2D	associations.		699	

	700	
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In	the	future,	these	PPA	calculations	could	be	extended	to	gene-level	associations,	701	

which	would	avoid	conflicting	results	among	variants	within	a	gene	but	require	702	

larger-scale	gene-level	replication	data	than	we	had	available.	Additional	work	703	

could	also	develop	data	and	methods	to	estimate	objective,	rather	than	subjective,	704	

gene	priors	and	reduce	dependence	of	our	conclusions	on	modeling	assumptions	705	

(Supplementary	Figure	21).	Still,	these	PPA	calculations	provide	a	useful	initial	706	

framework	to	use	genetic	signals	to	support	cost/benefit	estimates	of	“go/no-go”	707	

decisions82	in	the	language	of	decision	theory76,77	(Figure	4b).	To	support	use	of	this	708	

strategy,	we	have	made	our	exome	sequence	association	results	publically	available	709	

through	the	AMP	T2D	Knowledge	Portal	(www.type2diabetesgenetics.org),	which	710	

supports	querying	of	all	pre-computed	single-variant	associations	and	allows	users	711	

to	dynamically	compute	single-variant	and	gene-level	associations	according	to	712	

custom	covariates	and	criteria	for	sample	and	variant	filtering.		713	

	714	

Discussion	715	

	716	

Our	results	paint	a	nuanced	picture	of	rare	variation	and	T2D,	which	may	also	apply	717	

to	other	complex	diseases	with	similar	genetic	architectures83.	Our	gene	set	analyses	718	

show	that	rare	variant	gene-level	signals	are	likely	widely	distributed	across	719	

numerous	genes,	but	the	vast	majority	explain,	individually,	vanishing	amounts	of	720	

T2D	heritability	–	evinced	by	the	>1M	samples	likely	required	to	detect	exome-wide	721	

significant	rare	variant	signals	in	validated	therapeutic	targets.	Gene-level	signals	722	

that	do	reach	exome-wide	significance	in	our	analysis	(such	as	those	in	MC4R	and	723	
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PAM)	are	noteworthy	not	because	they	include	unusually	strong	rare	variant	724	

associations	but	because	they	include	typical	rare	variant	associations	boosted	from	725	

nominal	to	exome-wide	significance	by	low	frequency	variant(s)	–	which,	726	

empirically,	can	also	be	detected	by	array-based	studies.	Therefore,	for	many	727	

complex	traits	(particularly	those	with	modest	selective	pressure	like	T2D),	the	728	

primary	value	of	exome	sequencing	beyond	array-based	GWAS	may	be	to	aid	729	

experimental	gene	characterization84	by	identifying	a	broad	series	of	rare	coding	730	

alleles	–	ideally	through	multi-ancestry	samples	to	capture	as	broad	a	set	of	alleles	731	

as	possible	–	rather	than	to	discover	new	disease	loci.	Whole-genome	sequencing	732	

will	likely,	one	day,	become	sufficiently	cost	effective	to	subsume	both	array-based	733	

GWAS	and	exome	sequencing;	even	now,	it	is	at	minimum	an	essential	means	to	734	

expand	imputation	reference	panels	to	power	genetic	discovery	from	GWAS.		735	

	736	

Our	results	also	outline	a	strategy	for	using	exome	sequence	data	to	prioritize	or	737	

validate	genes	under	study	by	biologists	or	pharmaceutical	industry	scientists.		738	

We	have	presented	a	principled	and	empirically	calibrated	Bayesian	approach	739	

(Figure	4,	Supplementary	Table	16)	to	estimate	the	association	probability	for	740	

any	variant	in	our	dataset.	While	currently	limited	by	available	data	and	modeling	741	

assumptions,	it	provides	a	first	step	to	increase	the	interpretability	of	exome	742	

sequence	associations	even	absent	exome-wide	significance.	Results	and	customized	743	

analyses	from	our	study	can	be	accessed	through	a	public	web	portal	744	

(www.type2diabetesgenetics.org),	advancing	the	vision	to	broadly	use	exome	745	

sequence	data	across	many	avenues	of	biomedical	research.		746	
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Figure	legends	747	

	748	

Figure	1:	Exome-wide	association	analysis.	(a)	A	Manhattan	plot	of	exome	749	

sequence	single-variant	associations.	Genes	closest	to	variants	achieving	p<4.3×10−7	750	

(red	line;	at	most	one	per	each	250KB	region)	are	labeled.	(b)	A	Manhattan	plot	of	751	

gene-level	associations;	p-values	shown	are	the	minimum	across	the	four	gene-level	752	

analyses	after	correction	for	four	analyses	(Methods),	with	the	most	significant	753	

genes	labeled.	Red	line:	p=6.5×10-7.	(c)	Gene-level	association	p-values	for	SLC30A8,	754	

using	the	burden	test	on	alleles	in	the	1/5	1%	mask	(the	mask,	as	defined	in	755	

Methods,	achieving	greatest	statistical	significance	for	SLC30A8),	after	progressive	756	

removal	of	variants	in	order	of	increasing	single-variant	association	p-value.	The	left	757	

y-axis	(black	line)	shows	the	progressive	gene-level	p-value,	the	dashed	line	p=0.05.	758	

The	right	y-axis	(blue	line)	shows	the	estimated	effect	size	(log10(OR)),	with	shaded	759	

blue	indicating	the	95%	confidence	interval	and	dotted	line	indicating	effect	size=0.	760	

(d)	Variants	observed	in	SLC30A8	within	1/5	1%	mask.	Variants	are	colored	blue	(if	761	

OR	<	1)	or	red	(OR	>	1).	Case	(red)	and	control	(blue)	frequencies	are	shown	for	762	

each	variant,	with	black	boxes	shaded	according	to	the	contribution	of	each	variant	763	

to	the	gene-level	signal	(computed	by	the	difference	in	log10(p-value)	after	removal	764	

of	the	variant	from	the	test).	OR:	odds	ratio.	765	

	766	

Figure	2:	Gene	set	analysis.	(a-e)	Box	plots	of	the	rank	percentiles	(1	being	the	767	

highest)	for	gene-level	associations	within	(a)	11	genes	implicated	in	Maturity	768	

Onset	Diabetes	of	the	Young	(MODY);	(b)	8	genes	annotated	in	the	DrugBank	769	
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database	as	the	primary	targets	of	T2D	medications;	(c)	31	genes	annotated	in	the	770	

Mouse	Genome	Informatics	(MGI)	database	as	harboring	knockout	mutations	771	

causing	non-insulin	dependent	diabetes;	(d)	323	genes	annotated	in	the	MGI	772	

database	as	harboring	knockout	mutations	causing	impaired	glucose	tolerance	in	773	

mice;	and	(e)	11	genes	with	strong	genetic	evidence	for	harboring	common	causal	774	

coding	variants.	P-values	correspond	to	a	one-sided	Wilcoxon	Rank-Sum	test	775	

comparing	the	associations	to	those	of	matched	comparison	genes.	(f)	Estimated	776	

odds	ratios	(OR)	of	deleterious	nonsynonymous	variants	in	the	eight	T2D	drug	777	

targets.	Targets	of	agonists	are	colored	red	and	targets	of	inhibitors	are	colored	778	

blue.	Error	bars	indicate	one	standard	error.		779	

	780	

Figure	3:	Comparison	of	exome	sequencing	to	array-based	GWAS.	(a)	A	781	

Manhattan	plot	of	single-variant	associations	in	an	array-based	imputed	GWAS	of	782	

the	subset	(76%)	of	the	samples	in	the	exome	sequence	analysis	for	which	array	783	

data	were	available.	Labels	and	y-axis	are	equivalent	to	Figure	1a.	(b)	The	observed	784	

liability	variance	explained	(LVE)	by	the	top	19	gene-level	associations	from	the	785	

exome	sequence	analysis	(red;	Exomes)	and	the	top	19	single-variant	associations	786	

(considering	only	one	per	250kb)	from	the	imputed	GWAS	(blue;	Imputed	GWAS),	787	

as	well	as	their	ratio	(black;	Ratio).	Signals	are	ranked	by	LVE	rather	than	p-value.	788	

(c)	A	comparison	of	gene	rank	percentiles	according	to	exome	sequence	gene-level	789	

analysis	(x-axis)	and	gene	rank	percentiles	according	to	proximity	to	GWAS	signals	790	

from	a	published	transethnic	T2D	GWAS	(y-axis;	Methods).	Genes	shown	are	from	791	
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the	set	of	31	genes	implicated	in	non-insulin	dependent	diabetes	from	knockout	792	

mice	(the	set	in	Figure	2c).	793	

	794	

Figure	4:	Translational	decision	support	from	exome	sequence	data.	(a)	795	

Estimated	power,	as	a	function	of	future	sample	size,	to	detect	T2D	gene-level	796	

associations	(at	significance	p=6.25×10-7)	with	aggregate	frequency	and	odds	ratios	797	

equal	to	those	estimated	from	our	analysis	in	eight	established	T2D	drug	targets	(in	798	

Figure	2f).	(b)	A	proposed	workflow	for	using	exome	sequence	data	in	gene	799	

characterization.	Depending	on	the	prior	belief	in	the	disease-relevance	of	the	gene,	800	

the	cost	of	experimental	characterization,	and	the	benefit	of	validating	the	gene,	a	801	

decision	to	conduct	a	further	experiment	could	be	informed	by	the	probability	that	802	

the	gene	is	relevant	to	disease,	as	estimated	from	exome	sequence	association	803	

statistics	(available	through	www.type2diabetesgenetics.org).	(c-f)	To	support	this	804	

workflow,	we	estimated	the	posterior	probability	of	true	and	causal	association	805	

(PPA)	for	nonsynonymous	variants	in	our	sequence	analysis	based	on	(c)	806	

concordance	with	independent	exome	chip	data	and	published	estimates	of	the	807	

fraction	of	causal	coding	associations	(Methods).	(d)	PPA	estimates	for	808	

nonsynonymous	variants	within	T2D	GWAS	loci	are	shown	as	a	function	of	p-value	809	

(right	y-axis,	black;	95%	confidence	interval,	gray)	together	with	the	total	number	of	810	

such	variants	(left	y-axis,	red).	For	variants	outside	of	T2D	GWAS	loci,	we	developed	811	

a	method	to	further	compute	(e)	Bayes	factors,	which	measure	the	odds	of	true	and	812	

causal	association,	as	a	function	of	p-value,	using	a	model	of	the	prior	odds	of	true	813	

and	causal	association	for	variants	in	GWAS	loci	(Methods).	These	Bayes	factors	can	814	
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be	(f)	combined	with	a	subjective	prior	belief	in	the	T2D-relevance	of	a	gene	(y-axis)	815	

to	produce	the	estimated	posterior	probability	of	true	and	causal	association	for	any	816	

nonsynonymous	variant	in	the	exome	sequence	dataset	based	on	its	observed	817	

log10(p-value)	(x-axis).	Posterior	estimates	are	shaded	proportional	to	value	(red:	818	

low;	white:	high).	Values	shown	are	for	the	default	modeling	assumptions	of	33%	of	819	

missense	variants	causing	gene	inactivation	and	30%	of	true	missense	associations	820	

representing	the	causal	variant.	 	821	
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Methods	1063	

Sample	selection		1064	

We	drew	samples	for	exome	sequencing	from	six	consortia	(Supplementary	Table	1065	

1):	1066	

1. The	T2D-GENES	(Type	2	Diabetes	Genetic	Exploration	by	Next-generation	1067	

sequencing	in	multi-Ethnic	Samples)	consortium,	an	NIDDK-funded	1068	

international	research	consortium	seeking	to	identify	genetic	variants	for	T2D	1069	

through	multiethnic	sequencing	studies24.	1070	

2. The	Slim	Initiative	in	Genomic	Medicine	for	the	Americas:	Type	2	Diabetes	1071	

(SIGMA	T2D),	an	international	research	consortium	funded	by	the	Carlos	Slim	1072	

Foundation	to	investigate	genetic	risk	factors	of	T2D	within	Mexican	and	Latin	1073	

