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Abstract
Background: To understand how a metazoan cell makes the decision to differentiate, we as-
sessed the role of stochastic gene expression (SGE) during the erythroid differentiation process.
Our hypothesis is that stochastic gene expression has a role in single-cell decision-making. In
agreement with this hypothesis, we and others recently showed that SGE significantly increased
during differentiation. However, evidence for the causative role of SGE is still lacking. Such
demonstration would require being able to experimentally manipulate SGE levels and analyze
the resulting impact of these variations on cell differentiation.
Result: We identified three drugs that modulate SGE in primary erythroid progenitor cells.
Artemisinin and Indomethacin simultaneously decreased SGE and reduced the amount of dif-
ferentiated cells. Inversely, α-methylene-γ-butyrolactone-3 (MB-3) simultaneously increased
the level of SGE and the amount of differentiated cells. We then used a dynamical modelling
approach which confirmed that differentiation rates were indeed affected by the drug treatment.
Conclusion: Using single-cell analysis and modeling tools, we provide experimental evidence
that in a physiologically relevant cellular system, control of SGE can directly modify differen-
tiation, supporting a causal link between the two.

1 Introduction

Cell-to-cell variability is intrinsic to all living forms, from prokaryotes [3, 1] to eukaryotes [30]. Such
a variability originates from many sources, but arguably stochastic gene expression (SGE) is an
important driving force in the generation of cell-to-cell variability among genetically identical cells
[9], although additional regulation layers do exist [19]. Classically, SGE is separated into intrinsic
and extrinsic sources [13, 26, 2, 25, 33] even if in many cases distinguishing between the two is
difficult.

The very existence of SGE led to the concept of a probabilistic mapping between inputs (envi-
ronment) and outputs (cell decisions) [34]. It is therefore clear that SGE has to be precisely tuned
so as to tailor the biological process in which it is involved [11].

Numerous arguments suggest that SGE plays an important role in a wide range of biological
processes ranging from bet hedging [36] to the fractional killing of cancer cells [4]. SGE is also
involved in decision-making in viruses [39, 38, 40] and in prokaryotes [21, 8], but its role in the
differentiation ability of metazoan cells remains an open question. We aim at assessing whether
SGE is involved in differentiation or not [20, 18].
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If one sees differentiation from the point of view of dynamical systems theory [5], undifferentiated
cells are in an equilibrium state at first (self-renewal state). Once differentiation is activated, cells
could increase their SGE, exploring a broader region of the state space. Such an exploratory behaviour
would increase the probability for cells to attain the space region where they stabilize their gene
expression pattern by reaching a new equilibrium state (differentiation state) [18].

We recently described a surge in cell-to-cell variability that accompanies the differentiation of
normal primary chicken erythroid progenitors called T2EC [14], that is fully compatible with such
a view [28]. Interestingly, these results have been confirmed in various settings, ranging from
the differentiation of murine lymphohematopoietic progenitors [23] to the differentiation of murine
embryonic stem cells [29, 32].

Nevertheless, a definitive demonstration of a causative role of SGE in differentiation is only
starting to appear in the literature [24]. One way of demonstrating this link is the use of drugs
that would on one hand modulate SGE and on the other modulate the differentiation process. It
has recently been described that such drugs, identified using a large screening approach, were able
to modulate the noise affecting the HIV Tat promoter [10]. Recently, drugs that directly inhibit
promoter nucleosome remodelling were also shown to provide fine-tuning of SGE [22].

We therefore decided to explore how some of those drugs (Artemisinin and Indomethacin),
together with a more general chromatin modifier (MB-3, [26]) could alter differentiation.

Here we show that the three selected drugs significantly modify levels of SGE simultaneously
with the level of cell differentiation. We therefore provide the first evidence that in a physiologically
relevant cellular system, the modulation of SGE results in a modification of differentiation.

2 Results

2.1 Drugs affect noise in transcriptomic level

In order to demonstrate a direct link between SGE and differentiation, we modified experimentally
SGE in T2EC using three drug treatments: Artemisinin, Indomethacin and MB-3.

