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Abstract 

Introduction: The prostate exhibits a unique metabolism that changes during initial 

neoplasia to aggressive prostate cancer (PCa) and metastasis. The study of PCa 

metabolism thus represents a new avenue for diagnostics, particularly early diagnosis of 

aggressive PCa cases.  

Results: Here, using transcriptomics data from The Cancer Genome Atlas (498 PCa 

patients), we identified six metabolic subgroups (C1-C6) of PCa that showed distinct 

disease-free survival outcomes (p<0.0001). In particular, we identified at least two PCa 

subgroups (C5 and C3) that exhibited significant poor prognosis (~70% and 30-40% 

relapse by the first 72 months; hazards ratios 9.4 and 4.4, respectively, relative to the best 

prognosis cluster C4 that showed <20% relapse even by 120 months). The subgroups 

were reproducible in an independent dataset from Taylors et al. 2010 (215 patients; 

p=0.00088). The subgroups displayed distinct metabolic profiles vis-à-vis normal tissues; 

measured as ‘deregulation’  of metabolic pathways (using Pathifier, Drier & Domany, 

2013). In particular, the poor-prognosis subgroups C5 and C3 showed considerable 

deregulation for pathways involved in synthesis and catabolism of complex forms of lipids 

and carbohydrates, amino acids, and TCA cycle, and these were exhibited in parallel or in 

the face of glycolysis, a common form of energy production in cancer cells. Furthermore, 

the subgroups were significantly over-enriched for different sets of genetic alterations 

[particularly, deletions/mutations in BRCA1 and TP53 (C5), RB1 and STK11(C3); and AR 

amplifications (C1); p≤8.6E-04], suggesting that distinct alterations may be underpinning 

the subgroups and ‘pushing’ the subgroups towards their unique metabolic profiles. Finally, 

applying the classifier to blood expression profiles from 42 active surveillance (AS) and 65 

advanced castrate resistant PCa (ACRPC) patients determined based on prostate-specific 

antigen (PSA) levels (Olmos et al., 2012) assigned 70.77% ACPRC, and interestingly 

reassigned 59.52% AS patients to at least one of the poor prognosis subgroups (C5, C3) 

with 35.71% to the poor and metabolically deregulated subgroup C3. 

Conclusion: The identification of PCa subgroups displaying distinct clinical outcomes 

solely from metabolic expression profiles of PCa tumours reiterates the significant link 
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between deregulated metabolism and PCa outcomes (Eidelman et al., 2017). On the other 

hand, the time to biochemical relapse (rise in PSA levels) was not indicative of the early 

relapse seen for the metabolically deregulated subgroups C3 and C5 (these show 

considerably late BCR compared to C4). Our study thus highlights specific processes 

(elevated lipid and carbohydrate metabolism pathways) that could be better indicators than 

PSA for early diagnosis of aggressive PCa. 

 

 

Introduction 

Prostate cancer (PCa) is the second most common type of cancer among males in 

Western countries [1], with an estimated ~165,000 new cases and ~29,500 cancer deaths 

in 2018 alone [2]. Fortunately, 80% of patients with an early diagnosis have a good 

prognosis and radical prostatectomy is still the most adopted approach with a high rate of 

success. However, prognosis becomes worse if the disease develops late or is diagnosed 

late and becomes metastatic. 

 

A widely used prostate marker is the prostate-specific antigen (PSA) measured from the 

blood which is shown to be elevated in many men with prostatic disease [3]. PSA testing is 

still used as an early screening method to determine likelihood and aggressive phenotype 

of prostate cancer. Recently, this method has undergone some scrutiny as it may lead to 

overtreatment in patients who may have been treated sufficiently with active surveillance 

[4,5]. Other studies have suggested that PSA may be a poor indicator of, and perhaps 

inversely related to, aggressive disease in obese men [6]. Improved tools for better risk 

stratification of prostate cancer patients are thus needed. 