American	populations	and	translate	those	finding	to	improved	methods	of	1074	

treatment	and	prevention85.	1075	

3. The	Genetics	of	Type	2	Diabetes	(GoT2D)	consortium,	an	NIDDK-funded	1076	

international	research	consortium	seeking	to	understand	the	allelic	architecture	1077	

of	T2D	through	low-pass	whole-genome	sequencing,	deep	exome	sequencing,	1078	

and	high-density	SNP	genotyping	and	imputation24.	1079	

4. The	Exome	Sequencing	Project	(ESP),	an	NHLBI-funded	research	consortium	to	1080	

investigate	novel	genes	and	mechanisms	contributing	to	heart,	lung,	and	blood	1081	

disorders	through	whole	exome	sequencing86.	1082	

5. The	Lundbeck	Foundation	Centre	for	Applied	Medical	Genomics	in	Personalised	1083	

Disease	Prediction,	Prevention,	and	Care	(LuCamp)	study,	which	researches	1084	

whole	exome	variation	in	Danish	metabolic	diseases	including	diabetes21.	1085	
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6. The	ProDiGY	(Progress	in	Diabetes	Genetics	in	Youth)	consortium,	an	NIDDK-1086	

funded	research	consortium	to	investigate	genetic	variants	for	childhood	T2D.	1087	

Each	consortium	provided	individual-level	information	on	T2D	case-control	status	1088	

according	to	study-specific	criteria	as	well	as	key	covariates	including	age,	sex,	and	1089	

BMI	(Supplementary	Table	1).	In	addition,	several	consortia	provided	data	on	1090	

fasting	glucose,	2-hour	glucose	following	glucose	challenge,	and	use	of	anti-1091	

hyperglycemic	medications.	We	excluded	as	controls	individuals	with	a	2-hour	1092	

glucose	value	≥	11.1	mmol/L	(which	meets	diagnostic	criteria	for	T2D)	or	with	any	1093	

two	of	the	following	features	suggestive	of	T2D:	fasting	glucose	≥	7	mmol/L,	1094	

hemoglobin	A1c	≥	6.5%,	or	recorded	as	taking	an	anti-hyperglycemic	medication.	1095	

We	opted	to	require	two	of	the	previous	features	since	there	is	room	for	error	in	1096	

each:	fasting	values	used	in	T2D	diagnostic	criteria	are	required	to	represent	at	least	1097	

an	eight-hour	fast,	accuracy	varies	across	hemoglobin	A1c	assays,	and	anti-glycemic	1098	

medications	are	occasionally	taken	by	non-diabetic	individuals.	1099	

	1100	

All	samples	were	approved	for	use	by	their	home	institution’s	institutional	review	1101	

board	or	ethics	committee,	as	previously	reported21,24,85,86.	Samples	newly	1102	

sequenced	at	The	Broad	Institute	as	part	of	T2D-GENES,	SIGMA,	and	ProDiGY	are	1103	

covered	under	Partners	Human	Research	Committee	protocol	#	2017P000445/PHS	1104	

“Diabetes	Genetics	and	Related	Traits”.		1105	

	1106	
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Availability	of	sequence	data	and	phenotypes	for	this	study	is	available	via	the	1107	

database	of	Genotypes	and	Phenotypes	(dbGAP)	and/or	the	European	Genome-1108	

phenome	Archive,	as	indicated	in	Supplementary	Table	1.	1109	

	1110	

Sample	Sequencing	1111	

For	roughly	half	the	study	participants	(some	of	T2D-GENES24,	GoT2D24,	SIGMA-1112	

T2D85,	LuCAMP21,	ESP86),	exome	sequence	data	were	available	from	previous	1113	

studies.	For	these	individuals	(Supplementary	Table	1),	we	obtained	access	to	and	1114	

aggregated	BAM	files	containing	unaligned	sequence	reads,	which	were	generated	1115	

and	analyzed	as	previously	described23,62,79,80.	1116	

	1117	

For	the	remaining	participants,	de-identified	DNA	samples	were	sent	to	the	Broad	1118	

Institute	in	Cambridge,	MA,	USA	where	samples	with	(a)	sufficient	total	DNA	1119	

quantity	and	minimum	DNA	concentrations	(as	estimated	by	Picogreen)	and	(b)	1120	

high	quality	genotypes	(as	measured	by	a	24	SNP	Sequenom	iPLEX	assay)	were	1121	

advanced	for	subsequent	sequencing.	Library	construction	was	performed	as	1122	

previously	described87	with	some	slight	modifications.	Initial	genomic	DNA	input	1123	

into	shearing	was	reduced	from	3µg	to	50ng	in	10µL	of	solution	and	enzymatically	1124	

sheared.	For	adapter	ligation,	dual-indexed	Illumina	paired	end	adapters	were	1125	

replaced	with	palindromic	forked	adapters	with	unique	8	base	index	sequences	1126	

embedded	within	the	adapter	and	added	to	each	end.	1127	

	1128	

In-solution	hybrid	selection	was	performed	using	the	Illumina	Rapid	Capture	1129	
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Exome	enrichment	kit	with	38Mb	target	territory	(29Mb	baited),	including	98.3%	of	1130	

the	intervals	in	the	Refseq	exome	database.	Dual-indexed	libraries	were	pooled	into	1131	

groups	of	up	to	96	samples	prior	to	hybridization,	with	liquid	handling	automated	1132	

on	a	Hamilton	Starlet	Liquid	Handling	system.	The	enriched	library	pools	were	1133	

quantified	via	PicoGreen	after	elution	from	streptavidin	beads	and	then	normalized	1134	

to	a	range	compatible	with	sequencing	template	denature	protocols.	1135	

	1136	

Following	sample	preparation,	the	libraries	prepared	using	forked,	indexed	1137	

adapters	were	quantified	using	quantitative	PCR	(KAPA	Biosystems),	normalized	to	1138	

2	nM,	and	pooled	by	equal	volume	using	the	Hamilton	Starlet.	Pools	were	then	1139	

denatured	using	0.1	N	NaOH.	Denatured	samples	were	diluted	into	strip	tubes	using	1140	

the	Hamilton	Starlet.	1141	

	1142	

Cluster	amplification	of	the	templates	was	performed	according	to	the	1143	

manufacturer’s	protocol	(Illumina)	using	the	Illumina	cBot.	Flowcells	were	1144	

sequenced	on	HiSeq	4000	Sequencing-by-Synthesis	Kits,	then	analyzed	using	1145	

RTA2.7.3.	1146	

	1147	

Variant	calling	and	quality	control	1148	

Sequencing	reads	for	all	samples	(both	newly	sequenced	and	previously	sequenced)	1149	

were	processed	and	aligned	to	the	human	genome	(build	hg19)	using	the	Picard	1150	

(broadinstitute.github.io/picard/),	BWA88,	and	GATK89	software	packages,	following	1151	

best-practice	pipelines;	data	from	previously	published	studies	were	treated	the	1152	
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same	as	data	from	the	new	study	(i.e.	beginning	from	unaligned	reads)	to	ensure	1153	

uniformity	of	processing.	Single	nucleotide	and	short	indel	variants	were	then	called	1154	

using	a	series	of	GATK	commands	(version	nightly-2015-07-31-g3c929b0):	1155	

ApplyRecalibration,	CombineGVCFs,	CombineVariants,	GenotypeGVCFs,	1156	

HaplotypeCaller,	SelectVariants,	and	VariantFiltration.	Variants	were	called	within	1157	

50bp	of	any	region	targeted	for	capture	in	any	sequenced	cohort.		1158	

	1159	

We	computed	hard	calls	(the	GATK-called	genotypes	but	set	as	missing	at	a	1160	

genotype	quality	[GQ]	<20	threshold)	and	dosages	(the	expected	alternate	allele	1161	

count,	defined	as	Pr(RX|data)	+	2Pr(XX|data),	where	R	is	the	reference	allele	and	X	1162	

the	alternative	allele)	for	each	individual	at	each	variant	site.	We	used	hard	calls	for	1163	

quality	control	and	dosages	in	downstream	association	analyses.	We	computed	1164	

dosages	on	the	X	chromosome	(outside	of	the	pseudo-autosomal	region)	accounting	1165	

for	sex,	treating	males	as	haploid.	1166	

	1167	

To	perform	data	quality	control,	we	first	calculated	a	range	of	metrics	measuring	1168	

sample	sequencing	quality	(Supplementary	Figure	2).	We	then	stratified	samples	1169	

by	ancestry	and	sequence	capture	technology	and	excluded	from	further	analysis	1170	

samples	that	were	outliers	according	to	any	metric,	based	on	visual	inspection	by	1171	

comparison	to	other	samples	within	the	same	stratum.	A	full	list	of	metrics	used	for	1172	

exclusion	and	the	number	of	samples	excluded	based	on	each	metric	is	shown	in	1173	

Supplementary	Table	2.	1174	

	1175	
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After	exclusion	of	samples,	we	calculated	an	additional	set	of	variant	metrics	and	1176	

excluded	any	variant	with	overall	call	rate	<0.3,	heterozygosity	of	1,	or	heterozygote	1177	

allele	balance	of	0	or	1	(i.e.	100%	or	0%	of	reads	called	non-reference	for	1178	

heterozygous	genotypes).	We	intentionally	chose	these	non-stringent	initial	variant	1179	

quality-control	thresholds	due	to	the	heterogeneity	of	capture	and	sequencing	1180	

technologies	used	in	our	study;	we	performed	much	more	stringent	variant	quality	1181	

control	during	single-variant	or	gene-level	association	analysis.	We	refer	to	the	1182	

49,484	samples	and	7.02M	variants	passing	this	first	round	of	non-stringent	quality	1183	

control	as	the	“clean”	dataset.	1184	

	1185	

Additional	quality	control	for	association	analysis	in	sequence	data	1186	

Following	initial	sample	and	variant	quality	control,	we	performed	additional	1187	

exclusions	of	samples	from	association	analysis.	First,	we	computed	a	transethnic	1188	

set	of	“ancestry”	SNPs	for	use	in	identity-by-descent	(IBD)	and	principal	component	1189	

(PC)	analysis.	We	began	this	analysis	with	variants	in	the	clean	dataset	(a)	with	1190	

genotype	call	rate	>95%,	(b)	with	minor	allele	frequency	(MAF)	>1%	in	each	1191	

ancestry,	and	(c)	further	than	250Kb	from	the	HLA	region	or	an	established	T2D	1192	

association	signal.	We	LD-pruned	variants	using	PLINK90	based	on	maximum	r2=0.2	1193	

(parameters	–indep-pairwise	50	5	0.2).	We	used	the	remaining	171K	variants	to	1194	

estimate	pairwise	individual	IBD	using	PLINK,	and	the	top	10	PCs	of	genetic	1195	

ancestry	using	EIGENSTRAT91.	For	each	pair	of	individuals	with	IBD>0.9,	we	1196	

excluded	the	individual	with	the	lower	call	rate	(337	duplicate	exclusions	in	1197	

Supplementary	Figure	2).	We	then	excluded,	for	each	of	the	five	ancestries,	any	1198	
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individual	who	appeared,	based	on	visual	inspection	of	the	first	two	transethnic	PCs,	1199	

to	lie	outside	of	the	main	PC	cluster	corresponding	to	that	ancestry	(133	ethnic	1200	

outliers	in	Supplementary	Figure	2).	Finally,	we	used	the	subset	of	transethnic	1201	

ancestry	SNPs	on	the	X	chromosome	to	compare	genetic	sex	to	reported	sex,	using	1202	

PLINK,	and	excluded	all	discordant	individuals	(273	sex	discordances	in	1203	

Supplementary	Figure	2).	1204	

	1205	

At	this	stage	we	also	excluded	the	3,510	childhood	diabetes	cases	from	the	SEARCH	1206	

and	TODAY	studies.	We	initially	hoped	to	include	these	samples	as	cases	in	both	1207	

single-variant	and	gene-level	analysis,	using	either	PCs	or	linear	mixed	models	to	1208	

adjust	for	any	ancestry	differences	between	them	and	the	other	samples.	However,	1209	

while	single-variant	association	statistics	(computed	via	a	meta-analysis	of	1210	

ancestry-level	associations)	remained	well-calibrated	with	these	studies	included	1211	

(Supplementary	Figure	23ab),	gene-level	analysis	yielded	a	dramatically	inflated	1212	

QQ	plot	(Supplementary	Figure	23cd).	Exclusion	of	the	SEARCH	and	TODAY	study	1213	

samples,	samples	failing	quality	control,	and	variants	that	became	monomorphic	as	1214	

a	result	of	these	sample	exclusions,	yielded	an	“analysis”	dataset	of	45,231	1215	

individuals	and	6.33M	variants.	1216	

	1217	

After	these	three	rounds	of	sample	exclusions,	we	identified	five	sets	of	ancestry-1218	

specific	“ancestry”	SNPs.	We	used	the	same	procedure	as	for	the	transethnic	1219	

ancestry	SNPs	(described	above),	except	that	we	applied	the	MAF	threshold	only	1220	

within	the	appropriate	ancestry.	We	used	these	ancestry	SNPs	to	estimate,	for	each	1221	
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ancestry,	pairwise	IBD	values,	genetic	relatedness	matrices	(GRMs),	and	PCs	for	use	1222	

in	downstream	association	analysis.		1223	

	1224	

Additionally,	from	the	IBD	values,	we	generated	a	list	of	unrelated	individuals	within	1225	

each	ancestry	by	excluding	the	individual	with	the	lower	call	rate	in	any	pair	of	1226	

individuals	with	IBD>0.3	(leading	to	2,157	excluded	individuals).	The	resulting	1227	