Artemisinin and Indomethacin are known to modify SGE of the HIV LTR promoter in human
T-lymphocytes [10]. MB-3, a chromatin modifier, is known to modify stochastic gene expression
in yeast [26] and in murine ES cells [24]. We first wanted to confirm that these drugs do indeed
modify SGE in our cellular system and what are the mechanisms associated with this effect.

We treated T2EC with or without drugs and induced their erythroid differentiation. We then
performed single-cell high-throughput RTqPCR on these cells at different time points after differen-
tiation. We assessed a 92 gene panel, relevant for erythroid differentiation study, identical to those
previously measured in untreated cells [28]. Single cell transcriptomics data were then analyzed
using Shannon entropy as a measure of the heterogeneity among the cells for their gene expression
profile [28, 32].

Entropy was affected by all treatments. Under Indomethacin or Artemisinin treatment, entropy
significantly decreased after 2 days of erythroid differentiation. This effect was more pronounced with
Indomethacin. The opposite effect is observed with MB-3 treatment where entropy was significantly
increased after 12h of differentiation for T2EC treated with MB-3 (Figure 1A).

We then assessed whether the same genes vary their entropy under the different drug treatments.
For this we computed a correlation value between the variations in entropy for each pair of drugs.
If the same genes are affected by two drugs, then one would expect their entropy variations to be
correlated. We observed a significant correlation only for the genes affected by Indomethacin and
Artemisinin treatment. MB-3 treatment seemed to be affecting the variability of a different set of
genes (Figure 1B).

The entropy variation could be achieved by modulating the global mean gene expression or the
gene expression variance. Thus we finally wanted to test if our drug treatments affected entropy
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Figure 1: Relative effect of entropy and gene expression average under drug treatment during
differentiation. (A) Boxplots representing values of entropy per gene for each treatment relative
to control values (red dotted line). Some outliers are not displayed for readability. We assessed
the significance of the differences between untreated and treated condition through a Wilcoxon test
(tests with a p-value < 0.05 are represented by a star above each boxplot). (B) Correlation plots
representing relative values of entropy per gene for each pair of drugs. We assessed the significance
of the differences between values for each drug through a Pearson test (p-value < 0.05). When
correlation is significant, we displayed the linear regression line for all points (red dotted lines). (C)
Correlation plots representing relative values of entropy as a function of relative values of cell mean
expression per gene. We assessed the significance of the differences between values for each drug
through a Pearson test (p-value < 0.05). When correlation is significant, we displayed the linear
regression line for all points (red dotted lines).

through the modulation of the mean gene expression value. If so, one might expect to see a
correlation between the variation of entropy and the mean expression level under drug treatment.

Indeed for two drugs out of three, Artemisinin and MB-3, one observed a significant inverse
correlation between mean and entropy (Figure 1C). Nevertheless the effect of Indomethacin on
entropy was not related to an effect on mean gene expression.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2018. ; https://doi.org/10.1101/371666doi: bioRxiv preprint 

https://doi.org/10.1101/371666
http://creativecommons.org/licenses/by-nc-nd/4.0/


Here we have found three drugs that modulate SGE in T2EC cells. Indomethacin and Artemisinin
decreased it whereas MB-3 increased it. All drugs involve a different set of genes and the effect of
drugs was not strongly related to an effect on mean gene expression value. Entropy modulation is
therefore the only common characteristic of our three drugs.

We next used these drugs to test their effect on the erythroid differentiation process.

2.2 Drugs affect differentiation process
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Figure 2: Drugs affected erythroid differentiation. Control conditions were averaged (black line) for
readability. Shown is the percentage of differentiated cells for all conditions. Error bars represent
the variation between experiments (n=3). We assessed the significance of the differences between
each treated condition with their own control condition through a student test (p-value < 0.05).

In order to know if drugs modulating SGE also affect the differentiation process, we measured
the percentage of differentiated cells in treated and untreated conditions during 96h of erythroid
maturation.

A significant modulation in the percentage of differentiated cells was observed for all three drugs
(Figure 2).

Indomethacin and Artemisinin decreased the percentage of mature cells from 48h of differentia-
tion onward. MB-3 acted earlier: it significantly increased the percentage of differentiated cells by
24h before returning to somewhat below the control level.

