
Spatial Control of Neuronal Metabolism Through Glucose-Mediated Mitochondrial
Transport Regulation

Anamika Agrawal1, Gulcin Pekkurnaz2∗, Elena F. Koslover1∗
1. Department of Physics, University of California, San Diego, La Jolla CA 92130

2. Section of Neurobiology, Division of Biological Sciences,
University of California, San Diego, La Jolla CA 92130

* To whom correspondence should be addressed: ekoslover@physics.ucsd.edu, gpekkurnaz@ucsd.edu

Eukaryotic cells modulate their metabolism by organizing metabolic components in response to
varying nutrient availability and energy demands. In the axons of mammalian neurons, mitochondria
have been shown to respond to glucose levels by halting active transport preferentially in high
glucose regions. Here, we employ quantitative modeling to explore the physical limits on spatial
organization of organelles through such regulated stopping of processive motion, as well as the
consequences to cellular metabolism. We delineate the role of key parameters, including cellular
glucose uptake and consumption rates, that are expected to modulate mitochondrial distribution and
metabolic response in spatially varying glucose conditions. Our quantitative estimates indicate that
physiological brain glucose levels fall within the limited range necessary for metabolic enhancement,
making this a plausible regulatory mechanism for neuronal metabolic flexibility in the presence of
spatially heterogeneous glucose. These findings highlight the role of spatial organization in the
regulation of neuronal metabolism, while providing a quantitative framework for the establishment
of such organization by control of organelle trafficking.

INTRODUCTION

Cellular metabolism comprises an intricate system of
reactions whose fine-tuned control is critical to cell health
and function. A number of quantitative studies have
focused on metabolic control through modulating reac-
tant and enzyme concentrations and turnover rates [1, 2].
However, these studies generally neglect the spatial or-
ganization of metabolic components within the cell. By
localizing specific enzymes in regions of high metabolic
demand[3, 4], as well as clustering together consecutively
acting enzymes[5], cells have the potential to substan-
tially enhance their metabolism.

Spatial organization is particularly critical in highly
extended cells, such as mammalian neurons, whose ax-
ons can grow to lengths on the meter scale. Metabolic
demand in neurons is spatially and temporally heteroge-
neous, with especially rapid ATP turnover found in the
presynaptic boutons[6], and ATP requirements peaking
during synaptic activity and neuronal firing[7–9]. Neu-
rons rely primarily on glucose as the energy source for
meeting these metabolic demands[10]. Due to the long
lengths of neural processes, the glucose supply can vary
substantially over different regions of the cell[8, 9, 11]. In
myelinated neurons, for instance, it has been speculated
that glucose transport into the cell is localized primarily
to narrow regions around the nodes of Ranvier[12–14],
which can be spaced hundreds of microns apart[15, 16].
Glucose transporters in neurons have also been shown
to dynamically mobilize to active synapses, providing
a source of intracellular glucose heterogeneity[17]. Fur-
thermore, in the mammalian brain, extracellular glucose
levels vary substantially between different brain regions,
resulting in spatially heterogeneous nutrient access[18].
Individual axons have been shown to span across multi-
ple regions of the brain[19], enabling them to encounter

regions with varying glucose concentrations.

Most ATP production in neurons occurs within mi-
tochondria: motile organelles that range from intercon-
nected networks to individual globular structures that
extend throughout the cell. As energy powerhouses and
metabolic signaling centers of the cell, mitochondria are
critical for neuronal health [20]. Their spatial organiza-
tion within the neuron plays a pivotal role in growth and
cell physiology [21]. Defects in mitochondrial transport
are involved in the pathologies of several neural disorders
such as peripheral neuropathy and Charcot-Marie-Tooth
disease [22, 23].

A number of studies have shown that mitochondria
are localized preferentially to regions of high metabolic
demand, such as the synaptic terminals [21, 24]. Such
localization can occur via several molecular mechanisms,
mediated by the Miro-Milton mitochondrial motor adap-
tor complex that links mitochondria to the molecular mo-
tors responsible for transport[25]. Increased Ca2+ levels
at active synapses lead to loading of calcium binding sites
on Miro, releasing mitochondria from the microtubule
and thereby halting transport[26, 27]. High glucose lev-
els can also lead to stalling, through the glycosylation of
motor adaptor protein Milton by the glucose-activated
enzyme O-GlcNAc transferase (OGT)[28]. This mecha-
nism has been shown to lead to mitochondrial accumu-
lation at glucose-rich regions in cultured neurons[28]. It
is postulated to regulate mitochondrial spatial distribu-
tion, allowing efficient metabolic response to heteroge-
neous glucose availability.

Mitochondrial positioning relies on an interplay be-
tween heterogeneously distributed diffusive signaling
molecules (such as Ca2+ and glucose), their consump-
tion through metabolic and other pathways, and their
effect on motor transport kinetics. While the biochemi-
cal mechanisms and physiological consequences of mito-
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chondrial localization have been a topic of much interest
in recent years[25, 29], no quantitative framework for this
phenomenon has yet been developed.

