
 257 

Figure 1 Read assignment accuracy in experiments i100 (panel A), p25 (panel B), and HMP7 (panel C) for Kraken and MetaMaps. 258 
Bar plots show PPV, recall for all reads, and recall for reads longer than 2000 bases at different evaluation levels. Note that 259 
Kraken was not designed to achieve strain-level resolution; it is therefore not validated at this level.  260 

MetaMaps can also accurately estimate sample composition (Figure 2). At the strain level, MetaMaps 261 

achieves a Pearson’s 𝑟2 between estimated and true abundances of 0.87 (i100) and 0.77 (p25). These 262 

increase to >0.99 at higher levels. The performance of Bracken and MetaMaps is similar; MetaMaps, 263 

however, exhibits slightly smaller distances (L1-norm) between estimated and true compositions. Full 264 

compositional estimation accuracy results are shown in Supplementary Table S8. 265 

We use the i100 experiment to assess the effect of read length on the ability to accurately classify a read. 266 

All methods show a trend towards higher classification accuracy for longer reads. This effect is most 267 

pronounced for Kraken (Figure 3), whereas MetaMaps exhibits relatively constant classification accuracy, 268 

once the minimum read length has been reached (see Discussion).  269 
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 270 

Figure 2 Panels A and B: True and inferred sample composition frequencies, for MetaMaps and Bracken. Bracken was not 271 
designed to achieve strain-level accuracy and is therefore not validated at this level.  Panel C: Compositional estimation in the 272 
HMP7 experiment at the genus level, shown for Bracken and MetaMaps, and compared to the assumed true composition. Note 273 
that the Acinetobacter, Actinomyces, and Rhodobacter genomes present in the sequencing sample are not part of the database; 274 
reads classified as belonging to these genera map to other genomes of the same species / genus (see “Evaluating HMP7” in 275 
“Methods”). 276 
 277 

Real HMP7 data 278 

To evaluate performance on real data, we apply MetaMaps and Kraken/Bracken to PacBio data from the 279 

Microbial Mock Community B of the Human Microbiome Project (HMP Set 7). Note that not all 280 

genomes represented in HMP7 are part of the utilized reference database (see Methods), and that sample-281 

database mismatches are a recurrent concern in metagenomics. 282 

First, we evaluate read assignment accuracy (Figure 1 and Supplementary Table S7). At the strain level, 283 

MetaMaps achieves a PPV of 56%; but we note that strain-level differences might exist between the 284 

sequenced HMP7 sample and the reference genomes deposited in NCBI. Consistent with this, PPV 285 

increases to 95% at the species level. MetaMaps consistently outperforms Kraken in terms of PPV, by a 286 

margin between 9% (species) and 5% (family). It also outperforms Kraken in terms of PPV2, though by 287 

smaller margins (1 – 2%). In the HMP7 dataset, a higher proportion (23%) of reads remain unassigned 288 
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due to the minimum length requirement of MetaMaps, and Kraken achieves higher recall values than 289 

MetaMaps (margin 13% - 16%). We note, however, that MetaMaps recall for reads longer than 2000bp is 290 

>92% across all evaluated levels and consistently higher than that of Kraken (on the same set of reads). 291 

Second, we consider the accuracy of sample composition estimation (Supplementary Table S8). As 292 

before, estimating sample composition at the strain level is most challenging (MetaMaps 𝑟2 = 0.3); the 293 

accuracy of the estimation is much higher at the species (𝑟2 = 0.98) and genus/family (𝑟2 = 0.91) levels. 294 

On the HMP7 data, MetaMaps has a consistent advantage over Bracken (Figure 3), which has a species-295 

level 𝑟2 of 0.85. Of note, accuracy for the Actinomyces genus is low for both MetaMaps and Kraken, 296 

because the specific strain present in HMP7 is not part of the reference database (see Methods and next 297 

section).  298 

 299 

 300 

Figure 3 PPV of called reads in simulation experiment i100, stratified by read length. Note that MetaMaps results start at a 301 
minimum read length of 2,000, corresponding to the “minimum read length” parameter the algorithm was run with. For bins 302 
above the MetaMaps minimum read length, recall equals PPV. 303 