 

The prostate exhibits a unique metabolism that changes during initial neoplasia to 

aggressive PCa and metastasis [4]. The study of metabolism of PCa thus represents a 

new avenue for diagnostics, particularly early diagnosis of aggressive PCa cases [7]. By 

better understanding the metabolism of prostate cancer, it may be possible to elucidate 

metabolic biomarkers whose levels may help to diagnose aggressive prostate cancers.  

 

Here, we sought to understand the metabolic profiles of PCa tumours that show different 

relapse outcomes. Due to lack of well-defined metabolic PCa subtypes (except perhaps 
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those driven by androgen receptor signalling), we first stratified ~500 PCa patients from 

The Cancer Genome Atlas (TCGA) [8] into six metabolic subgroups that were clinically 

distinct (C1-C6, that display distinct disease-free survival outcomes) and reproducible in 

an independent dataset from Taylors et al. (215 patients) [9].  We next computed  

‘deregulation’ for 20 metabolic pathways for the six subgroups using the Pathifier tool 

[11]. The poor prognosis subgroups displayed considerably evelated synthesis and 

catabolism of complex forms of lipids (sphingolipids and glycosphingolipids) and 

carbohydrates (glycosaminoglycans) in parallel to or in the face of glucose and galactose 

metabolism that are thought to be commons form of energy production in cancer cells [22, 

23]. Furthermore, we found that the PCa metabolic subtypes were enriched for genetic 

alterations in distinct sets of genes (including ATM, BRCA1, PTEN, AR, STK11, and ERG-

TMPRSS2), suggesting that distinct alterations may be underpinning the different subtypes 

and ‘pushing’ the subtypes towards their unique metabolic profiles.  

 

The identification of PCa subgroups displaying different disease-free survival outcomes 

solely by clustering metabolic expression profiles of prostate tumours reiterates the 

significant link between deregulated metabolism and PCa outcomes [4,7]. In particular, we 

find the poor-prognosis PCa subgroups are characterized by markedly deregulated lipid 

and carbohydrate pathways. On the other hand, the the time to biochemical relapse (BCR, 

rise in PSA levels) is not indicative of the poor prognosis (C3 and C5 show considerably 

late BCR compared to the best prognosis subgroups C1 and C4). Therefore, our study 

highlights specific processes (elevated lipid and carbohydrate metabolism pathways) that 

could be better indicators than PSA for early diagnosis of aggressive PCa. 
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Datasets and Methods 

Molecular and clinical data of PCa patients 

RNAseq expression, DNA mutation and copy-number data of genes along with clinical 

profiles of patients were downloaded for 499 PCa primary solid tumour samples and 52 

normal tissue samples from TCGA (498 patients) [8] via the Broad GDAC Firehose 

(https://gdac.broadinstitute.org/) [12]. RNAseq data was used for clustering patients and 

the patient clusters were subsequently assessed for differences in disease-free survival 

and for enrichment of known genetic alterations (mutations and copy number changes of 

genes).  The clinical profiles include data on age at diagnosis, PSA levels, time to disease 

relapse, and time to biochemical relapse (BCR). Note here that the normal tissue samples 

are also biopsied from PCa patients. Independent validation was performed by predicting 

clusters on a dataset from Taylors et al. (2010) which contained RNAseq, DNA copy 

number and clinical profiles from 216 PCa samples (215 patients).  

 

List of genes in pathways 

In all, 20 pathways were assessed (Table S1). These pathways were assembled from the 

curated lists by Peng et al. (2018) [13], Fabregat et al. (2016) [14], our previous 

comprehensive curation of pathways [17], and from KEGG [15] via the InnateDB platform 

(http://www.innatedb.com/) [16].  

 

Metabolism pathways I – Clustering of PCa patients and initial analysis of pathways was 

performed using genes from amino acid metabolism (348), carbohydrate metabolism 

(286), lipid metabolism (766), tricarboxylic acid cycle (TCA cycle, 148), and vitamin & 

cofactor metabolism (168) pathways, the five main pathways listed in Peng et al.[13]. 