In this work we focus on glucose-mediated regulation
of mitochondrial transport, developing quantitative mod-
els to examine the consequences of this phenomenon for
metabolism under spatially varying glucose conditions.
Our approach relies on a reaction-diffusion formalism,
which describes the behavior of species subject to both
consumption and diffusion [30]. Reaction-diffusion sys-
tems have been applied to describe the spatial organi-
zation of a broad array of cellular processes[31], ranging
from protein oscillations in E coli[32], to coordination of
mitotic signalling[33], to pattern formation in develop-
ing embryos[34, 35]. The response of actively moving
particles to spatially heterogeneous, diffusive regulators
has also been extensively investigated in the context of
chemotaxis[36]. In contrast to most chemotactic cells,
however, mitochondria have no currently known mech-
anism for directly sensing glucose gradients. Instead,
they are expected to accumulate in response to local glu-
cose concentration only. Our goal is to delineate the
regimes in which such a crude form of chemotaxis can
lead to substantial spatial organization and enhancement
of metabolism.

Specifically, we model the modulation of mitochondrial
density with glucose concentration in a tubular axonal
region, focusing on two forms of spatial heterogeneity.
In one case, we consider an axonal domain between two
localized regions of glucose entry, representing the intern-
odal region between nodes of Ranvier in myelinated neu-
rons (Fig. 1a). The second case focuses on an unmyeli-
nated cellular region with continuous glucose permeabil-
ity, embedded in an external glucose gradient (Fig. 1b).
In both cases, we show that mitochondrial accumulation
and substantially enhanced metabolic flux is expected
to occur over a limited range of glucose concentrations,
which overlaps with physiological brain glucose levels.
Our simplified quantitative model allows identification
of a handful of key parameters that govern the extent to
which glucose-mediated mitochondrial halting can mod-
ulate metabolism. We establish the region of parameter
space where this mechanism has a substantial effect, and
highlight its potential importance in neuronal metabolic
flexibility and ability to respond to spatially varying glu-
cose.

MINIMAL MODEL FOR MITOCHONDRIAL
AND GLUCOSE DYNAMICS

We begin by formulating a quantitative model to de-
scribe the spatial localization of mitochondria that halt in
a glucose-dependent manner, in the presence of localized
sources of glucose. This situation arises in myelinated
neurons, which have glucose transporters enriched at the
nodes of Ranvier, leading to highly localized sources of
glucose spaced hundreds of micrometers apart within the

FIG. 1. Schematic diagram of our simplified model for
glucose-mediated mitochondrial transport regulation. (a)
Myelinated axonal region, with glucose entry localized at the
nodes of Ranvier. Mitochondria accumulate at nodes due to
the higher glucose concentration (b) Unmyelinated axonal re-
gion, subject to a linear glucose gradient. Glucose permeabil-
ity is uniform throughout, with mitochondrial accumulation
occuring at the region of high external glucose (c) Key steps
of the metabolic pathway linking glucose availability and mi-
tochondrial halting. (d) Mitochondrial transport states and
rates of transition between them (W± represents retrograde
and anterograde motion, S represents the stationary state).

cell[37].
Neuronal glucose transporters are known to be

bidirectional[38], allowing glucose concentration within
the cell to equilibrate with external glucose. For simplic-
ity, we assume rapid transport of glucose through these
transporters, so that the internal concentration of glucose
at the nodes where transporters are present is assumed to
be fixed. The cellular region between two glucose sources
is modeled as a one-dimensional interval of length L with
glucose concentration fixed to a value c0 at the interval
boundaries (Fig.1a). Glucose diffuses throughout this
interval with diffusivity D, while being metabolized by
hexokinase enzyme in the first step of mammalian glu-
cose utilization (Fig. 1c) [39].

The concentration of glucose is thus governed by the
reaction-diffusion equation,

dG

dt
= D

∂2G

∂x2
− k(x)G(x) (1)

where k(x) describes the spatial distribution of the hex-
okinase enzyme as well as the rate of consumption. In the
case of spatially uniform, linear consumption [k(x) = k, a
constant] this equation can be solved directly, yielding a

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/372284doi: bioRxiv preprint 

https://doi.org/10.1101/372284
http://creativecommons.org/licenses/by-nc-nd/4.0/


3

distribution of glucose that falls exponentially from each
source boundary, with a decay length λ =

√
D/k [40].

Hexokinase 1 (HK1), the predominant form of hex-
okinase expressed in neurons, is known to localize pref-
erentially to mitochondria[41], which in mammalian ax-
ons can form individual organelles approximately 1µm in
length[42]. We carry out numerical simulations of Eq. 1
where consumption is limited to locations of individual
discrete mitochondria, represented by short intervals of
length ∆. Specifically, we define the mitochondria den-
sity as M(x) = n(x)/(πr2∆), where n(x) is the number
of mitochondria overlapping position x, and r is the axon
radius. The phosphorylation of glucose by mitochondrial
hexokinase is assumed to follow Michaelis-Menten kinet-
ics, described by

k(x) =
kgM(x)

G(x) +KM
, (2)

where KM is the saturation constant and kg is the
turnover rate of glucose (per unit time per mitochon-
drion). The turnover rate kg incorporates both the cat-
alytic rate of hexokinase and the number of hexokinase
enzymes per mitochondrion. This expression reduces to
the case of constant linear consumption when glucose
concentration is low (G � KM ) and mitochondria are
uniformly distributed throughout the region.