Indomethacin and Artemisinin, two drugs that decreased SGE, reduced the percentage of dif-
ferentiated cells. Inversely, MB-3 that increased SGE, enhanced the percentage of differentiated
cells.

However, at this stage, we cannot conclude that drugs modifying SGE led to a change of the
differentiation process itself. Indeed, these effects might have several origins including modification
in growth or death rates of our cells. To decipher between these effects, we decided to use a
mathematical model describing the dynamics of the in vitro erythroid differentiation [12].

2.3 Cellular basis of drug effect

Our model describes the dynamics of three cell populations related to three different stages of
differentiation. The first one is the self renewing state (S) where differentiation has not started; the
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third one is the differentiated state (B) where cells have finished differentiating. The second one
is the committed state (C), comprising intermediary cells that are committed to differentiation but
not yet fully differentiated (Figure 3).

S BC
δSC δCB

ρS ρC ρB

Figure 3: Schematic diagram of the model.

The dynamical model is characterized by a set of five parameters θ = (ρS, δSC , ρC , δCB, ρB):

• ρi is the proliferation rate of compartment i, involving the balance between cell proliferation
and cell death. This value can be either positive (more proliferation than death) or negative
(more death than proliferation).

• δij is the differentiation rate of cell type i into cell type j, which is positive.

Considering that there are no more self-renewing cells after 2 days of T2EC differentiation (Figure
S1, [28]), δSC is a fixed parameter fully determined by ρS [12].

In order to get the best description of the drugs effects with the fewest parameters, we used the
same approach as described in [12] and section 4.3.

Using experimental data represented in Figure 2 and following this approach, numerous models
are possible for each treatment. Among those, best models are selected by a criterion: Akaike’s
weights (Figure S2 & 4.3.3) and reproduced well the cellular kinetics during differentiation observed
in vitro (Figure S3).
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Figure 4: Relative parameter values. For each of the models selected by Akaike’s weights (Figure S2), all
the relative parameter values are represented by a dot for a treatment compared to the untreated condition
(black dotted line). 14 models were selected for the Indomethacin treatment, 3 for the Artemisinin treatment
and 2 for MB-3. The horizontal spacing between the values of each parameter was chosen randomly for
readability.

For all of those best models, their parameter values for each treatment are displayed in Figure 4.
Under Indomethacin or MB-3 treatment, ρS (net growth rate of the immature cells) was not affected
in all models and slightly decreased under Artemisinin treatment. Therefore, δSC was not affected
by the treatments either (data not shown), since its value is entirely determined by the value of ρS.
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Concerning ρC , the net growth rate of the committed compartment, its values were reduced
compared to the untreated condition for the majority of models under Indomethacin or Artemisinin
treatment, whereas for MB-3 its value increased in both models.

A more variable change between drug effect was observed with parameter ρB, which describes
the net growth rate of differentiated cells. Under Indomethacin treatment, some of the best models
did not show a different value when compared to untreated condition whereas some models displayed
a reduced parameter value. Under Artemisinin treatment this value was unchanged for two models
among three and increased for the other one. With MB-3 treatment, ρB decreased in both models.

Finally, we found that the δCB parameter, representing the differentiation rate between commit-
ted compartment and mature cell compartment was affected by all three drugs: both Indomethacin
and Artemisinin reduced this differentiation rate whereas MB-3 increased it in all best models.

These results demonstrate that all three drugs alter the differentiation process by modifying all
dynamical parameters including the differentiation rate between committed and mature cells: it is
clear that drugs that reduce SGE decrease differentiation rate and inversely that the drugs increasing
SGE accelerate cell differentiation, in line with our initial hypothesis.

3 Conclusions & discussion

In this study, we assessed the existence of a direct link between the modulation of stochastic gene
expression and a differentiation process. We tested drugs known to modulate SGE in different
cellular systems [10, 26]. We showed that these drugs modify the level of SGE in our cells. We
therefore tested their effect on the differentiation ability of avian erythropoietic progenitors. We
identified which differentiation parameter were affected by drugs using a dynamical model of the
in vitro erythroid differentiation [12]. We demonstrated that drugs modulating SGE level affected
the differentiation process by impacting the differentiation rate between the two last compartments.
We therefore demonstrated a direct link between SGE and a differentiation process supporting our
starting hypothesis that stochastic gene expression participate positively in cell decision-making to
differentiate.