 

Metabolism pathways II – Subsequent breakdown of the analysis from above pathways 

were performed using: 
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(I) Carbohydrate metabolism: glycolysis (67), galactose metabolism (31), pentose 

phosphate metabolism (28), glycosaminoglycan synthesis (21), and glycosaminoglycan 

degradation (19); and 

(ii) Lipid metabolism: sphingolipid metabolism (47), fatty acid elongation (23), fatty acid 

degradation (44), and unsaturated fatty acid biosynthesis (21). 

 

Metabolic pathways III – Mitochondrial subunits of ribosome (133), oxidative 

phosphorylation (OXPHOS, 137), AMPK/LKB1 (14), and HIF1-a (16).  

 

DNA-damage response (DDR) pathways – Homologous recombination (HR, 82), non-

homologous end-joining (NHEJ, 15), and mismatch repair (21). 

 

Identification of patient clusters from metabolic profiles 

Z-score normalized RNASeq expression levels for genes in metabolic pathways I (above) 

were used to identify patient subgroups. Only genes that were over- or under-expressed 

(>=2 or <=-2 for z-score values; similar to the normalization and thresholding used by 

Cbioportal [18]) in at least 10% samples (giving 124 genes) were used for clustering the 

samples. Hierarchical clustering (using hclust and pheatmap package in R) to generate 

sample subgroups/clusters of sizes k=2 to 10 were tried, and the clustering that gave the 

most significant separation (logrank test p-value) in terms of disease-free survival for the 

clusters was retained; we call these clusters C = {C1,…,Ck}. 

 

Plotting disease-free/recurrent-free survival curves 

Survival curves for recurrence/relapse of disease (time as months) were plotted using the 

survminer package in R using recurrence/relapse as the endpoint and by censoring out 

patients who were disease-free. Hazard ratios for the association between disease-free 

survival and the clusters were computed based on a Cox proportional hazards regression 

model using the survminer package in R. 

 

Prediction model for patient clusters 

We trained a multinomial (multi-class) logistic regression classifier in R to learn the cluster 

labels from the TCGA dataset and applied it to predict cluster labels for patients from an 

independent dataset from Taylors et al., 2010. The features (genes with RNAseq 

expression values) for the classifier were selected as follows. 
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For each cluster Ci in  C = {C1,…,Ck}, we first trained a binomial logistic regression 

classifier on the TCGA dataset to classify Ci  from the remaining clusters C – {Ci} and 

validated the classifier using five-fold (80%-20%) cross-validation. The classifiers had to 

achieve a minimum AUC of 0.70. We used the genes Fi that were identified by the 

classifier as sigificantly associated (p≤0.01) with the probability of the patients to be in 

class Ci. Our final list of genes (features) F was the union F = U1
k  Fi .  A multinomial 

classifier was then trained on 80% TCGA data using features F and was validated on the 

remaining 20% using five-fold cross-validation. Subsequently, the classifier was trained on 

100% TCGA data and applied on the Taylors et al. dataset. Disease-free survival curves 

were computed for the predicted clusters to assess the reproducibility of clinical 

differences between the clusters. 

Assessing deregulation of pathways in individual patients using Pathifier [11] 

‘Deregulation’ or ‘activity’ of pathways in individual tumour samples relative to normal 

tissue samples was computed using the Pathifier tool, available as a R package 

(https://bioconductor.org/packages/release/bioc/html/pathifier.html) [11]. Given the 

expression levels of a group of genes (e.g. in a pathway), Pathifier computes a 

‘deregulation score’ for the pathway in each tumour sample relative to a collection of 

normal samples. Pathifier computes this score by determining the principal components 

(PCs) along which the expression levels of the pathway genes vary the most and then 

plots each sample in this PC space (resulting in a ‘sample cloud’ in the PC space). 