Database-sample mismatches  304 

Mismatches between the sequencing sample and the utilized database are an important concern in 305 

metagenomics (i.e. sequencing reads originating from genomes not in the database). To evaluate the 306 

effect of large out-of-database genomes, we assess classification accuracy in experiment e2. Experiment 307 

e2 contains simulated reads from two eukaryotic genomes, neither of which is present in the reference 308 

database (the yellow fever mosquito and Toxoplasma gondii, representing plausible contamination 309 

scenarios; see Methods). For both read sets, MetaMaps has a low false-positive rate and correctly leaves 310 

the large majority of reads unclassified (99% PPV/recall at the species, genus and family levels for 311 

mosquito reads and 98% of toxoplasma reads); of note, the minimum length requirement of MetaMaps 312 

does not contribute to this result, as all simulated reads in this experiment are long enough (see Methods). 313 

Kraken and Bracken, on the other hand, falsely classify four times as many mosquito reads and eightfold 314 

more toxoplasma reads than MetaMaps (96% PPV/recall for mosquito reads and 83% for toxoplasma 315 

reads, at the same levels). Actual microbial contamination of these eukaryotic assemblies is possible, but 316 

given that MetaMaps shows similar sensitivity to Kraken on the other datasets, it is likely that the 317 

majority of Kraken/Bracken e2 calls are false. 318 
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We use the HMP7 data to evaluate the effect of subtler mismatches and whether the availability of read 319 

mapping locations and estimated alignment identities enable the detection of database-sample 320 

mismatches. MetaMaps provides an R tool to visualize spatial coverage and identities of the read 321 

mappings. Examination of these plots for the Actinomyces genome (Figure 4), which is diverged from the 322 

strain in the sequencing dataset (mash distance 0.14, see Methods), reveals both a highly uneven coverage 323 

pattern as well as a stark shift of read identities away from the expected average of around 0.88 324 

(approximately equal to 1 minus the sequencing error rate, Supplementary File S9). It is clear from these 325 

results that any Actinomyces-related result from this experiment would have to be interpreted with 326 

caution, consistent with the high evolutionary distance between the sample Actinomyces genome and its 327 

next-closest relative in the database. 328 

 329 

 330 

 331 

Figure 4 Estimated alignment identity and spatial genome coverage for Helicobacter pylori 26695-1 (panel A) and Actinomyces 332 
meyeri (panel B) in the HMP7 experiment. Actinomyces meyeri is the next-closest database relative for the Actinomyces 333 
odontolyticus genome present in the HMP7 sequencing data (mash distance 0.14). Helicobacter pylori 26695-1 is present in 334 
HMP7 and in the reference database. Uneven spatial coverage and estimated mapping identities shifted away from the 335 
expected mode around 0.88 for Actinomyces meyeri are indicative of a mismatch between the sequencing sample and the 336 
reference database. Complete plots for HMP7 are contained in Supplementary File S9. 337 

Runtime and memory-efficient mode 338 

At the expense of slightly increased runtimes, MetaMaps can be run in memory-efficient mode, with an 339 

upper memory consumption target to be specified by the user. We evaluate this mode by repeating the 340 

i100 experiment with target memory set to 20 GB. First, the complete MetaMaps classification process in 341 

standard mode takes 9 CPU hours and memory consumption peaks at 139 GB, well above the capacity of 342 

standard workstation computers. With a target memory set to 20 GB, the classification process takes 15 343 

CPU hours and memory peaks at 26 GB, a requirement that can be satisfied by medium-ranged 344 

workstations (Supplementary Table S10). Note that effectively consumed memory can exceed the 345 

specified target maximum amount (Methods). The accuracy of both read assignment and sample 346 

composition is virtually unaffected by limiting memory (Supplementary Table S7 and Supplementary 347 

Table S8). Kraken/Bracken are 1–2 orders of magnitude faster than MetaMaps (Supplementary Table 348 

S10) but require more memory (154 GB) and do not report read mapping information. 349 
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Discussion 350 

We have presented MetaMaps, an algorithm specifically developed for the analysis of long-read 351 

metagenomic datasets that enables simultaneous read assignment and sample composition analysis. The 352 

key novelty of MetaMaps is the combination of an approximate mapping algorithm with a model for 353 

mapping qualities and the application of the EM algorithm for estimation of overall sample composition. 354 