In general, glucose consumption depends on the loca-
tion of mitochondria within the domain. Mitochondrial
distribution in neurons is known to be mediated through
regulation of their motor-driven motility[24, 28]. Indi-
vidual mitochondria switch between processively moving
and paused states, modulated by the interplay between
kinesin and dynein motors and the adaptor proteins that
link these motors to the mitochondria[43]. In our model,
we simulate mitochondria as stochastically switching be-
tween a processive walking state that moves in either
direction with velocity v and a stationary state. The
rate of initiating a walk (kw) is assumed to be constant,
while the halting rate (ks(x)) can be spatially hetero-
geneous. For simplicity, we assume the mitochondria
are equally likely to move in the positive (+) or neg-
ative (-) direction each time they initiate a processive
walk (Fig. 1b). We note that motile axonal mitochondria
tend to move consistently in an anterograde or retrograde
manner, with sporadic pauses followed by motion in the
same direction[26, 44]. While such dynamics will modify
the time-scale for establishing a mitochondrial distribu-
tion in response to glucose heterogeneity, the stationary
state distribution depends only on the net fraction of mi-
tochondria moving in each direction. Here, we focus on
these stationary distributions, while assuming equal fre-
quency of anterograde and retrograde transport.

It has recently been demonstrated that a key mo-
tor adaptor protein (Milton) is sensitive to glucose lev-
els, halting mitochondrial motility when it is modi-
fied through O-GlcNAcylation by the OGT enzyme[28].
Upon entry into the cell, the first rate-limiting step
of glucose metabolism is its conversion into glucose-

FIG. 2. (a) Glucose distribution and position of individ-
ual mitochondria (b) Normalized itochondrial distribution,
M(x)/M , obtained from simulating discrete mitochondrial
motion (histogram compiled from 100 independent simula-
tions), compared to numerical calculation of steady state
continuous mitochondrial disribution (black curve). Results

shown are for parameter values: λ̂ = 0.08, ĉ0 = 1, k̂s = 100.

6-phosphate by hexokinase. Further downstream
metabolic pathways split, with much of the flux go-
ing to glycolysis while a small fraction is funneled into
the hexosamine biosynthetic pathway (HBP). This path-
way produces UDP-GlcNAc, the sugar substrate for O-
GlcNAcylation (Fig. 1c)[45]. In our model, we assume
that the rate of UDP-GlcNAc production equals the rate
of glucose conversion by hexokinase, scaled by the frac-
tion of G6P that is channeled into the hexosamine path-
way. This assumption is valid if the saturation constants
for the first pathway step separating glycolysis and hex-
osamine biosynthesis are comparable to each other (see
Supplementary Information). This in fact appears to
be the case for glutamine–fructose-6-phosphate amino-
transferase (GFAT, KM ≈ 1mM[46]), which initiates the
hexosamine pathway, and phosphofructokinase (PFK,
KM ≈ 1.3mM[46]), which funnels intermediates to the
glycolytic pathway. In this case, saturation of the ini-
tial glucose conversion step will imply saturation of the
entire hexosamine biosynthetic pathway. We therefore
model the kinetics of Milton modification using the same
Michaelis-Menten form as for hexokinase activity, with
the pathway flux leading to Milton modification sub-
sumed within a rate constant for mitochondrial stopping
(ks).

We note that the subcellular organization of the in-
termediates in the conversion from glucose into O-
GlcNAcylated Milton is largely unknown. In our model,
we make the extreme case assumption that all interme-
diates are localized to mitochondria, with only the initial
glucose substrate capable of diffusing through the cyto-
plasm. We note that cytoplasmic diffusion of any of the
pathway intermediates would attenuate the effect on mi-
tochondrial localization. Our simplified model thus gives
an upper limit on the extent to which mitochondria can
localize at high glucose regions through the Milton mod-
ification mechanism. Following these simplified assump-
tions, we treat the kinetics of mitochondrial halting as
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dependent only on the local glucose concentration, ac-
cording to the functional form

ks(x) =
ksG(x)

G(x) +KM
, (3)

where KM is the Michaelis-Menten constant of hexoki-
nase.

We proceed to evolve the simulation forward in time,
with glucose consumption localized to regions within
±∆/2 of each discrete mitochondrial position (details in
Supplementary Information). A snapshot of one simula-
tion run is shown in Fig. 2a, highlighting the accumula-
tion of stationary mitochondria in the high glucose re-
gions near the ends of the domain.

We are interested primarily in investigating the steady-
state distribution of mitochondria and glucose in this
system, averaged over all possible mitochondrial trajec-
tories. We thus proceed to coarse-grain our model by
treating the distribution of mitochondria as a continuous
field M(x) = W+(x) + W−(x) + S(x), where W+(x) is
the distribution of mitochondria walking in the positive
direction, W−(x) is the distribution of those walking in
the negative direction, and S(x) is the distribution of
stationary mitochondria. We can then write down the
coupled differential equations governing the behavior of
the mitochondrial distributions as:

dW+

dt
= −v ∂W+

∂x
− ks(x)W+ +

kwS

2
dW−

dt
= v

∂W−

∂x
− ks(x)W− +

kwS

2
dS

dt
= ks(x)[W+ +W−]− kwS.

(4)

The glucose distribution evolves according to Eq. 1 with
consumption rate k(x) given by Eq. 2. The boundary
conditions at the ends of the domain are assumed to be
reflective for the mitochondrial distributions, and to have
a fixed glucose concentration c0. The stationary state
for this system can be calculated numerically (see Sup-
plementary Information). The formulation with a con-
tinuous mitochondrial density faithfully represents the
behavior of simulations with discrete mitochondria, as
illustrated in Fig. 2b.