Pathifier then fits a principal curve [19] that optimally passes through this sample cloud 

and so the normals (being the baseline) tend to appear at the beginning of the curve 

whereas the most deregulated samples appear farther along the curve. The deregulation 

score of the pathway for a sample is then determined by the distance of the sample from 

the normals along this curve. Pathifier thus provides a single score for each pathway in 

each sample, which we then use to measure the extent of deregulation (increased or 

decreased ‘activity’) of the 20 pathways in tumour clusters relative to normals. 

 

 

Enrichment for genetic alterations in patient clusters 

We estimate whether a patient cluster C is significantly enriched for alterations observed 

for a gene g (mutation, amplification and deletion at DNA copy number level, and over- 

and under-expression at mRNA and protein levels) using a hypergeometric test, as 

follows: 
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If X is a random variable that follows the hypergeometric distribution and measures the 

number of successes (alterations in gene g) in cluster C, then the enrichment p-value for 

g’s alterations in C is: 

 

P (X=k)  = Σ0≤k≤|C| (|C| choose k) ((N-|C|) choose (n-k)) / (N choose n), 

 

where  

k = number of alterations for g in C, 

n = number of alterations for g in the entire population, and 

N = the population size (498 patients). 

We consider P≤0.05 as statistically significant enrichment for g’s alterations in C. 

 

 

Results 

Six ‘metabolic clusters’ of PCa with distinct disease-free survival outcomes 

Hierarchical clustering of 498 TCGA PCa patients based on expression profiles of genes 

from metabolic pathways-I that are altered (over- or under-expressed) in at least 10% 

patients (124 genes; Figure S1 & Table S2) resulted in six patient clusters:  C1-C6 (C1: 

115 samples, C2: 49, C3: 125, C4: 26, C5: 107, C6: 75) (Tables 1 and S2). The six 

clusters showed significantly different disease-free survival outcomes (logrank test 

p<0.0001) with clusters C5, C6, C3 (in that order) displaying the quickest time to relapse 

(Figure 1a). In particular, we identified a considerably poor-prognosis cluster C5 that 

showed recurrence  for ~70% patients by 72 months (6 years). 30-40% patients in C6 and 

C3 showed relapse by ~72 months. Cluster C4 showed the slowest time to relapse – 

<20% relapse even by 120 months. Cox-proportional hazard ratios were significantly high 

for clusters C5, C6, and C3, relative to normal – C5 (HR=22, p=0.002), C6 (HR=14.4, 

p=0.009), and C3 (HR=10, p=0.024).   

 

Six individual classifiers were trained to classify each cluster Ci  \in {C1,..,C6} from the 

remaining five clusters to select genes (features) F for the combined (multiclass) classifier 

(see Methods). The individual classifiers achieved an AUC 0.853 on average, and 14 

genes were selected into the multinomial (multi-class) classifier (Table S2). Five-fold 

cross-validation of the multinomial classifier trained on 80% TCGA data and tested on the 

remaining 20% data gave a max accuracy of 0.71 and average accuracy of 0.63. The 

classifier was then retrained using 100% TCGA data and applied on the independent 
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Taylors et al. dataset to predict cluster labels C1-C6 (C1: 20, C2: 18, C3: 18, C4:9, C5: 39, 

C6: 36; total classified patients: 140). The predicted clusters showed distinct disease-free 

survival (p=0.00088) (Figure 1b) with C5 showing the quickest to relapse (>50% relapse 

by 72 months). Overall, the survival patterns of the clusters matched that observed for 

TCGA with C5 and C3 being the two worse survival clusters. 

 

PCa clusters display distinct metabolic profiles 

We next computed the extent of deregulation of metabolic pathways-I in tumour clusters 

C1-C6 relative to normal tissues, using Pathifier (see Methods). Overall, carbohydrate and 

lipid metabolism pathways showed the most deregulation (elevated ‘activity’) in tumour 

samples relative to normals (Figure 2a), indicating increased energy requirement satisfied 

through increased metabolism of carbohydrates and lipids in the tumours. The elevated 

deregulation of the other three pathways, in particular, amino acid metabolism and TCA 

cycle (Kreb’s cycle; involves metabolism of acetyl-CoA derived from carbohydrates, fats 

and proteins to release energy, and provides important precurses for amino acid 

synthesis) in the tumour clusters suggests elevated synthesis and catabolism of amino 

acids, proteins, and nucleic acids via these pathways that is required for tumour cell 

growth and proliferation [24,25]. Note that all plots reported here have an overall ANOVA 

p-value ≤0.05 for differences between the cluster means. 