Indomethacin, Artemisinin and MB-3 have clearly different functions. Artemisinin is an anti-
malarial drug used against a parasitic infection [15]. Indomethacin is an anti-inflammatory drug that
affects the prostaglandin pathway [17]. MB-3 is an inhibitor of GCN5, a histone acetyl transferase
(HAT) that activates global gene expression [41]. Even in such a seemingly well-defined case, it
should nevertheless be remembered that a very complex relationship may lie between the biochemical
action of a drug (HAT inhibition) and its biological effect on SGE [40].

Considering these different functions, it is hard to imagine that all these drugs have in common
anything else than their ability to modulate SGE in our cells.

The question then arises of the mechanisms through which these different drugs modulate SGE.
We first assessed if these drugs affected the entropy of the same genes. For Indomethacin and
Artemisinin, we showed that indeed the entropy of some of the same genes were affected but with
a weak correlation. In contrast, MB-3 increased SGE through a different set of genes. This tends
to indicate that cell-to-cell variability per se, relatively independently of the gene function involved,
is participating to the differentiation process (see below).

We then investigated a potential role for variation in the mean gene expression that could explain
the SGE level variation.

Modifying SGE level is accompanied by a variation in the mean gene expression level for two
drugs out of three. The decrease of mean gene expression under MB-3 treatment has been shown
in a diffrent system not to be significant [24]. Also, it has not been reported that Artemisinin affect
mean gene expression in any other cellular system. However, the fact that Indomethacin treatment
decreased gene-wise entropy clearly without affecting the mean gene-wise expression level reinforces
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the fact that the modification on the differentiation process is not due to a modification in mean
gene expression but only to a non-specific modulation of SGE.

Collectively, these results suggest that neither common genes nor common mechanisms could
explain the observed effect of the three drugs simultaneously. This reinforces the fact that modulation
of cell-to-cell variability has a strong role in differentiation, independently of gene function or the
specific mechanism involved.

This could be explained by adopting a dynamical systems view on the differentiation process,
in the wake of Waddington’s proposal [37]. In such a view, we could consider that in the highly
dimensional gene expression space, an equilibrium cell state could be compared to a valley in an
epigenetic landscape [18]. When we reduce SGE using Indomethacin or Artemisinin, we dig the
valley, limiting the ability of cells to escape from a self-renewal equilibrium. Their probability to
attain the new equilibrium state is reduced. Inversely, when we increase SGE using MB-3, we flatten
the valley and improve the ability of cells to explore a larger dynamical landscape, and increase
their probability to attain the new differentiated equilibrium state more quickly. Once cells achieved
their journey, they stabilize their new gene expression pattern (the differentiated genetic profile) and
return to a basal level of SGE [20, 18, 5]. In such a view, stochastic gene expression favours cells
making the decision to differentiate, modifying the structure of the valley in which cells are moving.
In a recent perpective, this same process of actively shaping the Waddington Landscape has been
described in terms of a Plinko board, whose nail configuration, composition, and patterning can
be modified towards forward stochastic design [11]. Similarly to our initial description [28], the
variation of cell-to-cell gene expression in other differentiation systems has been recently described
[31, 23, 29, 32, 24]. Furthermore, a functional link between transcriptional heterogeneity and cell
fate transitions was demonstrated recently through manipulation of the histone acetylation landscape
of mouse embryonic stem cells [24]. This is fully backed up by our own data that also demonstrate
that the reverse (inhibiting differentiation by reducing SGE) can also be demonstrated.

In recent studies, it has been shown that active modulation of SGE is responsible for a modifi-
cation of decision-making in viruses [10]. In primary erythroid progenitor cells, we show here that
experimentally modifying SGE affects the differentiation process. It could therefore be important to
study the potential use of SGE-modifying drugs in differentiation-related diseases such as tumoral
cell progression [35], as exemplified by the chronic myeloid leukemia [16, 6, 11], paving the way to
a "treatment by noise" of at least some cancer-related diseases.