“unrelateds	analysis”	set	consisted	of	43,090	individuals	(19,828	cases	and	23,262	1228	

controls)	and	yielded	6.29M	non-monomorphic	variants.	We	used	this	set	of	1229	

individuals	and	variants	for	single-variant	and	gene-level	tests	(described	below)	1230	

that	required	an	unrelated	set	of	individuals	for	analysis.	1231	

	1232	

We	carried	out	power	calculations92	for	single-variant	or	gene-level	tests	assuming	a	1233	

disease	prevalence	of	0.08	to	convert	population	frequencies	and	ORs	to	case	and	1234	

control	frequencies,	and	a	sample	size	(19,828	cases	and	23,262	controls)	from	an	1235	

analysis	of	only	unrelated	individuals.	Our	power	calculations	assumed	that	allelic	1236	

effects	were	homogeneous	across	ancestries.	1237	

	1238	

Variant	annotation	1239	

We	annotated	variants	with	the	ENSEMBL	Variant	Effect	Predictor93	(VEP,	version	1240	

87).	Annotations	were	produced	for	all	ENSEMBL	transcripts	with	the	–flag-pick-1241	

allele	option	used	to	assign	a	“best	guess”	annotation	to	each	variant	according	to	1242	

the	following	ordered	criteria	for	transcripts94:	transcript	support	level	(TSL,	i.e.	1243	

supported	by	mRNA),	biotype	(i.e.	protein_coding),	APPRIS	isoform	annotation	(i.e.	1244	
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principal),	deleteriousness	of	annotation	(i.e.	prefer	transcripts	with	higher	impact	1245	

annotations),	CCDS95	status	of	transcript	(i.e.	a	high-quality	transcript	set),	canonical	1246	

status	of	transcript,	and	transcript	length	(i.e.	longer	preferred).	We	used	the	VEP	1247	

LofTee	(https://github.com/konradjk/loftee)	and	dbNSFP	(version	3.2)96	plugins	to	1248	

generate	additional	bioinformatic	predictions	of	variant	deleteriousness;	from	the	1249	

dbNSFP	plugin,	we	took	annotations	from	15	different	bioinformatic	algorithms	1250	

(listed	in	Supplementary	Figure	8)	as	well	as	the	recent	mCAP97	algorithm.	As	1251	

these	annotations	were	not	transcript-specific,	we	assigned	them	to	all	transcripts	1252	

for	the	purpose	of	downstream	analysis.	1253	

	 	1254	

All	single-variant	analyses	reported	in	the	manuscript	or	figures	are	shown	using	1255	

the	“best	guess”	annotation	for	each	variant	(as	described	above).	1256	

	1257	

Single-variant	association	analysis	in	sequence	data	1258	

To	perform	single-variant	association	analysis,	we	stratified	samples	by	cohort	of	1259	

origin	and	sequencing	technology	(i.e.	samples	from	the	same	cohort	but	sequenced	1260	

at	different	times	were	analyzed	separately).	Samples	from	the	ESP	study	were	1261	

treated	differently,	due	to	the	large	number	of	cohorts	and	sequencing	technologies	1262	

within	the	study;	we	stratified	ESP	samples	by	ancestry	(rather	than	cohort)	and	did	1263	

not	further	stratify	them	by	sequencing	technology.	This	procedure	yielded	25	1264	

distinct	sample	subgroups	(Supplementary	Figure	6).	1265	

	1266	
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We	then	excluded	variants	separately	for	each	subgroup,	based	on	subgroup-1267	

specific	measures	of	call	rate,	Hardy-Weinberg	equilibrium	(HWE),	differential	case-1268	

control	missingness,	and	alternate	allele	genotype	quality.	Specific	filters	used	to	1269	

exclude	variants	from	all	subgroups	are	shown	in	Supplementary	Figure	6;	in	1270	

general,	filters	were	strict	–	particularly	for	multiallelic	variants	and	X-chromosome	1271	

variants.		1272	

	1273	

For	some	subgroups,	we	used	stricter	filters	on	top	of	the	basic	filters	if	subgroup-1274	

specific	quantile-quantile	(QQ)	plots	showed	an	excess	of	significant	associations.	In	1275	

particular,	the	Ashkenazi	subgroup	from	the	T2D-GENES	study	showed	minimum	1276	

heterogeneity	in	sequencing	quality	between	cases	and	controls	(owing	to	1277	

resequencing	performed	subsequent	to	the	original	study	publication)	and	required	1278	

significant	filters	to	remove	artifactual	associations.	In	addition,	due	to	a	significant	1279	

imbalance	between	the	number	of	cases	and	controls	in	the	ESP	studies,	we	1280	

excluded	any	variants	from	that	subgroup	which	had	an	association	p-value	less	1281	

than	0.3	times	the	p-value	from	Fisher’s	exact	test	(under	the	assumption	that	1282	

covariates	in	the	analysis	were	inducing	statistical	artifacts).	The	numbers	of	1283	

variants	passing	these	filters	in	each	subgroup	are	shown	in	Supplementary	Figure	1284	

6.	1285	

	1286	

For	each	of	the	25	sample	subgroups,	we	conducted	two	single-variant	association	1287	

analyses.	In	both	single-variant	analysis,	we	collapsed	all	non-reference	alleles	at	1288	

multiallelic	sites	into	a	single	“non-reference”	allele.		1289	
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	1290	

First,	we	analyzed	all	(including	related)	samples	via	the	EMMAX	test98,	as	1291	

implemented	in	the	EPACTS	(genome.sph.umich.edu/wiki/EPACTS)	software	1292	

package,	using	the	GRM	computed	from	the	ancestry-specific	ancestry	variants.	We	1293	

included	in	the	model	covariates	for	sequencing	technology	(where	appropriate)	1294	

but	not	for	PCs	of	genetic	ancestry.	We	did	not	include	covariates	for	age,	sex,	or	1295	

BMI.	1296	

	1297	

Second,	we	analyzed	unrelated	samples	via	the	Firth	logistic	regression	test99,	also	1298	

as	implemented	in	EPACTS;	we	included	in	the	model	covariates	for	sequencing	1299	

technology	and	for	PCs	of	genetic	ancestry	(computed	from	the	ancestry-specific	1300	

ancestry	variants).	The	number	of	PCs	we	included	varied	by	subgroup;	to	select	the	1301	

PCs	to	be	included,	we	regressed	T2D	status	on	sequencing	technology	and	the	first	1302	

ten	PCs	and	included	in	the	model	any	PC	that	demonstrated	nominal	(p<0.05)	1303	

association	with	T2D,	as	well	as	all	higher-order	PCs.		1304	

	1305	

For	each	of	the	25×2=50	single-variant	analyses,	we	inspected	QQ	plots	of	variant	1306	

association	statistics	and	increased	the	stringency	of	the	variant	filters	if	the	1307	

distribution	of	association	statistics	appeared	poorly	calibrated.	The	filters	shown	in	1308	

Supplementary	Figure	6	represent	the	final	values	at	which	we	arrived.	1309	

	1310	

We	then	conducted	a	25-group	fixed-effect	inverse-variance	weighted	meta-analysis	1311	

for	each	of	the	Firth	and	EMMAX	tests,	using	METAL100.	We	used	EMMAX	results	for	1312	
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association	p-values	and	Firth	results	for	effect	size	estimates.	For	comparison,	we	1313	

conducted	two	additional	meta-analyses	with	association	Z-scores	weighted	by	(a)	1314	

sample-size	and	(b)	the	number	of	variant	carriers.	We	found	that	the	sample-size	1315	

weighted	meta-analysis	had	significantly	reduced	power	to	detect	association	for	1316	

variants	with	frequencies	that	varied	widely	by	sample	subgroup;	for	example,	1317	

1,425	East-Asian	individuals	carried	p.Arg192His	in	PAX4	(N=6,032;	p=1.2×10-21)	1318	

compared	to	only	28	carriers	across	all	other	ancestries	(N=39,199;	p>0.2),	yielding	1319	

an	inverse-variance	weighted	meta-analysis	p=7.6×10-22	and	a	sample-size	weighted	1320	

meta-analysis	p=1.0×10-6.	By	contrast,	the	number-of-carrier	weighted	meta-1321	

analysis	yielded	similar	results	as	the	inverse-variance	weighted	meta-analysis.	We	1322	

elected	to	use	the	inverse-variance	weighted	method	due	to	its	widespread	use100.	1323	

We	did	not	conduct	random-effects	meta-analyses.	1324	

	1325	

Replication	of	rs145181683	1326	

To	assess	whether	the	rs145181683	variant	in	SFI1	(p=3.2×10-8	in	the	exome	1327	

sequence	analysis)	represented	a	true	novel	association,	we	obtained	association	1328	

statistics	from	the	4,522	Latinos	previously	analyzed	as	part	of	an	8,214	sample	1329	

Latino	GWAS	published	by	the	SIGMA-T2D	consortium101	who	did	not	overlap	with	1330	

the	current	study.	Based	on	the	odds	ratio	(1.19)	estimated	in	our	analysis	and	the	1331	

MAF	(12.7%)	in	the	replication	sample,	power	was	91%	to	achieve	p<0.05	under	a	1332	

one-sided	association	test.	The	observed	evidence	(p=0.90,	OR=1.00)	did	not	1333	

support	rs145181683	as	a	true	T2D	association.	1334	

	1335	
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Gene-level	analysis	1336	

We	first	filtered	variants	(or,	more	accurately,	alleles,	since	in	contrast	to	single-1337	

variant	analysis,	we	treated	multiallelic	variants	as	collections	of	independent	1338	

biallelic	variants)	according	to	seven	different	annotation	“masks”,	ranked	in	order	1339	

of	increasing	deleteriousness.	The	strongest	mask	consisted	of	alleles	predicted	to	1340	

cause	loss	of	function	by	the	LofTee	algorithm	1341	

(https://github.com/konradjk/loftee),	while	weaker	masks	also	included	alleles	1342	

predicted	deleterious	by	progressively	fewer	bioinformatic	algorithms.	Each	mask	1343	

included	all	alleles	in	higher	ranked	masks	as	well	as	additional	alleles	specific	to	1344	

the	mask.	In	the	two	lowest	ranked	masks	(the	1/5	1%	and	0/5	1%	masks,	which	1345	

included	alleles	predicted	deleterious	by	one	or	zero	tools,	respectively),	we	filtered	1346	

alleles	specific	to	each	mask	according	to	allele	frequency	using	a	cutoff	of	MAF=1%,	1347	

with	MAF	computed	as	the	maximum	MAF	across	the	five	ancestries.	A	full	list	and	1348	

definitions	of	masks	are	shown	in	Supplementary	Figure	8;	the	criteria	listed	in	1349	

the	figure	are	for	alleles	specific	to	each	mask.	1350	

	1351	

To	validate	that	the	severity	ordering	of	masks	corresponded	to	an	increasing	1352	

likelihood	that	an	allele	in	the	mask	was	deleterious,	we	used	previously	published	1353	

data	assessing	the	extent	to	which	all	missense	variants	in	the	gene	PPARG	impeded	1354	

adipocyte	differentiation	(i.e.	were	annotated	as	causing	PPARG	loss	of	function).	1355	

These	data	showed	a	trend	whereby	alleles	in	more	severe	masks	had	lower	1356	

predicted	functionality	(Supplementary	Figure	9).	1357	

	1358	
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For	each	mask,	we	grouped	alleles	by	gene	according	to	VEP	annotations	of	1359	

impacted	transcript;	we	assigned	variants	in	transcripts	of	multiple	genes	to	all	such	1360	

genes.	For	each	gene,	we	created	up	to	three	groupings	of	alleles,	corresponding	to	1361	

different	transcript	sets	of	the	gene.	First,	the	“best”	grouping	consisted	of	alleles	in	1362	

the	mask	according	to	the	“best	guess”	allele-level	annotations.	Second,	the	“all”	1363	

grouping	consisted	of	alleles	in	the	mask	according	to	any	transcript	of	the	gene.	1364	