The steady-state spatial distribution of mitochondria
and glucose in the continuous system depend on six pa-
rameters: ks/kw,KM , c0, D, L, kgM where M is the av-
erage mitochondrial density in the axon (number of mi-
tochondria per unit volume) . Estimates of physiologi-
cally relevant values are provided in Table I. Dimensional
analysis indicates that three of these parameters can be
used to define units of time, length, and glucose concen-
tration, leaving three dimensionless groups. We choose
to use the following three dimensionless parameters, each
of which has an intuitive physical meaning:

λ̂ =

√
DKM

kgML2
, ĉ0 =

c0
KM

, k̂s =
ks
kw

(5)

cytoplasmic glucose diffusivity D 140µm2/s

glucose turnover per
mitochondrion

kg 1.3 × 105s−1

axon radius r 0.4µm

internodal distance L 250µm

mitochondrial density M 0.3µm−3

hexokinase Michaelis-Menten
constant

KM 0.03mM

brain glucose levels c0 0.7 − 1.3mM

ratio of stopped to moving
mitochondria at high glucose

ks/kw 19

glucose permeability P 20nm/s

glucose transporter (GLUT3)
Michaelis-Menten constant

KMP 2.87mM

TABLE I. Physiological parameter values estimated from
published data. Details of estimates are provided in the Sup-
plementary Information.

FIG. 3. Effect of external glucose concentration on intracellu-
lar glucose and mitochondrial distributions. (a) Normalized
mitochondrial distribution (M(x)/M), for different values of
edge concentration ĉ0. The curve with ĉ0 = 56 illustrates the
accumulation cutoff A = 0.2. (b) Glucose distribution nor-
malized by edge concentration (G(x)/c0). The black dashed
line in both panels indicates the analytical solution for the
low glucose limit.

Here λ̂ is the length-scale of glucose decay relative to
the domain length, ĉ0 is the boundary glucose concen-

tration relative to the saturation constant KM , and k̂s
is the ratio of stopped to walking mitochondria at high
glucose levels. We proceed to explore the steady-state
distribution of mitochondria and glucose as a function of
these three parameters.

MITOCHONDRIAL LOCALIZATION REQUIRES
LIMITED RANGE OF EXTERNAL GLUCOSE

In order for mitochondria to preferentially accumulate
at the source of glucose via a glucose-dependent stop-
ping mechanism, three criteria must be met. First, the

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 18, 2018. ; https://doi.org/10.1101/372284doi: bioRxiv preprint 

https://doi.org/10.1101/372284
http://creativecommons.org/licenses/by-nc-nd/4.0/


5

FIG. 4. Effect of model parameters on mitochondrial accumulation at regions of localized glucose entry. (a) Accumulation
metric as a function of boundary glucose levels and mitochondrial stopping rate. (b) Fraction of mitochondria in the stopped
state. Black dashed line indicates parameters corresponding to 95% stopped mitochondria. (c) Accumulation metric as a

function of glucose levels ĉ0 and decay length λ̂. (d) Phase diagram for mitochondrial accumulation, showing upper and lower

concentration cutoffs for accumulation above the cutoff of Acut = 0.2. Dashed black line shows limit of high stopping rate k̂s.
Dotted black line indicates estimate of λ̂ for physiological parameters, and corresponding upper concentration cutoff.

glucose concentration needs to be higher at the source
than in the bulk of the cell, as occurs when the decay
length due to consumption is much smaller than the size

of the domain (λ̂ � 1). Second, if glucose levels be-
come too high (ĉ0 � 1) then both glucose consumption
rates and stopping rates of the mitochondria become sat-
urated, leading to a flattening of glucose and mitochon-
drial distributions (Fig. 3). There is thus an upper limit
on the possible external glucose concentrations that will
yield mitochondrial localization at the edges of the do-
main. Finally, the mitochondria must spend a substan-
tial amount of time in the stationary state, since walking
mitochondria will be broadly distributed throughout the
domain. Because the stopping rate is itself dependent
on the glucose concentration, this criterion implies that
very low concentrations will also not allow mitochondrial
localization. Fig. 3 shows the distribution of glucose and
mitochondria at different values of the external glucose
ĉ0, illustrating that accumulation of mitochondria at the
edges requires intermediate glucose levels.

To characterize the distribution of mitochondria along
the interval, we introduce an accumulation metric A, de-
fined by

A = 6σ2/L2 − 0.5

where σ2 is the variance in the mitochondrial distribu-
tion. This metric scales from A = 0 for a uniform dis-
tribution to A = 1 for two narrow peaks at the domain
edges. Mitochondrial distributions with several different
values of the accumulation metric are shown in Fig. 3a.
We use a cutoff of A = 0.2 to define distributions where
the mitochondria are localized at the glucose source.

We explore the dependence of the mitochondrial accu-
mulation on the three dimensionless parameters defining
the behavior of the system: the stopping rate constant

k̂s, the glucose decay length λ̂, and the external con-
centration ĉ0. Because only the stopped mitochondria
localize near the glucose sources, increasing the fraction

of mitochondria in the stopped state (increased k̂s) in-

evitably raises the overall accumulation (Fig. 4a). The
fraction of mitochondria in the stopped state will depend

on both k̂s and the overall levels of glucose, as dictated
by ĉ0 (Fig. 4b). Experimental measurements indicate
that at high glucose concentrations, approximately 95%
of mitochondria are in the stationary state[28]. We are
thus interested primarily in the parameter regime of high

stopping rates: k̂s & 10. The limited range of concen-
trations that lead to mitochondrial accumulation at the
edges of the domain can be seen in Fig. 4a.