4 Methods

4.1 Cell culture and treatment

T2EC were extracted from bone marrow of 19 days-old SPAFAS white leghorn chickens embryos
(INRA, Tours, France). These cells were maintained in a medium called LM1. It is composed
of α-MEM medium supplemented with 10 % Foetal bovine serum (FBS), 1 mm HEPES, 100 nm
β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 5 ng/mL TGF-α, 1 ng/mL TGF-β and
1 mm dexamethasone as previously described [14]. T2EC were induced to differentiate by removing
the LM1 medium and placing cells into the DM17 medium (α-MEM, 10% foetal bovine serum
(FBS), 1 mm Hepes, 100 nm β-mercaptoethanol, 100 U/mL penicillin and streptomycin, 10 ng/mL
insulin and 5% anemic chicken serum (ACS)). Differentiation kinetics were obtained by collecting
cells at different times after the induction in differentiation. For Indomethacin and Artemisinin, cells
in self-renewing medium are treated at respectively 25 mum and 1 mum 48h before switching into
a differentiated medium in order to optimize their effects. For MB-3, cells are treated at 10 mum
just after inducing the differentiation. For each drug, a control treatment (0.1% DMSO) was added
following the same conditions.
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4.2 Counting of cell viability and cell differentiation

Cell population growth was evaluated by counting living cells using a Malassez cell and Trypan blue
staining (SIGMA). Cell population differentiation was evaluated by counting differentiated cells using
a counting cell and Benzidin (SIGMA) staining which stains haemoglobin in blue.

4.3 Dynamical model for erythroid differentiation

4.3.1 Calibration, selection and identifiability

This model has been selected among others and has been shown to be a relevant model for the in
vitro erythroid differentiation process. Moreover, this model is fully identifiable meaning that there
is only one parameter set θ that corresponds to a dataset [27, 12]. This makes the reasoning on
how drugs modify parameter values fully relevant. Details concerning the calibration, the selection
and the identifiability analysis of the model are available in [12].

4.3.2 Estimating the parameters under drug treatments

For each parameter of the model, we considered two different cases: one in which the parameter
value was unchanged compared to the untreated case (which would not change the number of
parameters of the model), and one in which the treatment changed the value (which would introduce
a new parameter in the model). Our model has 7 parameters: 5 dynamical parameters presented
in 2.3 and 2 error parameters, b1 and b2, which quantify the quality of the fit, and the amount of
measurement error. These parameters do not influence the dynamics of the model. Only 6 out of
these 7 parameters are estimated (δSC is set by the value of ρS), which defines 26 = 64 models for
each drug treatment. We estimated the parameters of these 64 possible models and computed a
selection criterion.

4.3.3 Model selection criterion

Estimating the parameters of all possible models under drug treatment needs to be accompanied
by the computation of a selection criterion: the model weights based on their corrected Akaike’s
Information Criterion wAICc [7]. The Akaike weight of a given model in a given set of models is a
measure of the probability that the model is the best one in the set. Thus, selecting the best models
of a set of models requires to sort them by their Akaike’s weights. The best models in the set are
those whose weights add up to a significance probability (95% in this study) [12].

4.4 Single cell high-throughput RTqPCR

Every experiment related to high-throughput microfluidic-based RT-qPCR was performed according
to Fluidigm’s protocol (PN 68000088 K1, p.157-172) and recommendations. All the following steps
from single-cell isolation to high throughput RTqPCR of each cells are described in [28].

4.5 Entropy

We estimated the Shannon entropy of each gene j at each timepoint t as follows: we computed
basic histograms of the genes with N = Nc /2 bins, where Nc is fixed for all tests, which provided
the probabilities ptj,k of each class k. Finally, the entropies were defined by

Et
j = −

N∑
k=1

ptj,k log2(p
t
j,k).
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When all cells express the same amount of a given gene, this gene’s entropy will be null. On the
contrary, the maximum value of entropy will result from the most variable cell-to-cell gene expression
level.
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