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Abstract

Understanding the magnitude and structure of inter-neuronal correlations and their
relationship to synaptic connectivity structure is an important and difficult problem in
computational neuroscience. Early studies show that neuronal network models with
excitatory-inhibitory balance naturally create very weak spike train correlations. Later
work showed that, under some connectivity structures, balanced networks can produce
larger correlations between some neuron pairs, even when the average correlation is very
small. All of these previous studies assume that the local neuronal network receives
feedforward synaptic input from a population of uncorrelated spike trains. We show
that when spike trains providing feedforward input are correlated, the downstream
recurrent neuronal network produces much larger correlations. We provide an in-depth
analysis of the resulting “correlated state” in balanced networks and show that, unlike
the asynchronous state of previous work, it produces “tight” excitatory-inhibitory
balance, consistent with in vivo cortical recordings.

Author summary

Correlation and synchrony between the activity of neurons in the brain is known to play
a crucial role in the dynamics and coding properties of neuronal networks, and also
mediates synaptic plasticity and learning. Therefore, it is important to understand the
relationship between the structure of connectivity in a neuronal networks and the
correlations between the activity of neurons in the network. Previous theoretical work
shows that this relationship is constrained by the widely observed balance between
excitatory (positive) and inhibitory (negative) input received by neurons in the network.
We extend this previous theoretical work to account for the fact that inputs coming
from outside the local neuronal network might come from neural populations that are
themselves correlated or partially synchronous. Including this biologically realistic
assumption changes the basic operating state of the network and produces a tighter
balance between excitatory and inhibitory synaptic inputs that is consistent with in
vivo recordings.

Introduction 1

Correlations between the spiking activity of cortical neurons have important 2

consequences for neural dynamics and coding [1–3]. A quantitative understanding of 3
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how spike train correlations are generated and shaped by the connectivity structure of 4

neural circuits is made difficult by the noisy and nonlinear dynamics of recurrent 5

neuronal network models [4–7]. Linear response and related techniques have been 6

developed to overcome some of these difficulties [8–14], but their accuracy typically 7

require an assumption of sparse and/or weak connectivity and, in some models, an 8

additional assumption that neurons receive uncorrelated, feedforward Gaussian white 9

noise input. However, cortical circuits are densely connected and receive spatially and 10

temporally correlated synaptic input from outside the local circuit [15–18]. 11

An alternative approach to analyzing correlated variability in recurrent neuronal 12

network models is motivated in part by the widely observed balance between excitatory 13

and inhibitory synaptic inputs in cortex [19–26]. When synaptic weights are scaled like 14

1/
√
N where N is the size of a model network, a cortex-like balance between excitation 15

and inhibition arises naturally at large network size, which defines the “balanced 16

state” [27,28]. Early work on balanced networks assumed sparse connectivity to 17

produce weak spike train correlations, but it was later shown that keeping connection 18

probabilities O(1) naturally produces weak, O(1/N), spike train correlations, defining 19

the “asynchronous state” [29]. While these extremely weak spike train correlations are 20

consistent with some cortical recordings [30], the magnitude of correlations in cortex can 21

depend on stimulus, cortical area, layer, and behavioral or cognitive state, and can be 22

much larger than predicted by the asynchronous state [6, 31–35]. This raises the 23

question of how larger correlation magnitudes can arise in balanced cortical circuits. 24

Later theoretical work showed that larger correlations can be obtained between some 25

cell pairs in densely connected networks with specially constructed connectivity 26

structure [36–39], offering a potential explanation of the larger correlations often 27

observed in recordings. These previous theoretical studies of correlated variability in 28

balanced networks assume that the recurrent network receives feedforward synaptic 29

input from an external population of uncorrelated spike trains, so feedforward input 30

correlations arise solely from overlapping feedforward synaptic projections. In reality, 31

feedforward synaptic input to a cortical population comes from thalamic projections, 32

other cortical areas, or other cortical layers in which spike trains could be correlated. 33

We extend the theory of densely connected balanced networks to account for 34

correlations between the spike trains of neurons in an external, feedforward input layer. 35

We show that correlations between the feedforward synaptic input to neurons in the 36

recurrent network are O(N) in this model, but cancel with O(N) correlations between 37

recurrent synaptic input to produce O(1) total input correlation and O(1) spike train 38

correlations on average, defining what we refer to as the “correlated state” in densely 39

connected balanced networks. This correlated state offers an alternative explanation for 40

the presence of moderately large spike train correlations in cortical recordings. We 41

derive a simple, closed form approximation for the average cross-spectral density 42

between neurons’ spike trains in the correlated state in term of synaptic parameters 43

alone, without requiring the use of linear response theory or any other knowledge of 44

neurons’ transfer functions. We show that the tracking of excitatory synaptic input 45

currents by inhibitory currents is more precise and more similar to in vivo 46

recordings [22] in the correlated state than in the asynchronous state. We also 47

investigate the applicability of linear response approximations to correlated variability 48

in densely connected balanced networks. Taken together, our results extend the theory 49

of correlated variability in balanced networks to the biologically realistic assumption 50

that presynaptic neural populations are themselves correlated. 51
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Results 52