Third,	the	“filter”	grouping	consisted	of	alleles	in	the	mask	according	to	protein-1365	

coding	transcripts	of	the	gene	with	TSL<3.	For	many	genes,	two	or	more	of	these	1366	

allele	groupings	were	identical.	1367	

	1368	

Additionally,	we	assigned	mask-specific	allele	weights	according	to	their	aggregate	1369	

predicted	deleteriousness.	To	calculate	weights,	we	used	a	previously	published	1370	

model12	in	which	missense	variants	are	a	mixture	of	fully	benign	variants	and	fully	1371	

loss-of-function	variants,	with	a	parameter	0≤x≤1	determining	the	fraction	of	loss-1372	

of-function	variants.	We	assumed	all	alleles	in	the	LofTee	mask	were	full	loss-of-1373	

function	variants	(x=1)	and	that	all	synonymous	alleles	were	fully	benign	(x=0).	We	1374	

then	calculated	the	(binned)	frequency	distribution,	truncated	at	MAF<1%,	of	1375	

biallelic	LofTee	and	biallelic	synonymous	alleles,	using	these	as	reference	1376	

distributions	of	the	frequency	of	loss-of-function	and	benign	alleles,	respectively.	1377	

For	each	mask,	we	then	calculated	the	binned	and	truncated	frequency	distribution	1378	

for	alleles	specific	to	the	mask	(Supplementary	Figure	10)	and	estimated	a	value	1379	

for	x	(by	enumerating	and	testing	a	range	of	possible	values	between	0	and	1)	that	1380	

maximized	the	likelihood	of	the	observed	frequency	distribution.	We	then	used	the	1381	
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estimated	values	of	x	for	allele	weights,	as	shown	in	Supplementary	Figure	8.	1382	

Because	each	mask	consisted	not	only	of	alleles	specific	to	the	mask	but	also	of	1383	

alleles	present	in	higher	ranked	masks,	alleles	within	any	given	mask	had	a	range	of	1384	

weights.	1385	

	1386	

Prior	to	running	gene-level	tests,	we	performed	additional	quality	control	on	sample	1387	

genotypes.	For	each	of	the	25	sample	subgroups	(the	same	subgroups	used	for	1388	

single-variant	analysis),	we	identified	all	variants	with	low	subgroup-specific	call	1389	

rates,	high	subgroup-specific	deviations	from	HWE,	or	high	subgroup-specific	1390	

differences	between	case	and	control	call	rates	(specific	criteria	are	shown	in	1391	

Supplementary	Figure	8).	For	each	variant	failing	any	of	these	criteria,	all	1392	

genotypes	for	individuals	in	the	subgroup	(regardless	of	allele)	were	set	as	1393	

“missing”;	for	multiallelic	variants,	all	subgroup	genotypes	were	set	as	missing	if	any	1394	

allele	failed	any	quality	control	criterion.	1395	

	1396	

We	then	conducted	a	series	of	tests	across	the	masks.	We	used	a	burden	test	and	1397	

SKAT38,	both	as	implemented	in	the	EPACTS	software	package.	The	burden	test	1398	

assumes	that	the	effect	sizes	of	all	analyzed	variants	are	the	same,	while	the	SKAT	1399	

test	allows	effect	sizes	to	vary102.	We	conducted	each	test	across	all	unrelated	1400	

individuals	pooled	together	(i.e.	in	contrast	to	single-variant	analysis,	we	performed	1401	

a	“mega-analysis”	rather	than	a	meta-analysis)	and	included	ten	PC	covariates	1402	

(computed	from	the	transethnic	ancestry	SNPs)	as	well	as	indicator	covariates	for	1403	

the	25	sample	subgroups	(the	same	as	defined	in	single-variant	analysis).	We	did	1404	
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not	include	covariates	for	age,	sex,	or	BMI	in	our	analysis,	as	they	had	little	effect	on	1405	

our	results.	1406	

	1407	

We	implemented	subgroup-specific	genotype	filters	(as	defined	in	the	previous	1408	

quality	control	step)	by	modifying	the	EPACTS	software	to	set	specified	genotypes	1409	

to	missing	during	association	testing;	we	achieved	allele-specific	tests	for	1410	

multiallelic	variants	(i.e.	in	which	only	one	allele	was	present	in	the	mask)	in	a	1411	

similar	manner	by	setting	non-reference	genotypes	to	missing	for	samples	that	1412	

carried	an	allele	outside	of	the	mask.	We	also	modified	the	EPACTS	software	to	1413	

accept	allele-specific	weights	by	multiplying	genotypes	(or	more	accurately,	1414	

genotype	dosages)	by	the	relevant	weight	prior	to	conducting	the	formal	burden	or	1415	

SKAT	analysis.	1416	

	1417	

Consolidation	of	tests	across	masks	1418	

Historically,	exome	sequencing	studies	have	produced	separate	gene-level	1419	

association	results	for	each	allelic	mask.	While	straightforward	to	report,	1420	

interpreting	multiple	p-values	for	each	gene	can	be	challenging	–	particularly	if	the	1421	

goal	is	to	determine	whether	a	specific	gene	demonstrates	association	with	a	1422	

phenotype.	To	address	this	challenge,	we	developed	two	methods	to	collapse	1423	

association	results	across	different	allelic	masks.	1424	

	1425	

The	first	method	(“weighted	test”)	collapses	associations	under	a	model	whereby	1426	

the	phenotypic	effects	of	alleles	are	directly	proportional	to	their	bioinformatically	1427	
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estimated	deleteriousness.	In	the	“weighted	burden”	test,	we	used	the	sum	of	the	1428	

weights	of	alleles	carried	by	an	individual	as	a	predictor	variable	in	place	of	the	total	1429	

number	of	alleles	carried.	In	the	“weighted	SKAT”	test,	we	multiplied	the	default	1430	

weights	used	in	the	SKAT	EPACTS	implementation	by	the	allelic	weights	we	1431	

calculated.	For	these	weighted	tests	we	included	all	alleles	in	the	0/5	1%	mask	in	1432	

the	analysis.	1433	

	1434	

Because	bioinformatically	predicted	severity	is	an	imperfect	proxy	to	actual	1435	

phenotypic	severity,	we	developed	a	second	method,	the	“minimum	p-value	test”,	to	1436	

collapse	associations	across	masks.	We	chose	the	minimum	p-value	test	to	provide	a	1437	

principled	extension	of	an	ad	hoc	but	intuitive	way	to	interpret	multiple	p-values	for	1438	

a	given	gene:	take	the	smallest	p-value	observed	across	each	mask	and	then	correct	1439	

for	the	effective	number	of	tests	performed	for	the	gene.		1440	

	1441	

To	conduct	these	minimum	p-value	tests,	we	first	ran	the	burden	and	SKAT	analyses	1442	

for	each	of	the	seven	masks	separately,	following	usual	exome	sequence	analysis	1443	

protocols	by	using	no	weights	and	including	all	alleles	in	each	mask.	For	each	gene,	1444	

we	then	converted	the	seven	p-values	into	a	single	p-value	via	the	formula	1445	

1− 1− 𝑝!"# ! 	

where	e	is	the	effective	number	of	independent	tests	performed	across	the	masks.	1446	

To	estimate	e,	we	applied	a	previous	approach39	originally	developed	to	compute	1447	

the	effective	number	of	independent	p-values	across	a	set	of	SNPs:	1448	
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𝑀 − 𝐼 𝜆! > 1 𝜆! − 1
!

!!!

	

where	in	our	case	M	equals	the	number	of	masks	(usually	seven,	except	for	genes	1449	

that	lack	variants	in	one	or	more	masks	or	for	which	two	masks	are	identical)	and	λi	1450	

are	the	eigenvalues	of	the	M×M	matrix	of	correlations	among	the	p-values	of	the	1451	

mask-level	tests.	To	compute	the	mask	p-value	correlation	matrix,	we	followed	the	1452	

previous	approach	by	first	calculating	the	mask	genotype	correlation	matrix	(i.e.,	for	1453	

each	mask,	producing	a	vector	with	the	number	of	variants	in	the	mask	carried	by	1454	

each	individual,	and	then	calculating	correlations	of	the	vectors)	and	then	1455	

transforming	the	genotype	correlation	matrix	according	to	the	previously	1456	

empirically	derived39	polynomial	equation:	1457	

𝑦 = 0.2982𝑥! − 0.0127𝑥! + 0.0588𝑥! + 0.0099𝑥! + 0.6281𝑥! − 0.0009𝑥	

where	x	is	the	measured	correlation	between	the	number	of	alleles	carried	and	y	is	1458	

the	estimated	correlation	between	p-values.	1459	

	1460	

We	note	that	this	polynomial	equation	was	initially	developed	to	translate	1461	

correlations	between	individual	variants	and	p-values,	rather	than	correlations	1462	

between	aggregate	sets	of	variants	and	p-values,	and	thus	may	not	be	as	accurate	in	1463	

our	setting.	However,	genomic	control	estimates	(λ=0.67)	and	QQ	plots	1464	

(Supplementary	Figure	11)	suggested	that	if	anything	our	multiple	test	correction	1465	

was	conservative	for	most	genes.	Furthermore,	even	if	our	gene-level	p-values	were	1466	

Bonferroni	corrected	for	all	seven	masks,	the	results	of	our	study	would	remain	1467	

largely	unchanged:	each	of	SLC30A8,	MC4R,	and	PAM	would	still	exceed	exome-wide	1468	
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significance	(for	both	the	weighted	and	minimum	p-value	tests),	and	the	gene	set	1469	

tests	would	remain	nearly	identical	(as	they	are	based	on	gene-level	p-value	ranks	1470	

rather	than	absolute	values).	Future	work	could	investigate	the	application	of	other	1471	

methods	previously	developed	to	correct	for	correlated	p-values103,104.		1472	

	1473	

The	application	of	two	different	methods	for	collapsing	p-values	across	masks	for	1474	

each	of	two	tests	yielded	four	analyses	for	each	gene,	corresponding	to	a	weighted	1475	

burden	analysis,	a	weighted	SKAT	analysis,	an	minimum	p-value	burden	analysis,	1476	

and	an	minimum	p-value	SKAT	analysis.	In	fact,	for	each	of	the	four	analyses,	1477	

multiple	p-values	were	possible	for	each	gene	(corresponding	to	the	different	1478	

transcript	sets	used	for	annotation).	To	produce	a	single	gene-level	p-value	for	each	1479	

of	the	four	analyses,	we	thus	collapsed	(for	each	gene)	the	set	of	p-values	across	1480	

transcript	sets	into	a	single	gene-level	p-value	using	the	same	procedure	as	for	the	1481	

minimum	p-value	test	(i.e.	taking	the	minimum	p-value	corrected	for	the	effective	1482	

number	of	tests	performed).	1483	

	1484	

For	some	genes	(Supplementary	Figures	12-14)	we	conducted	additional	gene-1485	

level	analyses	to	dissect	the	aggregate	signals	observed.	First,	we	performed	tests	1486	

for	each	mask	separately,	including	only	variants	specific	to	the	mask	(rather	than	1487	

all	variants),	to	understand	whether	the	aggregate	signal	was	observed	in	only	one	1488	

as	opposed	to	multiple	masks.	Second,	we	performed	tests	by	progressively	1489	

removing	variants	in	order	of	lowest	single-variant	analysis	p-value,	to	understand	1490	

the	(minimum)	number	of	variants	that	contributed	statistically	to	the	aggregate	1491	
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signal.	Third,	we	performed	tests	conditional	on	each	variant	separately	(i.e.	1492	

calculating	separate	models	with	each	individual	variant	as	a	covariate),	with	the	1493	

resulting	p-values	compared	to	the	full	gene-level	p-value,	to	assess	the	contribution	1494	

of	each	variant	individually	to	the	signal.	1495	

	1496	

Analysis	of	exomes	from	the	Geisinger	Health	System	(GHS)	1497	

We	obtained	gene-level	association	results	previously	computed	from	an	analysis	of	1498	

49,199	individuals	(12,973	T2D	cases	and	36,226	controls)	from	the	Geisinger	1499	