 

While overall the tumour clusters showed elevated metabolism relative to normal, there  

was considerable heterogeneity among the tumour clusters, with the poor prognosis 

clusters C5, C3 and C6 showing the most deregulation for all pathways (Figure 2b). C2 

and C6 showed the most ‘spread’ indicating heterogeneity even within these clusters. C3 

stood out the most from the other clusters and showed a distinctly increased deregulation 

for the pathways, interestingly even for amino acid, TCA cycle and vitamin cofactor 

pathways, possibly suggesting a distinct metabolic profile for this cluster.  

 

To further understand the high deregulation of carbohydrate and lipid metabolism 

pathways, we broke down the above analysis using metabolic pathways-II for the six 

tumour clusters (see Methods). Interestingly, among the carbohydrate metabolism 

pathways, we found the most deregulation for glycosaminoglycan synthesis and 

glycosaminoglycan degradation followed by pentose-phosphate metabolism (Figure 3b; 

larger versions available from Supplementary) whereas glycolysis (metabolism of glucose 

into pyruvate and energy) and galactose metabolism, which are thought to be more 
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common forms of energy production [22,23], were relatively less deregulated in the tumour 

clusters (Figure 3a).  Glycosaminoglycans are heteropolysaccharides and are among the 

key macromolecules that affect cell properties and functions, acting directly on cell 

receptors or via interactions with growth factors (see review [26]). Again, C3 and C5 and to 

an extent C2 and C6 showed the most deregulation for these pathways. 

 

Among the lipid metabolism pathways, the tumour clusters displayed elevated 

deregulation for sphingolipid and glycosphingolipid metabolism, with C5 and C3 showing 

the most deregulation for these pathways (Figure 3c; larger versions available from 

Supplementary). Sphingolipids are long-chain lipids and play important roles in signal 

transmission and cell recognition. Glycosphingolipids consist of sphingolipids with an 

attached carbohydrate. Sphingolipids and glycosphingolipids are believed to form 

mechanically stable and chemically resistant outer leaflet of the plasma membrane lipid 

bilayer [27] and have been thought to help cancer cells prevent drug intake through the 

membranes and thus become drug resistant [28]. Clusters C1, C4 and C5 showed 

elevated deregulation but C3 showed a relatively low deregulation for unsaturated fatty 

acid biosynthesis and fatty acid elongation; however, C3 (followed by C4 and C5) showed 

the most deregulation for fatty acid degradation, again highlighting the distinct metabolic 

expression profile for C3. Roles of fatty acid synthesis and elongation and fatty acid 

degradation in PCa has been noted in several studies (see reviews, [29] and [31]) which 

suggest increased expression of these mechanisms for membrane synthesis, storage and 

secretion, and to supply for the high energy needs in PCa relative to normal prostate 

tissues [30,31]. Finally, C3 and C5 showed the most deregulation for the pentose 

phosphatase pathway. This is a parallel metabolic pathway to glycolysis and it involves 

generation of pentoses and NADPH that is required for fatty acid synthesis [21]. 