For a high stopping rate (k̂s = 10), we then calcu-
late the mitochondrial accumulation as a function of the
remaining two parameters: λ̂, ĉ0. Here, again, we note
that only intermediate glucose concentrations result in
accumulation, with the range of concentrations becom-

ing narrower as the decay length λ̂ becomes comparable
to the domain size (Fig. 4c). We can establish the con-
centration range within which substantial accumulation
is expected, by setting a cutoff A = 0.2 on the accumula-
tion metric and calculating the resulting phase diagram
(Fig. 4d). Below the lower concentration cutoff, insuffi-
cient mitochondria are in the stationary state and so no
localization is seen. This lower cutoff disappears in the

limit of infinite k̂s. At intermediate concentrations, mito-
chondria are localized near the domain edges. Above the
upper concentration cutoff, no localization is observed
due to saturation of the Michaelis-Menten kinetics.

Using empirically derived approximations for the rate
of glucose consumption by mitochondria and the diffu-
sivity of glucose in cytoplasm (see Table I), we estimate

the decay length parameter as λ̂ ≈ 0.03. The mito-
chondria are then expected to localize near the glucose
source only if ĉ0 < 66. Because the saturation concen-
tration for hexokinase is quite low (KM ≈ 0.03mM)[39],
we would expect mitochondrial accumulation for glu-
cose concentrations below about 2 mM. We note that
physiological brain glucose levels have been measured at
0.7−1.3mM, depending on the brain region[47], implying
that glucose-dependent halting of mitochondrial trans-
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FIG. 5. Mitochondrial stopping increases overall metabolic
flux. Total glucose consumption per mitochondrion, averaged
over the full interval, is shown for different edge glucose con-
centrations (c0) as a function of the mitochondrial stopping

rate k̂s. The limit of small k̂s corresponds to uniform mi-
tochondria distribution. Parameters for the model are taken
from Table I.

port would be expected to result in localization of mito-
chondria at nodes of Ranvier.

GLUCOSE-DEPENDENT HALTING CAN
INCREASE METABOLIC FLUX UNDER

PHYSIOLOGICAL CONDITIONS

Localizing mitochondria to the glucose entry points is
expected to increase the flux of glucose entering the cell,
thereby potentially enhancing the overall metabolic rate.
We calculate the overall effect of transport-based regula-
tion on the net metabolic flux within the simplified model
with localized glucose entry. Fig. 5 shows the effect of

increasing mitochondrial stopping rates (k̂s) on the total
rate of glucose consumption in the interval between nodes

of glucose influx. At low k̂s values, mitochondria are dis-

tributed uniformly throughout the interval. At high k̂s
values and at sufficiently low glucose concentrations, the
mitochondria cluster in the regions of glucose entry, in-
creasing the overall consumption rate by up to 40% at
physiologically relevant glucose levels (c0 = 1mM). We
note that in hypoglycemic conditions, glucose levels can
drop to 0.1mM [48], further increasing the magnitude of
this effect.

In the case of limited glucose transport into the cell, in-
tracellular glucose levels could be significantly below the
concentrations outside the cell. Measurements of intra-
cellular glucose in a variety of cultured mammalian cell
types indicate internal concentrations within the range
of 0.07 − 1mM, up to an order of magnitude lower than
glucose concentrations in the medium[49]. However, neu-
ronal cells are known to express a particularly efficient
glucose transporter (GLUT3)[50], and these transporters
have been shown to be highly concentrated near the
nodes of Ranvier[12, 14]. We therefore assume that glu-
cose import into the nodes is not rate limiting for myeli-
nated neurons in physiological conditions. Introducing a

finite rate of glucose transport would effectively decrease
the intracellular glucose concentration at the nodes c0,
increasing the enhancement in metabolic flux due to mi-
tochondrial localization. In subsequent sections, we ex-
plore the role of limited glucose import in unmyelinated
axons with spatially uniform glucose permeability.

MODEL FOR SPATIAL ORGANIZATION IN A
GLUCOSE GRADIENT

Extracellular brain glucose levels exhibit substantial
regional variation, particularly under hypoglycemic con-
ditions where more than ten-fold differences in local glu-
cose concentrations have been reported[51]. Because in-
dividual neurons can traverse multiple different brain
regions[19], a single axon can be subjected to hetero-
geneous glucose levels along its length. This raises the
possibility that glucose-dependent mitochondrial local-
ization can play a role in neuronal metabolic flexibility
even in the case where glucose entry into the cell is not
localized to distinct nodes. We thus extend our model
to quantify the distribution of mitochondria in an axon
with limited but spatially uniform glucose permeability
that is subjected to a gradient of external glucose. This
situation is relevant, for instance, to unmyelinated neu-
rons in infant brains, as well as to in vitro experiments
with neurons cultured in a glucose gradient[28].