As discussed in the Introduction, this design was motivated by the aim to develop an algorithm tailored 355 

for long reads that is both fast and preserves per-read spatial and quality information. 356 

Our evaluations show that MetaMaps outperforms Bracken in terms of sample composition estimation, 357 

that the read assignments of MetaMaps are more accurate than those of Kraken, and that recall for long 358 

reads (above defined as > 2000 bp) is consistently higher than that of Kraken. However, a proportion of 359 

reads remain unassigned under the MetaMaps model because they do not meet the minimum length 360 

requirement. This is a direct consequence of the approach we chose for approximate mapping, which 361 

determines minimizer density based on expected read lengths and alignment identities. Reads that fall 362 

below the chosen minimum length end up with minimizer sets that are too small to reliably determine 363 

their mapping locations. It is worth noting, however, that minimum read length and expected alignment 364 

identities are user-defined parameters that can be set empirically (for example based on the distribution of 365 

read lengths) and according to user preferences (e.g. with respect to runtime and the proportion of reads 366 

that remain unclassified). In addition, read lengths can be optimized with specific protocols for the 367 

extraction of high-molecular-weight DNA; the applicability of these, however, depends on sample and 368 

experimental conditions. 369 

MetaMaps computes a maximum likelihood approximate mapping location, an estimated identity and 370 

mapping qualities for all candidate mapping locations. Its output is nearly as rich as alignment-based 371 

methods and enables a very similar set of applications, while being many times faster. 372 

We have demonstrated the advantages of this approach. First, MetaMaps is robust against the presence of 373 

large out-of-database genomes, for example eukaryotic genomes. Contamination and environmental DNA 374 

are important concerns in many metagenomic studies, and the MetaMaps model is more robust against 375 

these than methods based purely on individual k-mers. Second, estimated alignment identities can be 376 

informative about the presence of novel species or strains that have a related in-database genome. This 377 

too is an important concern, as microbial reference databases comprise but a fraction of total microbial 378 

genome diversity. Third, because it reports mapping information, MetaMaps can be used to ascertain the 379 

presence of particular genes or loci of interest, for example antibiotic resistance genes or virulence 380 

factors. 381 

In many plausible metagenomic analysis scenarios, computing resources are limited — for example when 382 

sequencing metagenomes using a portable nanopore device during a field trip without reliable internet 383 

connection. We therefore developed a feature to limit memory consumption during the approximate 384 

mapping step. As we showed, reducing memory consumption comes at a runtime cost, but accuracy 385 

remains unaffected, and, in contrast to many other similar approaches, classification is still carried out 386 

against the complete reference database. 387 

There are two important directions for future work. First, building support for streaming data into 388 

MetaMaps would be an important feature for many clinical applications. It could also be used to control 389 

the “read until” {Loose, 2016 #190} feature of the Nanopore technology. Such an extension would be 390 

relatively straightforward to implement in terms of the algorithms’ architecture by dynamically re-391 

computing mapping qualities, to the extent that they are influenced by changes in the global sample 392 

composition frequency vector. Second, it would be desirable to integrate an explicit term for genomic 393 

divergence directly into the statistical models of MetaMaps; this would enable the explicit detection of 394 

and testing for novel strains and species in the sequencing sample. K-mer painting approaches [18] have 395 
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been suggested as a solution to this problem in the short-read space. How to best implement the detection 396 

of novelty from long-read data remains an open question for further research. 397 
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Supplementary Figure Legends 401 

Supplementary Figure S1. MetaMaps uses an extended version of the NCBI taxonomy in which each 402 

reference database genome has a unique taxon ID. This is constructed by creating additional pseudo taxon 403 

IDs (prefixed with an ‘x’), which distinguish between genomes attached to the same node in the original 404 