 

We speculated that the increased deregulation of metabolism of the above reported 

complex forms of carbohydrates (glycosaminoglycans) and lipids (sphingolipids and 

glycosphingolipids), together with amino acid metabolism and TCA cycle would show up 

as increased deregulation of mitochondrial pathways. Accordingly, we found increased 

deregulation of mitochondrial subunits and the oxidative phosphorylation (OXPHOS) 

pathway (Figure 3d). OXPHOS constitutes a highly efficient mechanism of energy 

production in the mitochondria, and several recent studies indicate specific OXPHOS 

subtypes of cancers with elevated OXPHOS for energy production (shifting away or in 

addition to glycolysis) [35,36].  
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Collectively, the above results indicate that the tumour clusters: (i) are considerably 

heterogenous in their metabolic profiles (i.e., in their deregulation of metabolic pathways); 

(ii) depend on a combination of carbohydrate, lipid and protein/amino acid metabolism to 

meet their energy and cell-material synthesis needs;  and (iii) based on the elevated 

deregulation for glycosaminoglycan, sphingolipid, glycosphingolipid metabolism and fatty 

acid degradation (compared to glycolysis), particularly for the poorer prognosis clusters 

C3, C5 and C6, the tumour clusters depend on synthesis and catabolism of more complex 

forms of carbohydrates and lipids through specific pathways in the mitochondria, and this 

can occur parallely or in the face of glycolysis for their energy production.  

 

To understand the above differences in metabolic deregulation between the clusters in 

relation to cancer-cell survival, proliferation, and growth, we computed deregulation of two 

master regulator pathways that link cell metabolism to these processes namely, the 

AMPK/LKB1 and HIF1-a pathways [32,33,34]. The AMPK/LKB1 pathway includes LKB1, a 

master kinase that functions as a tumour suppressor and activates AMPK, a central 

metabolic sensor. AMPK regulates lipid and glucose metabolism in several metabolic 

tissues including the prostate [32]. The HIF1-a is a response pathway for hypoxia (low O2) 

and is a crucial survival pathway that enables adaptation to hypoxic conditions found 

especially in harsh tumour microenvironments ([33,34]). We observed significant 

deregulation of the two pathways across the different patient clusters (Figure 4a&b). For 

the AMPK/LKB1 pathway (Figure 4a), clusters C1 and C4 showed the most deregulation 

(higher activity), but interestingly C3, even though showed high deregulation but was in the 

opposite direction, that is, even lower activity than that of normal tissues. For the HIF-a 

pathway (Figure 4b), on the other hand, C3 and C5 showed the highest deregulation. We 

therefore speculate that the deregulation in metabolism for the poor prognosis clusters 

could be regulated or driven by lowered activity of the AMPK/LKB1 (in C3) and increased 

activity of the HIF-a pathway (in C3 and C5). 

 

The above observations have been summarized in Figure 4c, where we show the mean 

deregulations for the above pathways for each patient cluster C1-C6. 

 

Enrichment for genetic alterations in the PCa clusters 

Next, we sought to investigate whether any genetic changes in the form of DNA mutations, 

copy-number and mRNA-expression changes for known marker genes for PCa were 
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enriched within the six PCa clusters. We assessed the status of 15 known predisposition 

genes or genes frequently altered in PCa namely, AR (androgen receptor), ATM, BRCA1, 

BRCA2, CDK12, MLH1, MSH2, MSH3, MSH6 (DNA double-strand break repair and/or 

mismatch repair), RB1 (cell cycle), TP53 (apoptosis response to DNA-damage and cell 

cycle regulation), SPOP, STK11 (LKB1, metabolism) and ERG-TMPRS22 (co-deletions). 

Table 2 (and Figure S2) shows the enrichment for genetic alterations in these genes in 

the PCa clusters (see Methods). The table shows the clusters were enriched for alterations 

in different sets of genes, thus suggesting different genetic underpinnings for the clusters. 

For example, C3 was significantly enriched for alterations in STK11/LKB1 (p=1.31E-05), 

suggesting that the deregulation of the AMPK/LKB1 pathway in C3 that we observed 

previously (Figure 4a) could be driven by STK11/LKB1 alterations. Cluster C5, on the 

other hand, showed significant enrichment for defects in TP53 (p=4.37E-07), BRCA1 