In this model, the extracellular environment provides
a continuous source of glucose whose influx is limited by
the permeability of the cell membrane. Intracellular glu-
cose dynamics are then defined by the reaction-diffusion
equation

dG

dt
= D

∂2G

∂x2
− k(x)G+ P (x) (Gext(x)−G) , (6)

where the first term corresponds to diffusive glucose
spread, the second to a spatially varying metabolism of
glucose, and the third to the entry of glucose into the
cell. Here, Gext is the external glucose concentration, and
P (x) is the membrane permeability to glucose, which we
assume to depend in a Michaelis-Menten fashion on the
difference between external and internal glucose concen-
tration:

P (x) =
(2/r)PKMP

KMP + |Gext(x)−G(x)|
, (7)

where P is the spatially uniform permeability constant
in units of length per time. This functional form incor-
porates two known features of glucose transporters: (1)
they are bidirectional, so that the overall flux through
the transporter at low glucose levels should scale lin-
early with the difference between external and internal
glucose[52]; (2) neuronal glucose transporters saturate at
high glucose levels (GLUT3 KMP ≈ 2.87mM[53], with an
even higher saturation constant for GLUT4 [54]). When
the difference in glucose levels is low, the overall flux of
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FIG. 6. Mitochondrial and glucose organization in a region with uniform glucose permeability, subjected to a gradient of external
glucose. (a) Internal glucose levels for the steady state solution with Gext/KM = 17 (Gext = 0.5 mM) and varying ratios of
entry to consumption rate γ. Black dashed line shows external glucose levels. (b) Corresponding normalized distribution
of internal glucose. (c) Corresponding normalized mitochondrial distribution. Shaded box indicates distal region used for
calculating mitochondrial enrichment and metabolic enhancement in panels d-e. (d) Mitochondrial enrichment in the distal
10% of the interval at highest external glucose, compared to a uniform distribution. White dot marks estimated parameter
values for neuronal cell culture experiments (Gext = 2.5mM). (e) Enhancement in metabolic flux in the distal region at high
glucose, compared to a uniform mitochondrial distribution. (f) Enhancement in metabolic flux over full interval. White line

in (d-f) shows estimated parameter range for physiological glycemic levels 0.5mM < Gext < 1.5mM. Parameter values k̂s = 19,

∆Ĝext = 2 used throughout.

glucose entering the cell reduces to P (Gext(x) − G(x)).
Mitochondria dynamics are defined as before (Eq. 4),
and we again assume Michaelis-Menten kinetics for glu-
cose metabolism by hexokinase localized to mitochondria
(Eq. 2).

We note that the dynamics in Eq. 6 are governed by
three time-scales: the rate of glucose transport down the
length of the axon, rate of glucose consumption, and rate
of glucose entry. The first of these rates becomes negli-

gibly small in the limit L�
√
D(G+KM )/(kgM). Be-

cause internal glucose levels can never exceed the exter-
nal concentrations, in the range where Gext < 10mM,
the rate of diffusive transport should become negligible
for L � 150µm. In the limit where intracellular glucose

is much less than Km, this criterion reduces to λ̂ � 1,
indicating that glucose diffuses over a very small frac-
tion of the interval before being consumed. The interval
length L in this model represents an axonal length which
can range over many orders of magnitude. We focus on
axon lengths above several hundred microns, allowing us
to neglect the diffusive transport of intracellular glucose
(see Supplementary Information, Fig. S1).

The steady-state glucose profile can then be deter-

mined entirely by the local concentration of mitochon-
dria and external glucose. For a given mitochondrial den-
sity M(x) and external glucose profile Gext(x), the corre-
sponding intracellular glucose concentration can be found
directly by solving the quadratic steady-state version of
Eq.6 without the diffusive term. However, the steady-
state mitochondrial distribution cannot be solved locally,
because the limited number of mitochondria within the
axon couples the mitochondrial density at different posi-
tions. We thus employ an iterative approach to numeri-
cally compute the steady-state solution for both glucose
and mitochondrial density under a linear external glucose
gradient Gext = Gmin+(Gmax−Gmin) x

L (see Supplemen-
tary Information).

For parameter combinations where intracellular glu-
cose concentrations are above KM but well below Gext,
the entry and consumption processes for glucose are both
saturated. There is then a steep transition between two
different regimes. In one regime, glucose entry exceeds
consumption and internal glucose levels approach the ex-
ternal concentrations. In the other, consumption domi-
nates and glucose levels drop below saturating concentra-
tions. The key dimensionless parameter governing this
transition can be defined as the ratio of entry to con-
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sumption rates:

γ =
2PKMPGext

kgMr(KMP +Gext)
. (8)

This ratio can be modulated in the cell either by recruit-
ing varying amounts of glucose transporters (adjusting
P ) or changing the total amount of active hexokinase
(adjusting kgM).

The remaining dimensionless parameters determining
the behavior of this simplified model are the external glu-
cose concentration relative to the hexokinase saturation
constant (Ĝext = Gext/KM ), the relative magnitude of

the glucose gradient, ∆Ĝext = (Gmax − Gmin)/Gext, the

ratio of stopped to walking mitochondria k̂s = ks/kw,
and the saturation constant for glucose transporters
KMP /KM ≈ 96. The last parameter is expected to re-
main approximately constant in neuronal cells. The av-
erage external glucose concentration and glucose gradi-
ent are expected to vary substantially depending on the
glycemic environment to which the neuron is exposed.

We note that ∆Ĝext has a maximum possible value since
the minimal glucose concentration cannot drop below 0.
We proceed to analyze the limiting case where the glu-
cose gradient is as steep as possible for any given value

of average external glucose (∆Ĝext = 2).