NCBI taxonomy. 405 

Supplementary Figure S2. High-level overview of the approximate mapping algorithm [25]. Minimizers 406 

are selected from the reference and from the reads. Minimizer matches between read and reference are 407 

identified using a hash table, inducing candidate mapping locations. Minimizer density is determined 408 

based on minimum read length and alignment identity. For each candidate mapping location, we use a 409 

winnowed-minhash approach, based on read and reference minimizers, to estimate the Jaccard similarity 410 

between the full kmer sets of the read and the candidate mapping location, and convert this estimate into 411 

an estimate of alignment identity. The steps below the dashed line show the subsequent steps of mapping 412 

quality computation and EM-based sample composition estimation. 413 

Supplementary Table S3. Summary of the i100 simulated data, representing a medium-complexity 414 

metagenome of 96 species (see Methods). “taxonID” and “Name” specify the NCBI taxonomy ID and the 415 

name of the organism, “NCs” the contig IDs that were used for read simulation (with pbsim; see 416 

Methods). “Bases”, “nReads” and “Genomes” refer to the number of simulated bases, reads and genome 417 

equivalents per organism. 418 

Supplementary Table S4. Summary of the p25 simulated data, representing 15 potentially pathogenic 419 

and 10 common bacterial species (see Methods). “taxonID” and “Name” specify the NCBI taxonomy ID 420 

and the name of the organism, “NCs” the contig IDs that were used for read simulation (with pbsim; see 421 

Methods). “Bases”, “nReads” and “Genomes” refer to the number of simulated bases, reads and genome 422 

equivalents per organism. 423 

Supplementary Table S5. Summary of the HMP7 data, which were generated by sequencing a mock 424 

community sample generated by the Human Microbiome Project with the PacBio technology. To generate 425 

a truth set, all reads were mapped using bwa against the reference genomes specified in the sample 426 

product information sheet (column “GIs used for truth-set mapping”). “taxonID” and “Name” specify the 427 

NCBI taxonomy ID and name of the organism; “Bases” and “nReads” specify, for each organism, the 428 

sum of read lengths and the absolute read count assigned to each organism in the truth set; “Genomes” is 429 

the base count divided by approximate genome length. 430 

Supplementary Figure S6. In experiment HMP7, not all genomes present in the input data are present in 431 

the reference database. We assign reads that emanate from out-of-database entities to the taxonomic node 432 

that represents the most recent common ancestor of the read’s source genome and its next-closest 433 

database relative; and for all taxonomic levels below the most-recent-common-ancestor node, true read 434 

assignment is defined as “Unassigned” (special taxon ID 0).  435 

Supplementary Table S7. Read assignment accuracy at different evaluation levels for the p25, i100 and 436 

HMP7 experiments. Strain-level accuracy is measured at the level of individual database genomes (see 437 

Methods). Kraken doesn’t support strain-level analysis and is therefore not validated at this level. “# 438 

Reads” specifies the total size of the input read set; “PPV (full)” is the proportion of correct read 439 
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assignments; “PPV2 (!= 0)” is the proportion of correct non-0 read assignments; “Recall” is the 440 

proportion of reads having received a correct call.  441 

Supplementary Table S8. Accuracy of compositional estimation at different evaluation levels for the 442 

p25, i100, and HMP7 experiments. Strain-level accuracy is measured at the level of individual database 443 

genomes (see Methods). Bracken was not designed to achieve strain-level resolution and Kraken was not 444 

designed for compositional estimation; the corresponding cells are therefore grayed out. Metric L1 445 

quantifies the difference between the true and inferred composition vectors using the L1 norm; metric r2 446 

quantifies the similarity between the true and inferred composition vectors using Pearson’s 𝑟2; both 447 

metrics are limited to columns that are non-0 in either the true or the inferred composition vector. 448 

Supplementary File S9. Summary statistics (read length, estimated alignment identities, and genome 449 

coverage for each genome with an estimated frequency >0.1%; alternating colors in the coverage plots 450 

indicate chromosome boundaries) for the HMP7 analysis. Note how the Actinomyces genome differs from 451 

the other genomes in terms of alignment identities and spatial genome coverage. MetaMaps comes with a 452 

lightweight R script for the generation of equivalent plots for user datasets. 453 

Supplementary Table S10. CPU time and peak memory statistics for the p25, i100 and HMP7 454 

experiments. The i100 “limited memory” experiment was run with a target maximum memory amount of 455 

20GB (--maxmemory 20). 456 

  457 
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