(p=8.6E-04), and MSH2 (p=3.2E-03), indicating that C5 could be underpinned by defects 

in the DNA-damage response (DDR). To confirm this observation, we computed the 

deregulation of DDR pathways using Pathifier (Figure S3), and indeed found the 

homologous recombination (HR) pathway to be substantially deregulated in C5 (C5 albeit 

also showed considerable heterogeneity for HR deregulation). Finally, cluster C1 showed 

significant (p=9.04E-05) enrichment for AR alterations (amplifications), indicating that C1 

tumours could be primarily AR driven, whereas C4 appeared to be driven by ERG-

TMPRSS2 deletions and fusions (p<0.04). In addition to these primary (highly significant) 

alterations, the clusters also showed moderate (but still significant, p≤0.05) enrichments 

for ATM (C1), PTEN (C1 and C5), RB1 (C3), SPOP (C3), and MSH2 (C5), thus suggesting 

that a combination of genetic alterations could be underpinning the phenotypes of the 

individual clusters. The enrichment for the above genetic alterations in patient clusters that 

were originally defined based solely on the expression of metabolic genes suggests that 

these genetic alterations, particularly in DDR genes, could be ‘pushing’ tumours towards 

adopting their specific ‘metabolic profiles’. 

 

 

Discussion 

Here, we identified six clinically different (distinct disease-free survival) clusters of PCa 

patients based on clustering expression profiles of metabolic genes from TCGA  prostate 

tissues (Figure 1a). The clusters were reproduced in an independent Taylors et al. tissue 

dataset (Figure 1c). We were next interested if any of the encoded proteins of these 

genes are also detectable from the blood and whether the blood expression profiles of 
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those proteins are reflective of poor-prognosis PCa clusters. To test this possibility, we 

downloaded mRNA expression (microarray) data from the study by Olmos et al. (2012) 

[37] that measured expression profiles from whole blood samples from 42 good prognosis 

(selected for active surveillance; AS) and 65 advanced castrate resistant PCa (ACRPC) 

patients. We used our TCGA tissue-trained classifier (as before) to predict clusters (C1-

C6) for Olmos et al. patients by plugging in the blood expression data of the corresponding 

proteins. Table 3 shows the proportions (%) of AS and ACRPC patients labelled as C1-C6. 

Based on our TCGA tissue clustering (Figure 1a) if we consider clusters C1 and C4 as 

‘good or better prognosis’ clusters and clusters C3 and C5 as ‘poor prognosis’ clusters, 

then we observe that 70.77% of ACPRC patients were categorized as ‘poor’ by the 

classifier, with most patients assigned to C3 (57%). However interestingly, 59.52% of AS 

patients were also (re)assigned to the poor clusters, with most to C3 again (35.71%). 

While these results are affected by differences between tissue and blood-based 

measurements –  the blood circulates all throughout the body it is not representative of the 

prostate alone but is rather a ‘snapshot’ of the entire body – the results suggest that 

through a finer classification (six groups as against only AS vs ACPRC) based on 

metabolic profiling, we can better classify ‘grey-area patients’ and potentially reassign 

35.71% AS patients to the poor-prognosis cluster C3.  These results could mean that 

based on blood expression profiles, it may be hard to identify patients who ‘seem line’ AS 

but in fact show prognosis that of C3 – in other words, the C3 cluster of patients could 

have ‘distorted’ blood profiles because of which we may wrongly assign them to AS. While 

this is only our speculation, it is supported by the observation that even in the TCGA 

dataset, the time to biochemical relapse (BCR) as measured by rise in PSA levels 

measured from the blood does not correlate with actual time to relapse for the six clusters 

(Figure 5) – the poorest prognosis clusters C3 and C5 in fact show considerably late BCR 

compared to even the best prognosis clusters C1 and C4. We think that the ‘distorted’ PSA 

levels for C3 and C5 could be a result of deregulated metabolism, as recently been 

observed for obese men [6]. 