MITOCHONDRIAL ARREST ENABLES
METABOLIC ENHANCEMENT UNDER

GLUCOSE GRADIENT

We quantify the amount of mitochondrial accumula-
tion at the high glucose side of the domain by calculat-
ing the total mitochondrial density within the distal 10%
of the interval compared to a uniform distribution, in
analogy to experimental measurements[28]. Substantial
enrichment in the high glucose region occurs when glu-
cose entry into the cell cannot keep up with consumption
(γ � 1) and the intracellular glucose levels drop below
the hexokinase saturation concentration KM , as can be
seen in the glucose and mitochondrial distributions plot-
ted in Fig. 6a-c. The interplay between external glucose
levels and the entry / consumption rates is illustrated in
Fig. 6d. For external glucose concentrations well above
KM there is a sharp transition to mitochondrial enrich-
ment at γ < 1. At the lowest levels of intracellular
glucose, accumulation is again reduced because a very
small fraction of mitochondria are found in the stopped
state. In the limit of high ks, mitochondrial accumulation
would occur for arbitrarily low values of γ (Fig. S2). We
note that because glucose entry and turnover are much
faster than diffusive spread for biologically relevant pa-
rameter regimes, the model results do not depend on the
cell length L (Supplementary Information and Fig. S1).

Experimental measurements of mitochondrial enrich-
ment in cultured neurons subjected to a gradient of 0
to 5mM glucose have indicated an approximately 20%

enrichment in mitchondrial counts at the axonal region
exposed to high glucose. We note that using published es-
timates of typical glucose permeability and mitochondrial
glucose turnover for mammalian cells (Table I) yields a
ratio of entrance and consumption rates of γ ≈ 1.9 for
this experimental system. Because this ratio is above
1, we would not expect to see substantial mitochondrial
enrichment. To result in the experimentally observed
enrichment at high glucose, the ratio γ would need to
be reduced by approximately a factor of 2, implying the
existence of additional regulatory mechanisms. Modu-
lation of γ could be achieved by either decreasing the
number of glucose transporters in the cell (reducing P )
or upregulating total hexokinase levels (increasing kg).
Neurons are believed to regulate both the density of glu-
cose transporters and hexokinase activity in response to
external glucose concentrations and varying metabolic
demand[55–57]. In particular, adaptation to glycemic
levels well above physiological values, as well as possibly
reduced synaptic activity in a cultured environment, may
result in downregulation of glucose transporters, lowering
the value of γ. The discrepancy between model predic-
tion and observed mitochondrial accumulation highlights
the existence of additional regulatory pathways not in-
cluded in the current model whose role could be explored
in further studies that directly quantify glucose entry and
consumption rates in cultured neurons.

Physiological brain glucose levels have been measured
at 0.7mM - 1.3mM[47], with hypoglycemic levels dipping
as low as 0.1mM and hyperglycemic levels rising up to
4mM[48]. Axons that stretch across different brain re-
gions with varying glucose levels can thus be subject to
a glucose gradient with Gext on the order of 1mM (white
line on Fig. 6d). We note that the physiological range
overlaps substantially with the region of high mitochon-
drial accumulation, indicating that glucose-dependent
halting can modulate mitochondrial distribution under
physiologically relevant glycemic levels.

By accumulating mitochondria at the cellular region
subjected to higher external glucose, the metabolic flux
in that region can be substantially enhanced. In Fig. 6e
we plot the enhancement in glucose consumption rates
(compared to the case with uniformly distributed mito-
chondria) within the 10% of cellular length subjected to
the highest glucose concentrations. Metabolic enhance-
ment occurs within a narrow band of the γ parameter.
The drop-off in enhancement at low values of the in-
ternal glucose concentration (low γ) is due to the cou-
pling between glucose levels and mitochondrial localiza-
tion. Specifically, mitochondrial accumulation at the re-
gion subject to high glucose concentration increases the
local rate of consumption in that region, driving down
local internal glucose levels. Consequently, the difference
in internal glucose concentrations between the two ends
of the cell is decreased when internal levels fall substan-
tially below KM (Fig. 6b), reducing the enhancement
of metabolic flux. Although mitochondrial accumulation
decreases metabolic flux in the low glucose region, the
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total rate of glucose consumption integrated throughout
the cell is enhanced by up to approximately 14% when
γ ≈ 1 (Fig. 6f).

It is interesting to note that the typical physiological
range of external glucose levels spans the narrow band
of parameter space where metabolic enhancement is ex-
pected (white lines on Fig. 6e,f). These results implicate
glucose-dependent mitochondrial stopping as a quanti-
tatively plausible mechanism of metabolic flexibility, in-
creasing metabolism in regions with high nutrient avail-
ability for axonal projections that span between hypo-
glycemic and euglycemic regions. The magnitude of this
effect can be tightly controlled by the cell through mod-
ulating overall rates of glucose entry and consumption.
Thus, by coupling mitochondrial transport to local glu-
cose levels, whole-cell changes in hexokinase or glucose
transporter recruitment can be harnessed to tune the
cell’s response to spatially heterogeneous glucose concen-
trations.

DISCUSSION

The minimal model described here provides a quantita-
tive framework to explore the interdependence of glucose
levels and mitochondrial motility and their combined ef-
fect on neuronal metabolic flux. Glucose-mediated halt-
ing of mitochondrial transport is shown to be a plausible
regulatory mechanism for enhancing metabolism in cases
with spatially heterogeneous glucose availability in the
neuron.

We have quantitatively delineated the regions in
parameter space where such a mechanism can have
a substantial effect on mitochondrial localization and
metabolic flux. Specifically, mitochondrial positioning
requires both sufficient spatial variation in intracellular
glucose and sufficiently low absolute glucose levels com-
pared to the saturation constant of the hexokinase en-
zyme. In the case of tightly localized glucose entry (as at
the nodes of Ranvier), intracellular spatial heterogene-
ity requires a small value of the dimensionless length

scale for glucose decay (λ̂ =
√
DKM/kgM̄L2 � 1).