Health	System.	We	requested	association	summary	statistics	for	the	50	genes	with	1500	

the	strongest	gene-level	associations	from	our	analysis;	44	genes	had	precomputed	1501	

summary	statistics	available;	pseudogene	UBE2NL	and	X	chromosome	genes	1502	

MAP3K15,	SLC16A2,	MAGEB5,	DGKK,	and	MAGEE2	were	not	available.	1503	

	1504	

GHS	sequence	data	were	processed	and	analyzed	as	previously	described27	and	1505	

association	results	were	produced	for	four	(nested)	variant	masks:		1506	

1. M1:	predicted	loss-of-function	variants,	according	to	the	VEP,	with	MAF<1%	–	1507	

similar	to	the	LofTee	mask	but	with	an	additional	MAF<1%	filter	and	without	the	1508	

LofTee	filter	on	protein-truncating	variants	annotated	by	the	VEP.	1509	

2. M2:	nonsynonymous	variants	predicted	deleterious	by	5/5	prediction	1510	

algorithms	with	MAF<1%	–	similar	to	the	5/5	mask	but	with	an	additional	filter	1511	

on	MAF<1%.	1512	

3. M3:	all	nonsynonymous	variants	predicted	deleterious	by	≥1/5	bioinformatic	1513	

algorithms	with	MAF<1%	–	similar	to	the	1/5	1%	mask.	1514	
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4. M4:	all	nonsynonymous	variants	with	MAF<1%	–	similar	to	the	0/5	1%	mask,	1515	

although	not	identical	as	the	1%	filter	was	used	for	all	variants	including	those	in	1516	

the	LofTee	and	5/5	masks.	1517	

	1518	

For	each	mask,	association	results	were	computed	via	logistic	regression	under	an	1519	

additive	burden	model	(with	phenotype	regressed	on	the	number	of	variants	1520	

carried	by	each	individual)	with	age,	age2,	and	sex	as	covariates.	Although	this	1521	

analysis	procedure	was	broadly	consistent	with	the	one	we	used	for	our	exome	1522	

sequence	analysis,	we	were	not	able	to	synchronize	our	procedures	for	quality	1523	

control,	annotation,	and	collapsing	association	statistics	across	masks.	1524	

	1525	

To	produce	a	single	GHS	p-value	for	each	gene,	we	applied	the	minimum	p-value	1526	

procedure	across	the	four	mask-level	results.	We	estimated	the	correlation	matrix	1527	

using	the	same	procedure	as	for	our	exome	sequence	analysis,	using	the	combined	1528	

GHS	allele	frequencies	reported	across	the	four	(nested)	masks.	1529	

	1530	

Analysis	of	exomes	from	the	CHARGE	consortium	1531	

We	collaborated	with	the	CHARGE	consortium	to	analyze	the	50	genes	with	the	1532	

strongest	gene-level	associations	from	our	analysis		in	12,467	individuals	(3,062	1533	

T2D	cases	and	9,405	controls)	from	their	previously	described	study105.	CHARGE	1534	

DNA	samples	were	processed	at	Baylor	College	of	Medicine	Human	Genome	1535	

Sequencing	Center	using	the	VCRome	2.1	design	and	sequenced	in	paired-end	mode	1536	

in	a	single	lane	on	the	Illumina	HiSeq	2000	or	the	HiSeq	2500	platform	with	a	mean	1537	
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78-fold	coverage.	All	samples	were	called	together	and	details	on	sequencing,	1538	

variant	calling,	and	variant	quality	control	were	described	in	detail	by	Yu	et	al.106	1539	

		1540	

Variants	in	the	CHARGE	exomes	were	annotated	and	grouped	into	seven	masks	1541	

using	the	same	procedure	as	for	the	original	exome	sequence	analysis.	For	each	1542	

mask,	CHARGE	burden	and	SKAT	association	tests	were	performed	in	the	Analysis	1543	

Commons107	using	a	logistic	mixed	model108	assuming	an	additive	genetic	model	1544	

and	adjusted	for	age,	sex,	study,	race,	and	kinship.		1545	

	1546	

To	produce	a	single	CHARGE	p-value	for	each	gene,	we	applied	the	minimum	p-value	1547	

procedure	across	the	four	mask-level	results,	as	for	the	GHS	analysis.	1548	

	1549	

Evaluation	of	directional	consistency	between	exome	sequence,	CHARGE,	and	GHS	1550	

analyses	1551	

We	examined	the	concordance	of	direction	of	effect	size	estimates	(i.e.	OR>1	or	1552	

OR<1)	between	our	original	exome	sequence	analysis	and	those	from	CHARGE	and	1553	

GHS.	We	used	burden	test	statistics	for	this	analysis,	as	SKAT	tests	do	not	produce	1554	

direction	of	effects.	Of	the	50	genes	advanced	for	replication,	we	considered	the	46	1555	

that	reached	burden	p<0.05	for	at	least	one	mask	(i.e.	ignoring	those	with	evidence	1556	

for	association	only	under	the	SKAT	model).	We	compared	the	direction	of	effect	to	1557	

that	estimated	by	burden	analysis	of	the	same	(or	analogous)	mask	in	the	GHS	or	1558	

CHARGE	analysis.	For	CHARGE,	we	compared	direction	of	effect	for	the	same	mask.	1559	

For	GHS,	we	compared	use	the	following	approximate	mapping	between	masks:	1560	
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LofTee	to	M1;	15/15,	10/10,	5/5,	and	5/5+LofTee	LC	to	M2;	1/5	1%	to	M3;	and	0/5	1561	

1%	to	M4.		We	then	conducted	a	one-sided	exact	binomial	test	to	assess	whether	the	1562	

fraction	of	results	with	consistent	direction	of	effects	was	significantly	greater	than	1563	

expected	by	chance.	1564	

	1565	

Generation	of	candidate	T2D-relevant	genes	sets	1566	

To	assess	whether	gene-level	association	strength	could	be	an	informative	metric	to	1567	

use	when	prioritizing	candidate	genes	for	further	study	or	experimentation,	we	1568	

compared	gene-level	associations	for	genes	in	a	variety	of	gene	sets	1569	

(Supplementary	Table	10)	to	gene-level	association	statistics	for	random	sets	of	1570	

genes	matched	with	the	target	set	based	on	the	number	and	frequencies	of	variants	1571	

(as	described	below).	We	did	so	for	16	sets	of	genes:	1572	

1. Eleven	genes	harboring	mutations	that	cause	Maturity	Onset	Diabetes	of	the	Young	1573	

(MODY).	We	selected	genes	from	a	set	previously	described24	after	excluding	two	1574	

genes	(ABCC8	and	KCNJ11)	that	can	cause	monogenic	diabetes	or	congenital	1575	

hyperinsulinism	depending	on	whether	the	mutations	they	harbor	are	activating	1576	

or	inactivating.		1577	

2. Eight	genes	annotated	as	targets	for	antidiabetic	medications.	We	downloaded	1578	

medications	annotated	as	“Drugs	Used	in	Diabetes”	or	“Blood	Glucose	Lowering”	1579	

from	the	DrugBank	database	version	5.048.	After	exclusion	of	medications	with	1580	

more	than	two	annotated	targets,	we	advanced	for	analysis	only	genes	(a)	1581	

annotated	as	a	target	of	at	least	two	compounds	and	(b)	for	which	the	1582	

therapeutic	target	modulation	strategy	was	consistently	annotated	across	all	1583	
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medications,	where	annotations	of	“inhibitor”,	“antagonist”,	and	“inverse	1584	

agonist”	were	interpreted	as	reducing	activity,	while	annotations	of	“agonist”,	1585	

“activator”,	or	“inducer”	were	interpreted	as	increasing	activity.	These	1586	

restrictions	excluded	ABCC8	from	analysis,	as	it	was	annotated	as	the	target	of	1587	

both	an	inhibitor	and	an	agonist;	we	elected	to	maintain	this	exclusion,	despite	1588	

multiple	lines	of	evidence109	indicating	inhibition	of	ABCC8	to	be	the	appropriate	1589	

anti-diabetic	strategy,	to	maintain	consistent	criteria	across	all	genes	selected	for	1590	

analysis.	Additionally,	we	excluded	KCNJ11	(which	with	ABCC8	encodes	the	ATP-1591	

sensitive	K(ATP)	channel	targeted	by	sulfonylureas)	from	analysis	because	both	1592	

medications	listed	in	DrugBank	as	targeting	it	had	more	than	two	targets	1593	

(Glyburide,	8,	and	Glimepiride,	3).	The	resulting	gene	set	was	thus	GLP1R,	IGF1R,	1594	

PPARG,	INSR,	SLC5A2,	DPP4,	KCNJ1,	and	KCNJ8.		1595	

3-14.	Twelve	sets	of	genes	reported	as	relevant	to	T2D	in	mouse	models.	Within	the	1596	

Mouse	Genome	Informatics	Database,	we	searched	for	genes	matching	various	1597	

diabetes-relevant	“phenotypes,	alleles,	and	disease	models”	under	the	broader	1598	

category	of	“mouse	phenotypes	and	mouse	models	of	human	disease”.	We	1599	

constructed	a	gene	set	for	each	phenotype	defined	in	the	database,	many	of	1600	

which	overlapped.	For	phenotypes	associated	with	increased	diabetes	risk,	we	1601	

used:	(3)	“type	2	diabetes	or	type	ii	diabetes”	(i.e.	non-insulin	dependent	1602	

diabetes;	31	genes),	(4)	“diabetes	mellitus”	(72	genes),	(5)	“impaired	glucose	1603	

tolerance”	(327	genes),	(6)	“increased	circulating	glucose”	(365	genes),	(7)	1604	

“insulin	resistance”	(181	genes),	and	(8)	“decreased	insulin	secretion”	(133	1605	

genes).	For	phenotypes	associated	with	decreased	diabetes	risk,	we	used:	(9)	1606	
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“improved	glucose	tolerance”	(239	genes),	(10)	“decreased	circulating	glucose”	1607	

(481	genes),	(11)	“increased	insulin	sensitivity”	(178	genes),	and	(12)	“increased	1608	

insulin	secretion”	(51	genes).	For	phenotypes	associated	with	diabetes	risk	but	1609	

with	unclear	direction	of	effect,	we	used	(13)	“decreased	circulating	insulin”	1610	

(321	genes)	and	(14)	“increased	circulating	insulin”	(215	genes).	1611	

15. Eleven	genes	suspected	of	harboring	common	coding	causal	variants	within	T2D	1612	

GWAS	loci.	We	analyzed	the	set	of	genes	from	a	recent	exome	array	analysis17	1613	

which	contained	a	coding	variant	GWAS	signal	for	which	the	unweighted	1614	

posterior	probability	of	causality	exceeded	25%.	Although	the	final	values	1615	

reported	by	the	study	include	an	elevated	prior	for	coding	variants,	we	elected	to	1616	

use	a	25%	unweighted	posterior	threshold	to	enrich	for	the	genes	with	the	1617	

highest	likelihood	of	mediating	the	observed	GWAS	signal.	For	analysis	of	this	1618	

gene	set,	we	recomputed	gene-level	association	statistics	within	the	set	by	1619	

conditioning	on	all	GWAS	tag	SNPs	(within	the	locus)	reported	in	the	exome	1620	

array	analysis17;	we	used	p-values	from	these	conditional	gene-level	associations	1621	

in	the	gene	set	analysis.	1622	

16. Twenty	genes	with	T2D-associated	transcript	levels.	We	selected	genes	with	1623	

significant	associations	in	a	pre-publication52	tissue-wide	T2D	association	1624	

analysis	(i.e.	testing	for	association	between	the	genetic	component	of	tissue-1625	

level	gene	expression	and	T2D),	with	associations	considered	significant	if	they	1626	

survived	Bonferroni	correction	for	all	tested	genes	and	all	tested	tissues.	Results	1627	

were	computed	with	the	MetaXcan	software	package110	using	SNP	regression	1628	

coefficients	taken	from	a	large	trans-ethnic	T2D	GWAS	meta-analysis111	and	1629	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/371450doi: bioRxiv preprint 

https://doi.org/10.1101/371450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 75	

gene	expression	prediction	models	from	the	PredictDB	website	1630	

(http://predictdb.org).	1631	

	1632	

Gene	set	analysis	1633	

For	each	gene	set,	our	goal	was	to	compare	the	gene	level	p-values	within	the	set	to	1634	

those	of	genes	chosen	at	random	from	the	genome.	To	control	for	gene	variability	in	1635	

the	number	and	frequency	of	variants	within	them,	which	could	confound	1636	

comparisons,	we	constructed	comparison	genes	by	matching	on	four	properties:	the	1637	