 

Conclusions 

The prostate is a metabolically active tissue. In this study, we identified six patient clusters 

of prostate cancer from TCGA and Taylors et al. datasets and these clusters showed 

distinct metabolic profiles and also distinct disease-free survival outcomes. We noted that 

the clusters were enriched for alterations in known PCa marker genes, indicating that that 

the alterations in these genes could be underpinning the PCa clusters and ‘pushing’ the 
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clusters towards unique metabolic profiles. The metabolic link to PCa risk and 

aggressiveness is significant and has been investigated in several past [38,39] and recent 

[23, 31, 40] works, and some of these studies have identified obesity, high cholesterol, and 

visceral fat deposits around the prostate (peri-prostatic adipose tissue layer, PPAT layer) 

[42,43] as risk factors for PCa onset and aggressive progression. Towards this end, we are 

developing deep-learning models to analyse radiology (MRI and CT) scans from PCa 

patients to delineate the PPAT layer and build risk models for prediction of PCa 

aggressiveness. We foresee that accurate PPAT-layer delineation together with blood-

based markers will lead us to a minimally invasive (radiology scans + blood test) approach 

for prediction of aggressive PCa. 
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Tables 

 

Table 1: Clinical parameters for the six metabolic clusters (C1-C6) identified by clustering 

TCGA PCa data (498 patients) using 124 most altered metabolic genes (see Methods). 

The six clusters showed significantly different disease-free survival (Figure 1a), with a 
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markedly poor-prognosis cluster C5 displaying relapse for >75% patients by 80 months. 

This cluster showed a markedly high PSA and high Gleason score. 

 

 

Table 2: Enrichment (p-values) for genetic alterations in selected genes among patients in 

the six (C1-C6) TCGA clusters. Significant (p≤ 0.05) enrichments are in bold. We note that 

different clusters are enriched for alterations in different sets of genes – e.g. C1 for AR 

(p=9.04E-05), C3 for STK11 (p=1.31E-05) and RB1 (p=1.9E-04), and C5 for TP53 

(p=4.37E-07) and BRCA1 (p=8.67E-04). 

 

Table 3: Proportions (%) of active surveillance (AS) and advanced castrate-resistant 

prostate cancer (ACRPC) patients profiled in the study by Olmos et al. (blood expression) 

predicted for being in good (C1, C4) and poor (C3, C5) clusters. 70.77% of ACPRC 

patients were categorized as poor by the classifier, and interestingly 59.52% AS patients 

were reclassified as poor, with 35.71% assigned to C3. 

 

 

Figures 

Figure 1: Six clinically distinct clusters of PCa. (a) Disease-free survival outcomes for 

the six PCa clusters identified from 498 PCa patients from TCGA dataset (logrank-test 

p<0.0001),  and (b) clusters reproduced by training a multi-class classifier and applying to 

an independent dataset (215 patients) from Taylors et al. (2010) (p=0.00088). Clusters C5 

and C3 showed consistently poor prognosis in both the datasets. 

 

Figure 2: Deregulation of metabolic pathways-I. (a) The six patient clusters showed 

significantly elevated (p≤0.05) deregulation for all the five pathways from metabolic 

pathways-I relative to normal tissues, and in particular, for lipid and carbohydrate 

metabolism pathways. (b) The clusters displayed considerable heterogeneity among 

themselves, with the poor prognosis clusters C5 and C3 displaying the most deregulation 

for all the pathways. 

 

 

Figure 3: Deregulation of metabolic pathways-II. (a) Comparatively lower deregulation 

were observed for glucose (glycolysis) and galactose metabolism pathways. (b) On the 

other hand, al the clusters and particularly the poor-prognosis ones showed significantly 
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elevated deregulation for sphingolipid and fatty-acid elongation and metabolism. (c) 

Similarly, the clusters also showed elevated deregulation for glycosaminoglycan, 

glycosphingolipid and pentose-phosphate metabolism. (d) Deregulation of these pathways 

was reflected as high activity of mitochondrial genes and the oxidative phosphorylation 

pathway.  

 

Figure 4: Deregulation of master regulators of metabolism. (a) AMPK/LKB1 pathway 

and (b) HIF1-a pathway. (c) A summary (showing average deregulation) of the pathways 

in the six clusters. 
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