For physiologically estimated values, mitochondrial lo-
calization to the nodes is expected to occur for glucose
levels below approximately 2mM, comparable to physio-
logical brain glucose concentrations[47, 49]. In the case
where glucose can enter homogeneously throughout the
cell surface (as with unmyelinated axons), heterogeneity
can arise from an external glucose gradient. We show
that metabolic enhancement through mitochondrial po-
sitioning occurs in a narrow range of the key parame-
ter γ = (2PKMPGext)/(kgM(KMP + Gext)), which de-
scribes the ratio of glucose entry to glucose metabolism,
and that this narrow range intersects with physiological
estimates.

The model developed here is intentionally highly sim-
plified, encompassing a minimal set of parameters nec-
essary to describe glucose-dependent mitochondrial lo-

calization. Other regulatory pathways that determine
mitochondrial positioning are not included in this basal
model. In particular, we do not consider here calcium-
based transport regulation, which is known to localize mi-
tochondria to regions of synaptic activity[26, 27, 29, 58].
Upregulating OGT signaling in cultured cells has been
shown to decrease the fraction of motile mitochondria by
a factor of three, while reducing endogenous OGT nearly
doubles the motile fraction, indicating that a substantial
number of stationary mitochondria are stopped as a re-
sult of OGT activity[28]. Our model assumes the extreme
case where all stopping events are triggered in a glucose-
dependent manner, thereby isolating the effect of glucose
heterogeneity. Stopping mechanisms dependent on neu-
ronal firing activity could alter mitochondrial distribu-
tion in concert with glucose-dependent halting, increas-
ing the density of mitochondria at presynaptic boutons
or near areas of localized calcium influx as at the nodes of
Ranvier[58]. We note that mitochondria have previously
been shown to accumulate at spinal nodes of Ranvier in
response to neuronal firing activity[58, 59]. The mecha-
nism described here provides an additional driving force
for mitochondrial localization near the nodes even in qui-
escent neurons.

Several key parameters that regulate mitochondrial lo-
calization in response to glucose heterogeneity can be dy-
namically regulated in neurons. Specifically, the rate of
glucose consumption (kgM) can be tuned by modulat-
ing the concentration or activity of hexokinase within
mitochondria or by altering total mitochondrial size and
number. This parameter controls both the glucose decay

length λ̂ in the case of localized glucose influx and the
ratio of glucose entry to consumption γ in the case of spa-
tially distributed entry. We note that our model assumes
hexokinase to be localized exclusively to mitochondria.
The predominant form of hexokinase in the brain (HK1)
is known to bind reversibly to the mitochondrial mem-
brane, with exchange between a mitochondria-bound and
a cytoplasmic state believed to contribute to the regula-
tion of its activity[60]. Release of hexokinase into the
cytoplasm would result in more spatially uniform glu-
cose consumption, negating the metabolic enhancement
achieved through mitochondrial localization.

An additional parameter known to be under regula-
tory control is the rate of glucose entry into the neu-
ron (P ). The glucose transporters GLUT3[9, 50, 57]
and GLUT4[17] have been shown to be recruited to the
plasma membrane in response to neuronal firing activity.
Interestingly, transporter densities are themselves spa-
tially heterogeneous, concentrating near regions of synap-
tic activity[17, 61]. The model described in this work
quantifies the extent to which a locally increased glucose
influx can enhance total metabolic flux, given the ability
of mitochondria to accumulate at regions of high intra-
cellular glucose.

A number of possible feedback pathways linking glu-
cose distribution and mitochondrial positioning are not
included in our basic model. For instance, hexokinase re-
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lease from mitochondria into the cytoplasm (potentially
altering kg) is known to be triggered at least in part
by glucose-6-phosphate, the first byproduct in glucose
metabolism[62]. Chronic hypoglycemia has been linked
to an upregulation in GLUT3 in rat neurons [63], which
would in turn lead to an increased glucose uptake (P ).
The fraction of glucose funneled into the hexosamine
biosynthetic pathway (incorporated within ks) can also
be modified through feedback inhibition of GFAT by the
downstream metabolic product UDP-GlcNAc[46]. Such
feedback loops imply that several of our model param-
eters (P , kg, ks) are themselves glucose-dependent and
may become spatially non-uniform in response to hetero-
geneous glucose. Incorporating these effects into a spa-
tially resolved model of metabolism would require quan-
tifying the dynamics of both the feedback pathways and
mitochondrial positioning, and forms a promising avenue
for future study.

Control of glucose entry and consumption underlies
cellular metabolic flexiblity, and defects in the associ-
ated regulatory pathways can have grave consequences
for neuronal health. Misregulation of hexokinase has
been highlighted as a contributor to several neurological
disorders, ranging from depression [64] to schizophrenia
[65]. Neuronal glucose transporter deficiency has been
linked to autism spectrum disorders[66] and Alzheimer’s
disease[67]. Furthermore, defects in mitochondrial trans-
port, with the consequent depletion of mitochondria in

distal axonal regions, contribute to peripheral neuropa-
thy disorders[22].

Glucose-dependent mitochondrial localization provides
an additional layer of control, beyond conventionally
studied regulatory mechanisms, which allows the cell to
respond to spatial heterogeneity in glucose concentra-
tion. Our analysis paves the way for quantitative under-
standing of how flexible regulation of metabolism can be
achieved by controlling the spatial distribution of glucose
entry and consumption.
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