(1)	number	of	variants	in	any	of	the	seven	variant	masks;	(2)	total	allele	counts	over	1638	

all	variants	in	any	of	the	seven	masks;	(3)	number	of	tests	across	all	variant	masks	1639	

and	transcript	sets;	and	(4)	effective	number	of	tests	across	all	variant	masks	and	1640	

transcript	sets	(as	computed	for	the	minimum	p-value	test).	We	scaled	each	1641	

property	to	zero	mean	and	unit	variance.	For	each	gene,	we	then	used	the	50	1642	

nearest	neighbors	(defined	using	Euclidean	distance	in	the	scaled	property	space)	1643	

as	matched	comparison	genes.		1644	

	1645	

To	conduct	a	gene	set	analysis,	we	then	combined	the	genes	in	the	gene	set	with	all	1646	

of	the	comparison	genes	matched	to	each	gene	in	the	set.	Within	the	combined	list	of	1647	

genes,	we	ranked	genes	using	the	p-values	observed	for	the	minimum	p-value	1648	

burden	test.	We	then	used	a	one-side	Wilcoxon	rank-sum	test	to	assess	whether	1649	

genes	in	the	gene	set	had	significantly	higher	ranks	than	the	comparison	genes.			1650	

	1651	
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For	gene	set	analysis,	we	used	the	minimum	p-value	test,	rather	than	the	weighted	1652	

test,	under	the	rationale	that	(a)	we	aimed	to	detect	associations	with	as	many	genes	1653	

as	possible	using	information	from	as	many	variants	as	possible	and	(b)	the	1654	

weighted	test	might	not	detect	genes	that	did	not	follow	its	model	of	a	strong	1655	

correlation	between	variant	effect	sizes	and	molecular	annotation.	We	used	the	1656	

burden	test	rather	than	SKAT	based	on	a	desire	to	have	more	interpretable	1657	

association	statistics	(e.g.	effect	size	estimates).	However,	we	did	not	quantitatively	1658	

and	systematically	compare	the	power	of	each	of	our	analyses	in	this	setting.	1659	

	1660	

Use	of	gene-level	associations	to	predict	effector	genes	1661	

In	most	situations,	GWAS	associations	implicate	common	regulatory	variants,	which	1662	

seldom	localize	to	specific	genes.	To	assess	whether	gene-level	associations	from	1663	

exome	sequencing	–	which	are	composed	mostly	of	rare	variants	independent	from	1664	

any	GWAS	associations	–	could	prioritize	potential	effector	genes	within	known	T2D	1665	

GWAS	loci,	we	catalogued	all	genes	within	each	locus	reaching	p<0.05	for	the	1666	

minimum	p-value	burden	test.	We	took	a	list	of	94	GWAS	loci	from	a	recent	review	1667	

article53	and	advanced	for	analysis	the	595	genes	within	250kb	of	an	index	SNP.		1668	

	1669	

We	then	sought	to	compare	two	methods	to	predict	effector	genes	within	these	loci.	1670	

First,	we	used	p<0.05	according	to	the	minimum	p-value	gene-level	test	from	our	1671	

exome	sequence	analysis	to	predict	candidate	effector	genes,	producing	a	list	of	40	1672	

genes	(across	32	loci).	Second,	we	used	proximity	to	the	index	SNP	(as	predicted	by	1673	
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DAPPLE54)	to	predict	candidate	effector	genes,	producing	a	list	of	184	genes	(at	1674	

some	loci	DAPPLE	annotated	more	than	one	candidate	effector	gene).		1675	

	1676	

As	accurately	assessing	which	of	these	two	gene	sets	is	more	enriched	for	true	1677	

effector	genes	would	require	(at	minimum)	significant	experimental	work,	we	used	1678	

the	relative	number	of	protein	interactions	within	each	gene	set	as	one	(imperfect)	1679	

measure	of	their	respective	biological	“coherence”.	To	assess	whether	each	set	1680	

encodes	proteins	with	more	interactions	than	would	be	expected	by	chance,	we	ran	1681	

DAPPLE	through	the	public	GenePattern	portal	1682	

(https://software.broadinstitute.org/cancer/software/genepattern)	with	default	1683	

values	for	all	parameters.	The	40	genes	with	minimum	p<0.05	were	significantly	1684	

more	enriched	for	protein	interactions	(p=0.03;	observed	mean=11.4,	expected	1685	

mean=4.5)	than	were	the	184	genes	implicated	based	on	proximity	to	the	index	SNP	1686	

(p=0.64;	observed	mean=21.1,	expected	mean=21.9).		1687	

	1688	

While	these	results	suggest	that	gene-level	associations	may	be	useful	for	1689	

prioritizing	effector	genes,	we	note	that	they	do	not	implicate	any	specific	genes	and	1690	

that	DAPPLE	is	only	one	means	to	assess	biological	coherence	of	a	gene	set	(through	1691	

direct	and	indirect	protein	interactions).	Evaluation	of	the	biological	candidacy	of	1692	

these	genes	may	ultimately	require	in-depth	functional	studies56.	1693	

	1694	

Use	of	gene-level	associations	to	predict	direction	of	effect	1695	
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In	therapeutic	development,	it	is	often	valuable	to	know	the	direction	of	effect	1696	

linking	gene	modulation	to	disease	risk	–	that	is,	whether	inactivation	or	activation	1697	

of	a	protein	increases	disease	risk.	We	thus	assessed	whether	gene-level	association	1698	

analysis	of	predicted	deleterious	variants	could	be	used	to	predict	this	direction	of	1699	

effect.	For	this	analysis,	we	used	odds	ratios	estimated	from	a	modified	weighted	1700	

burden	test	procedure,	which	only	included	alleles	from	the	four	masks	with	the	1701	

predicted	most	deleterious	variants:	LofTee,	16/16,	11/11,	and	5/5	1702	

(Supplementary	Figure	8).	Weights	for	variants	were	identical	to	those	used	in	the	1703	

exome-wide	weighted	burden	test.	We	chose	these	four	masks	for	analysis	to	1704	

balance	a	desire	for	greater	aggregate	allele	count	per	gene	(i.e.	missense	variants	in	1705	

addition	to	protein-truncating	variants)	with	a	need	to	strongly	enrich	for	1706	

deleterious	variants	(>73%	estimated	to	be	deleterious	in	masks	analyzed	vs.	<50%	1707	

in	the	other	masks	(Supplementary	Figure	8).	In	addition,	we	used	the	weighted	1708	

test	because	it	was	explicitly	designed	to	estimate	an	effect	of	gene	1709	

haploinsufficiency	based	on	both	protein-truncating	and	missense	variants.	1710	

	1711	

To	compare	these	direction	of	effect	estimates	to	those	expected	for	T2D	drug	1712	

targets,	we	assumed	agonist	targets	to	have	true	OR>1	and	inhibitors	to	have	true	1713	

OR<1.	For	a	comparison	to	expectations	for	mouse	gene	knockouts,	we	first	1714	

excluded	473	genes	annotated,	based	on	membership	in	multiple	gene	sets,	to	have	1715	

both	expected	OR>1	and	expected	OR<1	(these	genes	were	excluded	only	from	the	1716	

direction	of	effect	comparisons;	they	were	maintained	in	all	other	gene	set	1717	

analyses).	This	left	389	genes	with	an	expected	OR>1,	associated	exclusively	with	1718	
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mouse	traits	indicative	of	increased	risk	(overlapping	sets	of	11	“type	2	diabetes	or	1719	

type	ii	diabetes”,	46	“diabetes	mellitus”,	204	“impaired	glucose	tolerance”,	245	1720	

“increased	circulating	glucose”,	104	“insulin	resistance”,	and	63	“decreased	insulin	1721	

secretion”),	and	467	genes	with	an	expected	OR<1,	associated	exclusively	with	traits	1722	

indicative	of	decreased	risk	(overlapping	sets	of	164	“improved	glucose	tolerance”	1723	

genes,	358	“decreased	circulating	glucose”	genes,	95	“increased	insulin	sensitivity”	1724	

genes,	and	18	“increased	insulin	secretion”	genes).	Gene	sets	for	“decreased	1725	

circulating	insulin”	and	“increased	circulating	insulin”	were	excluded	from	this	1726	

direction	of	effect	comparison	due	to	the	unclear	relationship	between	these	1727	

phenotypes	and	T2D	risk.	1728	

	1729	

Aggregation	and	generation	of	SNP	array	data	1730	

Because	the	most	significant	single-variant	associations	that	emerged	from	our	1731	

exome	sequence	analysis	were	with	common	variants,	we	asked	whether	an	array-1732	

based	genome-wide	association	study	in	the	same	samples	could	have	provided	a	1733	

less	expensive	method	to	detect	these	same	associations.	To	address	this	question,	1734	

we	aggregated	all	available	SNP	array	data	for	the	exome-sequenced	samples	1735	

(Supplementary	Table	12).	Data	for	the	GoT2D24,	SIGMA85,	and	T2D-GENES	1736	

consortia	have	been	previously	analyzed	(unpublished	T2D-GENES	data	were	1737	

collected	from	a	range	of	SNP	arrays	including	Affymetrix	5.0	and	6.0,	Illumina	1738	

HumanHap	610K	and	1M,	and	the	Illumina	CardioMetabochip).	The	newly	1739	

sequenced	samples	from	the	T2D-GENES	and	SIGMA	consortia	were	genotyped	on	a	1740	

custom	“Genomes	For	Life”	(G4L)	Illumina	Infinium	array,	including	243,662	1741	
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variants	chosen	to	uniquely	identify	each	individual	in	a	study	and	to	provide	a	1742	

backbone	for	imputation	of	common	variation.	The	G4L	array	was	processed	by	the	1743	

Arrays	lab	of	Broad	Genomics	and	called	using	the	Illumina	GenCall	(Autocall)	1744	

algorithm.	1745	

	1746	

Analysis	of	SNP	array	data	1747	

After	genotyping,	the	34,529	samples	(18,233	cases	and	17,679	controls;	1748	

Supplementary	Table	12)	both	in	the	exome	sequence	analysis	and	with	a	SNP	1749	

array	call-rate	>95%	were	advanced	for	imputation.	To	omit	variants	that	might	1750	

degrade	imputation	quality,	prior	to	imputation	we	excluded	variants	with	low	1751	

genotype	call	rate	(<95%),	strong	deviation	from	Hardy-Weinberg	equilibrium	1752	

(p<10-6),	differential	genotype	call	rate	between	cases	and	controls	(p<10-5),	or	low	1753	

frequency	(MAF<1%).	We	then	imputed	autosomal	variants	(SNVs,	short	indels,	and	1754	

large	deletions)	via	the	Michigan	Imputation	Server112	for	each	of	two	reference	1755	

panels:	the	all	ancestries	1000	Genomes	Phase	3	(1000G)	reference	panel	of	2,504	1756	

individuals67	and	the	Haplotype	Reference	Consortium	(HRC)	Panel	of	32,470	1757	

individuals68.	We	used	the	1000G-based	imputation	for	all	association	analyses	and	1758	

the	HRC-based	imputation	to	assess	the	number	of	exome	sequence	variants	1759	

imputable	from	the	largest	available	European	reference	panel.	We	note	that	the	1760	

HRC	panel	includes	only	SNPs	(i.e.	no	indels)	and	only	variants	observed	at	least	five	1761	

times	in	the	sequence	data	contributed	to	the	HRC.	1762	

	1763	
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After	imputation,	we	performed	sample	and	variant	quality	control,	as	well	as	1764	

association	tests,	analogous	to	the	exome	sequence	single-variant	analysis.	By	1765	

contrast	with	the	exome	sequence	analysis,	we	found	that	the	EMMAX	test	produced	1766	

more	suspicious	looking	associations	than	did	the	Firth	test	and	thus	used	only	the	1767	

Firth	test	(i.e.	for	both	p-values	and	ORs)	in	the	imputed	GWAS	analysis.	1768	

	1769	

To	determine	which	variants	in	the	exomes	dataset	were	imputable	from	the	1000G	1770	

or	HRC	panel,	we	calculated	which	of	the	exome	variants	passed	imputed	GWAS	1771	

quality	control	in	any	sample	subgroup,	with	a	further	restriction	of	achieving	r2>0.4	1772	

in	that	subgroup.	Only	variants	in	the	exomes	dataset	that	were	polymorphic	in	the	1773	

imputed	GWAS	samples	were	included	in	this	analysis.	For	calculations	involving	1774	

the	HRC-imputed	GWAS	(given	that	the	HRC	panel	is	European-specific),	we	only	1775	

considered	variants	variable	in	four	European	cohorts	(METSIM,	Ashkenazi,	1776	

GoDARTS,	and	FHS)	in	the	analysis.	1777	

	1778	

Gene	set	analysis	using	SNP	array	data	1779	

In	addition	to	single-variant	analysis,	we	conducted	gene	set	analysis	with	the	1780	

imputed	GWAS	data.	We	first	used	the	method	implemented	in	MAGENTA70	to	1781	

assign	gene	scores	from	the	imputed	GWAS	single-variant	association	results;	1782	

MAGENTA	gene	scores	are	based	on	proximity	to	a	GWAS	lead	SNP	after	correction	1783	

for	potential	confounding	factors.	In	the	same	way	as	for	gene	set	analysis	from	the	1784	

exome	sequence	gene-level	results,	we	then	conducted	a	one-sided	Wilcoxon	rank-1785	

sum	test	to	compare	the	gene	scores	to	those	of	matched	comparison	genes.	1786	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/371450doi: bioRxiv preprint 

https://doi.org/10.1101/371450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 82	

	1787	

As	the	imputed	GWAS	gene	set	analysis	produced	fewer	significant	gene	set	1788	

associations	than	did	the	exome	sequence	gene	set	analysis,	we	investigated	1789	

whether	a	larger	array-based	association	study	would	produce	more	significant	1790	

gene	set	associations	(i.e.	whether	the	lack	of	gene	set	associations	in	the	imputed	1791	

GWAS	was	due	to	a	fundamental	lack	of	associated	common	variants	near	the	genes	1792	

in	the	gene	set	or	simply	due	to	an	insufficient	sample	size).	For	this	analysis,	we	1793	

downloaded	single-variant	association	statistics	from	the	largest	available	multi-1794	

ethnic	array-based	GWAS	for	T2D111,	converted	them	to	MAGENTA	gene	scores,	and	1795	

then	for	each	gene	set	conducted	a	Wilcoxon	rank-sum	test	as	described	above.	1796	

	1797	

LVE	calculations	1798	

To	calculate	liability	variance	explained	(LVE),	we	used	a	previously	presented	1799	

formula69	to	calculate	the	LVE	of	a	variant	with	three	genotypes	(AA,	Aa,	and	aa)	and	1800	

corresponding	relative	risks	(1,	RR1,	and	RR2).	For	these	calculations	we	assumed	1801	

HWE,	implying	the	frequencies	of	the	three	genotypes	to	be	Paa=Pa2,	PAa=2Pa(1-Pa),	1802	

and	PAA=(1-Pa)2,	where	Pa	is	the	minor	allele	frequency.	Under	this	assumption,	LVE	1803	

can	be	expressed	as	1804	

𝐿𝑉𝐸 = 𝑃!! 𝜇!! − 𝜇 ! + 2𝑃!(1− 𝑃!) 𝜇!" − 𝜇 ! + 1− 𝑃! ! 𝜇!! − 𝜇 !	

where	𝜇 = 2𝑃!(1− 𝑃!)𝜇!" + 1− 𝑃! !𝜇!!,	and	1805	

𝜇!! = 0;  𝜇!" = 𝑇 −Φ!! 1− 𝑓!" ;  𝜇!! = 𝑇 −Φ!! 1− 𝑓!! 	

Here	Φ!!	is	the	normal	quantile	distribution,	𝑇 = Φ!!(1− 𝑓!!),	and	faa,	fAa,	and	fAA	1806	

are	defined	as	1807	
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𝑓!! =
𝐾

𝑃!! + 2𝑃!(1− 𝑃!)𝑅𝑅! + 1− 𝑃! !𝑅𝑅!
;  𝑓!" = 𝑅𝑅!𝑓!!;  𝑓!! = 𝑅𝑅!𝑓!! 	

where	K	is	the	disease	prevalence.		1808	

	1809	

The	inputs	to	these	formulae	are	estimates	of	allele	frequency	(for	either	individual	1810	

variants	or	sets	of	variants,	depending	on	whether	variant-level	or	gene-level	1811	

variance	is	to	be	calculated),	relative	risk,	and	disease	prevalence.	For	individual	1812	

variants,	we	used	the	point	estimate	of	the	MAF	from	our	analysis	to	estimate	allele	1813	

frequency,	while	for	genes	we	used	the	point	estimate	of	combined	allele	frequency	1814	

(across	all	alleles)	in	place	of	MAF.	We	estimated	relative	risks	from	analysis	ORs	1815	

and	MAFs	(𝑃!)	under	an	assumed	prevalence	of	K=0.08	and	an	additive	genetic	1816	

model,	by	iteratively	solving	two	equations69:	1817	

𝑓!! =
𝐾

𝑃!
! + 2𝑃! 1− 𝑃! 𝑅𝑅! + 1− 𝑃!

!𝑅𝑅!
	

	1818	

𝑅𝑅! =
𝑂𝑅!

1+ 𝑓!!(𝑂𝑅! − 1)
	

where	i=1,2	correspond	to	the	heterozygous	and	major-allele	homozygous		1819	

genotypes.	We	used	a	multiplicative	model	for	odds-ratios;	i.e.	OR2	=	OR12.	1820	

	1821	

We	performed	LVE	calculations	as	an	integral	over	the	distribution	of	potential	1822	

relative	risks,	assuming	that	the	logarithm	of	odds	ratios	ORi	followed	normal	1823	

distributions	with	means	and	variance	equal	to	those	estimated	from	our	analysis.	1824	

When	presenting	the	strongest	LVE	values	for	the	imputed	GWAS	analysis,	we	only	1825	
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considered	variants	genotyped	in	at	least	10,000	individuals	to	avoid	potential	1826	

artifacts	resulting	from	a	spurious	association	in	a	small	sample	subgroup.	1827	

	1828	

For	gene-level	LVE	calculations,	we	used	the	variant	mask	with	lowest	p-value	to	1829	

calculate	LVE.	As	each	mask	may	have	included	a	mixture	of	disease-associated	and	1830	

benign	alleles,	the	calculated	LVE	may	underestimate	the	true	LVE	for	disease-1831	

associated	alleles	within	the	gene.	To	calculate	an	upper	bound	on	the	LVE	by	only	1832	

disease-associated	alleles,	we	performed	a	series	of	LVE	calculations	for	1833	

progressively	larger	sets	of	alleles,	at	each	step	including	alleles	by	order	of	1834	

decreasing	single-variant	significance.	We	performed	two	calculations	for	each	gene,	1835	

one	for	risk	alleles	and	one	for	protective	alleles,	taking	the	maximum	of	the	two	as	1836	

the	final	upper	bound	estimated	for	LVE	by	the	gene.	We	did	not	calculate	an	LVE	1837	

bound	under	a	model	whereby	alleles	within	the	gene	can	both	increase	and	1838	

decrease	risk	of	disease.	1839	

	1840	

Estimated	power	to	detect	gene-level	associations	with	T2D	drug	targets	1841	

To	estimate	the	power	of	future	studies	to	detect	gene-level	associations	in	genes	1842	

with	effect	sizes	similar	to	those	for	established	T2D	drug	targets,	we	used	1843	

aggregate	allele	frequencies	and	odds	ratios	estimated	from	our	gene-level	analysis	1844	

and	an	assumed	prevalence	of	K=0.08	to	calculate	a	proxy	for	true	population	1845	

frequencies	and	relative	risks.	In	each	case,	we	used	odds	ratios	and	frequencies	1846	

from	the	variant	mask	yielding	the	strongest	gene-level	association.	Because	on	1847	

average	these	drug	targets	had	5	effective	tests	per	mask,	we	used	an	exome-wide	1848	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/371450doi: bioRxiv preprint 

https://doi.org/10.1101/371450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 85	

significance	threshold	of	α=1.25×10-7	for	power	calculations.	We	calculated	power	1849	

as	previously	described92.	1850	

	1851	

Estimated	fraction	of	true	associations	1852	

We	sought	to	quantify	the	proportion	of	true	associations	(PPA)	for	nonsynonymous	1853	

variants	observed	in	our	dataset	as	a	function	of	association	strength	as	measured	1854	

by		single-variant	p-value.	We	define	a	true	association	as	a	variant	which,	when	1855	

studied	in	larger	sample	sizes,	will	eventually	achieve	statistical	significance	owing	1856	

to	a	true	OR≠1.	We	distinguish	true	association	from	causal	association:	causally	1857	

associated	variants	are	the	subset	of	truly	associated	variants	in	which	the	variant	1858	

itself	is	causal	for	the	increase	in	disease	risk,	as	opposed	to	being	truly	associated	1859	

due	to	LD	with	a	different	causally	associated	variant.	1860	

	1861	

To	estimate	PPA,	we	used	as	training	data	a	previous	exome	array	study	from	the	1862	

GoT2D	consortium	spanning	13	European	cohorts24.	As	two	of	the	13	cohorts	1863	

included	in	the	previous	study	contributed	samples	to	the	current	exome	sequence	1864	

analysis,	we	re-calculated	a	fixed-effects	inverse-variance	weighted	meta-analysis	1865	

for	every	variant	in	the	exome	array	study	after	excluding	all	samples	from	these	1866	

two	overlapping	cohorts.	This	yielded	a	collection	of	exome	array	association	1867	

statistics	for	206,373	variants,	with	a	maximum	sample	size	of	50,567	(maximum	1868	

effective	sample	size	41,967).	1869	

	1870	
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We	then	compared	variant	direction	of	effect	estimated	from	our	exome	sequence	1871	

analysis	of	45,231	individuals	to	those	estimated	from	the	independent	exome	array	1872	

analysis	of	41,967	individuals.	To	produce	an	uncorrelated	set	of	associations	tests	1873	

for	this	analysis,	we	pruned	all	collections	of	variants	using	the	LD-clump	procedure	1874	

(parameters	–clump-p1	0.1	–clump-p2	0.1	–clump-r2	0.01)	of	the	PLINK	software	1875	

package90,	which	required	variants	to	have	pairwise	r2<0.01.	We	performed	this	1876	

procedure	for	(a)	nonsynonymous	variants	within	94	previously	established	T2D	1877	

GWAS	loci	and	(b)	nonsynonymous	variants	exome-wide.	For	the	1,059	1878	

nonsynonymous	variants	within	established	T2D	GWAS	loci	achieving	p<0.05	in	the	1879	

exome	sequence	analysis,	the	directions	of	effect	were	concordant	(both	OR>1	or	1880	

both	OR<1)	with	the	exome	array	analysis	for	61.3%	of	variants.	This	fraction	1881	

decreased	(as	expected)	for	higher	p-value	thresholds	(e.g.	49.4%	at	p>0.5)	and	1882	

when	only	variants	outside	of	T2D	GWAS	loci	were	analyzed	(51.9%	at	p<0.05).	1883	

	1884	

To	estimate	the	fraction	of	true	associations	among	the	set	of	variants	achieving	1885	

significance	below	a	threshold	p	(e.g.	p<0.05),	we	modeled	the	set	of	variants	as	a	1886	

mixture	of	proportions	xp	of	truly	associated	variants	(OR≠1)	and	(1-xp)	of	truly	non-1887	

associated	variants	(OR=1).	We	assumed	non-associated	variants	have	a	50%	1888	

chance	of	a	concordant	direction	of	effect	between	the	two	analyses,	and	truly	1889	

associated	variants	have	a	greater	chance	according	to	their	estimated	effect	size.	1890	

Specifically,	assuming	that	the	observed	effect	size	for	a	variant	follows	a	normal	1891	

distribution	with	mean	equal	to	the	true	effect	and	variance	that	scales	inversely	1892	
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with	sample	size,	we	estimated	the	probability	pi	of	producing	a	concordant	effect	1893	

for	variant	vi	as	1894	

p! = Pr 𝑁 |β|,𝜎
𝑁!"
𝑁!"

> 0 	

where	|β|	is	the	absolute	value	of	the	estimated	(from	the	exome	sequence	analysis)	1895	

logarithm	of	the	odds	ratio,	𝜎	is	the	estimated	standard	error	of	the	logarithm	of	the	1896	

odds	ratio,	Nex	is	the	effective	sample	size	of	the	exome	sequence	analysis,	and	Nea	is	1897	

the	effective	sample	size	of	the	exome	array	analysis.		1898	

	1899	

The	expected	fraction	of	variants	exhibiting	concordant	direction	of	effect	is	then	1900	

𝑓! =
𝑝! 𝑥!

!!
!!!
𝑉!

+ 0.5 1− 𝑥! 	

where	Vp	is	the	number	of	variants	in	the	set.	Based	on	the	observed	fraction	𝑓!	of	1901	

variants	with	concordant	directions	of	effect,	we	thus	estimated	xp	by	1902	

 
𝑥! =

𝑓! 𝑉! − 0.5 𝑉!
𝑝! − 0.5 𝑉!!

!!!
	 (1)	

To	calculate	a	95%	confidence	interval	(CI)	for	xp,	we	first	estimated	a	95%	CI	for	fp	1903	

using	the	Jeffreys	interval	method113,	as	implemented	in	the	R	software	package	1904	

(https://www.r-project.org),	and	we	then	used	equation	(1)	to	convert	its	lower	1905	

and	upper	bounds	to	lower	and	upper	bounds	on	the	corresponding	confidence	1906	

interval	for	xp.	1907	

	1908	

Probability	of	causal	association	1909	
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The	estimated	values	for	xp	can	be	interpreted	as	estimates	of	the	posterior	1910	

probability	that	a	variant	with	p<0.05	in	our	analysis	is	truly	associated	with	T2D	1911	

rather	than	due	to	chance.	As	our	ultimate	goal	was	to	quantify	the	probability	of	1912	

causal	association,	rather	than	just	true	association,	we	modeled	the	probability	of	1913	

variant	association	as	a	function	of	(a)	the	probability	of	causal	association	(PPAc),	1914	

influenced	in	turn	by	the	likelihood	that	the	variant	results	in	gene	loss-of-function	1915	

as	well	as	the	likelihood	that	the	gene	is	relevant	to	T2D;	and	(b)	the	prior	1916	

probability	of	indirect	association	(PPAi),	influenced	in	turn	by	the	likelihood	that	1917	

the	variant	is	in	LD	with	a	nearby	but	different	variant	that	is	causally	associated	1918	

with	T2D.	Under	the	assumption	that	causal	and	indirect	associations	are	disjoint	1919	

events,	this	model	expresses	PPA	as	1920	

𝑃𝑃𝐴 = 𝑃𝑃𝐴! + 𝑃𝑃𝐴! 	

	1921	

Precisely	determining	which	coding	variant	associations	are	in	fact	causal	requires	1922	

fine	mapping	of	all	nearby	variants	in	large	sample	sizes6,	which	is	currently	1923	

infeasible	for	the	mostly	rare	variants	observed	in	our	study.	Since	we	could	not	1924	

accurately	calculate	specific	values	of	PPAc	and	PPAi	for	each	variant,	we	instead	1925	

used	estimates	of	the	average	the	proportion	of	associations	that	are	causal	(α),	1926	

where	𝛼	is	the	probability	of	causal	association	conditional	on	a	true	association,	1927	

rather	than	the	absolute	probability	of	causal	association.	We	considered	two	means	1928	

to	estimate	α.		1929	

	1930	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 31, 2018. ; https://doi.org/10.1101/371450doi: bioRxiv preprint 

https://doi.org/10.1101/371450
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 89	

First,	recent	analyses	have	attempted	to	assess	the	contribution	of	nonsynonymous	1931	

variants	to	T2D	or	similar	traits,	either	by	directly	estimating	the	proportion	of	1932	

associations	that	are	due	to	nonsynonymous	variants79	or	by	measuring	the	1933	

proportion	of	heritability	explained	by	nonsynonymous	variants78.	These	analyses	1934	

suggest	that	~10%	of	T2D	associations	are	likely	to	be	due	to	nonsynonymous	1935	

variants.	As	these	calculations	apply	to	all	associations	in	the	genome,	rather	than	1936	

those	in	which	at	least	one	nonsynonymous	variant	achieves	significance,	they	likely	1937	

underestimate	the	proportion	of	nonsynonymous	associations	that	are	causal.	1938	

	1939	

Second,	a	recent	exome	array	study	identified	40	exome-wide	significant	1940	

nonsynonymous	variant	associations	and	then	calculated	the	probability	of	causal	1941	

association	for	each	(via	credible	set	analysis)17.	The	reported	average	probability	of	1942	

causal	association	across	these	variants	of	49.2%	provides	a	direct	estimate	of	α.	1943	

This	estimate	is	likely	less	biased	than	that	based	on	genome-wide	analyses	of	all	1944	

T2D	associations,	but	it	is	based	on	a	small	number	of	associations	and	thus	has	a	1945	

high	variance.	1946	

	1947	

Based	on	these	considerations,	we	considered	values	of	10%,	30%,	and	50%	for	α.	1948	

and	used	30%	as	our	default	value	for	analyses	reported	in	the	main	manuscript.	1949	

For	any	value	of	xp,	representing	the	fraction	of	true	associations	at	a	given	p-value	1950	

threshold,	we	calculated	a	value	for	𝑥!! ,	representing	the	fraction	of	causal	1951	

associations	at	a	given	p-value	threshold,	as	𝑥!! = 𝛼𝑥!.	Under	this	model,	using	a	1952	
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different	value	for	α	(e.g.	50%	or	10%)	would	scale	PPAc	estimates	linearly	(e.g.	5/3	1953	

or	1/3	as	high).	1954	

	1955	

Incorporation	of	prior	likelihood	into	posterior	probability	estimations	1956	

Following	previous	work81,	the	posterior	probability	of	causal	association	𝑥!! 	can	be	1957	

expressed	as	a	combination	of	the	prior	odds	of	causal	association	for	the	variant,	π	1958	

(i.e.	the	belief,	prior	to	observing	any	genetic	association	data,	that	the	variant	is	1959	

causally	associated	with	T2D),	and	the	Bayes	factor	for	causal	association	of	the	1960	

variant	calculated	from	genetic	association	data,	BFc:	1961	

 𝑃𝑂! = 𝐵𝐹!
𝜋

1− 𝜋	 (2)	

where	POc	is	the	posterior	odds	of	causal	association	expressed	as	1962	

 𝑃𝑂! = 𝑃𝑃𝐴!/(1− 𝑃𝑃𝐴!)	 (3)	

We	use	a	“c”	subscript	in	POc	and	BFc	to	emphasize	that	they	are	posterior	odds	(and	1963	

Bayes	factors)	for	causal	association,	rather	than	just	true	association.	1964	

	1965	

Given	an	estimate	𝑥!! 	of	the	posterior	probability	of	causal	association	(i.e.	PPAc)	for	1966	

a	class	of	variants	(e.g.	those	satisfying	p<0.05),	as	well	as	a	prior	probability	of	1967	

causal	association	π	for	the	same	class	of	variants,	we	can	calculate	an	estimate	of	1968	

the	average	Bayes	factor	for	variants	in	the	class	as: 	1969	

 
𝐵𝐹!! =

𝑥!!

1− 𝑥!!
1− 𝜋
𝜋 	 (4)	

Here,	𝐵𝐹!! 	denotes	the	average	Bayes	factor	for	causal	association	(i.e.	the	ratio	of	1970	

the	likelihood	of	the	observed	data	under	the	model	of	causal	association	to	the	1971	
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likelihood	of	the	observed	data	under	the	model	of	no	association)	for	variants	with	1972	

p-value	below	a	given	p.	We	note	that	this	equation	indirectly	infers	an	average	1973	

Bayes	factor	from	a	direct	estimate	of	an	average	posterior	(xpc)	and	a	specified	1974	

prior	π,	which	is	different	from	how	Bayes	factors	are	usually	calculated.	1975	

	1976	

Under	the	assumption	that	the	relationship	between	a	variant’s	π	and	POc	is,	given	1977	

its	observed	p-value,	conditionally	independent	of	all	other	variant	properties	(i.e.	1978	

dependence	on	properties	such	as	sample	size	is	entirely	captured	by	the	observed	1979	

p-value),	we	calibrated	the	relationship	between	p-value	and	BFpc	using	1980	

nonsynonymous	variants	within	GWAS	loci.	We	modeled	π	for	such	variants	1981	

assuming	(a)	on	average	1.1	genes	within	250kb	of	each	GWAS	signal	harbors	1982	

coding	variants	associated	with	T2D;	(b)	missense	variants	are	a	mixture	of	fully	1983	

benign	and	fully	protein-inactivating	variants12;	(c)	only	inactivating	missense	1984	

variants;	and	(d)	one-third	of	missense	variants	are	inactivating	(as	estimated	by	1985	

the	average	weight	of	missense	variants	in	our	masks).	Based	on	the	595	genes	1986	

within	the	94	T2D	GWAS	loci	in	our	analysis,	this	yielded	a	prior	estimate	of	1987	

0.057 = 1.1× 94 595  × 0.33.	1988	

	1989	

The	gene	prior	was	inspired	by	the	often	implicit	expectation	that	a	GWAS	signal	1990	

usually	represents	a	single	causal	variant114	affecting	a	single	gene	(although	1991	

multiple	effector	genes	may	be	more	common	than	previously	thought3).	To	assess	1992	

the	sensitivity	of	our	results	to	the	assumption	of	1.1	disease-relevant	genes	per	1993	
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T2D	GWAS	locus,	we	repeated	all	calculations	with	the	additional	choices	of	0.5	and	1994	

2	genes	per	GWAS	locus	(Supplementary	Figure	21ab).	1995	

	1996	

	We	calculated	the	variant	prior	based	on	the	mean	weight	of	variants	in	our	dataset	1997	

as	computed	for	the	“weighted”	gene-level	test,	as	these	weights	were	designed	to	1998	

directly	estimate	the	probability	that	variants	in	a	mask	cause	full	loss	of	function.	1999	

This	calculation	produced	a	prior	estimate	of	34.2%	for	nonsynonymous	variants	in	2000	

our	dataset,	not	far	from	a	previously	reported	value	of	25%12.	We	thus	used	a	value	2001	

of	33%	for	the	variant	prior	in	our	main	analysis,	with	values	of	40%	and	25%	used	2002	

for	comparison	(Supplementary	Figure	21cd).	2003	

	2004	

Through	the	prior	probability	of	causal	association	for	nonsynonymous	variants	in	2005	

T2D	GWAS	loci	of	0.057,	and	equations	(1)-(4)	above,	we	produced	a	lookup	table	2006	

mapping	variant	p-values	to	Bayes	factors	of	causal	association	(BFc).	For	any	2007	

subsequent	variant	v	with	observed	p-value	p(v)	and	a	user-specified	prior	on	the	2008	

relevance	of	its	gene	to	T2D,	we	then	calculated	its	posterior	likelihood	of	2009	

association	by	mapping	p(v)	to	BFc	and	then	employing	equations	(2)	and	(3)	to	2010	

calculate	an	estimated	posterior	probability	of	causal	association	(PPAc).	Although	2011	

not	presented	here,	lower	and	upper	confidence	intervals	on	PPAc	can	also	be	2012	

estimated	by	repeating	this	procedure	using	the	lower	and	upper	confidence	2013	

intervals	for	xpc	in	equation	(4).	2014	

	2015	

Sensitivity	of	PPAc	to	modeling	parameters	2016	
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The	above	calculations	rely	on	two	parameters,	the	specific	values	of	which	will	2017	

affect	final	PPAc	estimates.	First,	they	require	a	parameter	for	the	proportion	of	true	2018	

nonsynonymous	associations	that	are	causal.	As	described	above	and	in	the	text,	we	2019	

used	a	value	–	of	30%	–	in	between	a	published	estimate	of	the	proportion	of	2020	

nonsynonymous	associations	within	GWAS	loci	that	are	causal	(49.2%)	and	a	2021	

published	estimate	of	the	proportion	of	causal	associations	that	are	nonsynonymous	2022	

(~10%).	Using	a	different	value	(e.g.	50%	or	10%)	would	scale	the	PPAc	estimates	2023	

linearly	(e.g.	5/3	or	1/3	as	high).	2024	

	2025	

In	addition,	calculations	involving	a	user-specified	prior	require	a	parameter	for	the	2026	

proportion	of	nonsynonymous	variants	in	GWAS	loci	that	causally	influence	T2D	2027	

risk	(prior	to	any	observed	associations).	This	parameter	does	not	affect	PPAc	2028	

estimates	genome-wide	or	within	GWAS	loci,	as	we	directly	estimate	PPAc	estimates	2029	

for	these	genes	from	our	data	and	therefore	do	not	require	a	user-specified	prior.	2030	

Although	we	decompose	this	parameter	into	two	–	a	parameter	for	the	proportion	of	2031	

genes	within	T2D	GWAS	loci	that	are	relevant	to	disease	and	a	parameter	for	the	2032	

proportion	of	missense	variants	within	a	gene	that	result	in	loss	of	function	–	only	2033	

the	product	of	the	two	parameters	is	used	in	the	model.	Supplementary	Figure	21	2034	

shows	the	impact	of	different	values	for	these	two	parameters.2035	
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