We consider recurrent networks of N integrate-and-fire model neurons, Ne of which are 53

excitatory and Ni inhibitory. Neurons are randomly and recurrently interconnected and 54

also receive random feedforward synaptic input from an external population of Nx 55

neurons whose spike trains are homogeneous Poisson processes with rate rx (Fig. 1A). 56

The membrane potential of neuron j in population a = e, i obeys the exponential 57

integrate-and-fire (EIF) dynamics 58

Cm
dV aj
dt

= −gL(V aj − EL) +DT e
(V a

j −VT )/DT + T aj (t)

with the added condition that each time V aj (t) exceeds Vth, it is reset to Vre and a spike 59

is recorded. We additionally set a lower bound on the membrane potential at 60

Vlb = −100mV. Spike trains are represented as a sum of Dirac delta functions, 61

Saj (t) =
∑
n

δ(t− ta,jn ),

where ta,jn is the nth spike time of neuron j in population a = e, i, x. The total synaptic 62

input current to neuron j in population a = e, i is decomposed as 63

T aj (t) = Eaj (t) + Iaj (t) +Xa
j (t)

where 64

Baj (t) =

Nb∑
k=1

Jabjk (αb ∗ Sbj )(t) (1)

for B = E, I,X and b = e, i, x respectively where ∗ denotes convolution, Jabjk is the 65

synaptic weight from neuron k in population b to neuron j in population a, and αb(t) is 66

a postsynaptic current (PSC) waveform. Without loss of generality, we assume that 67∫
αb(t) = 1. We use αb(t) = τ−1b e−t/τbH(t) where H(t) is the Heaviside step function, 68

though our results do not depend sensitively on the precise neuron model or PSC kernel 69

used. For calculations, it is useful to decompose the total synaptic input into its 70

recurrent and external sources, 71

T aj (t) = Raj (t) +Xa
j (t)

where 72

Raj (t) = Eaj (t) + Iaj (t)

is the recurrent synaptic input from the local circuit. 73

Local cortical circuits contain a large number of neurons and individual cortical 74

neurons receive synaptic input from thousands of other neurons within their local circuit 75

and from other layers or areas. Densely connected balanced networks have been 76

proposed to model such large and densely interconnected neuronal networks [29, 38]. In 77

such models, one considers the limit of large N (with Nx, Ne and Ni scaled 78

proportionally) with fixed connection probabilities and where synaptic weights are 79

scaled like O(1/
√
N) [28,29]. This scaling naturally captures the balance of mean 80

excitatory and mean inhibitory synaptic input, as well as the tracking of excitation by 81

inhibition, observed in cortical recordings [29]. In particular, we consider a random 82

connectivity structure in which 83

Jabjk =
1√
N

{
jab with probability pab

0 otherwise
(2)
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where connections are statistically independent and jab, pab ∼ O(1) for b = e, i, x and 84

a = e, i. We furthermore define the proportions 85

qb =
Nb
N

which are assumed O(1). For all examples we consider, qe = 0.8 and qi = qx = 0.2. 86

We next introduce notational conventions for quantifying the statistics of spike 87

trains and synaptic inputs in the network. The mean firing rates of neurons in 88

population a = e, i, x is defined by ra for a = e, i, x and it is useful to define the 2× 1 89

vector, r = [re ri]
T . The mean is technically interpreted as the expectation over 90

realizations of the network connectivity, but for large N it is approximately equal to the 91

sample mean over all neurons the network. Similarly, mean-field synaptic inputs to 92

neurons in populations a = e, i are defined by 93

Ua = meanjU
a
j (t)

for U = E, I,X,R, T and, in vector form, U = [Ue Ui]
T

94

For quantifying correlated variability, we use the cross-spectral density (CSD) 95

〈Uaj , Zbk〉(f) =

∫ ∞
−∞

CUa
j Z

b
k
(τ)e−2πifτdτ

between Uaj (t) and Zbk(t) for U,Z = E, I,X, S,R, T and a, b = e, i, x where 96

CUa
j ,Z

b
k
(τ) = cov(Uaj (t), Zbk(t+ τ))

is the cross-covariance function. The argument, f , is the frequency at which the CSD is 97

evaluated. The CSD is a convenient measure of correlated variability because it 98

simplifies mathematical calculations due to the fact that it is a Hermitian operator and 99

because most commonly used measures of correlated variability can be written as a 100

function of the CSD. For example, the cross-covariance is the inverse Fourier transform 101

of the CSD. Spike count covariances over large time windows can be written in terms of 102

the CSD by first noting that the spike count is an integral of the spike train [4], 103

spike count over [0, t0] =

∫ t0

0

Saj (t)dt.

For large t0, the cross-spectrum between two integrals is related to the zero-frequency 104

CSD, 105

lim
t0→∞

1

t0
cov

(∫ t0

0

Uaj (t)dt,

∫ t0

0

Zbk(t)dt

)
= 〈Uaj , Zbk〉(f = 0). (3)

Hence, 106

spike count covariance over [0, t0] ≈ t0〈Saj , Sbk〉(f = 0).

Following this result, we often quantify covariability between spike trains and between 107

synaptic currents using the zero-frequency CSD, which we estimate by taking the 108

covariance between integrals as in Eq. (3) using t0 = 250ms. This provides a simple, 109

easily estimated quantity for quantifying covariance. 110

Most of our computations are performed at the level of population averages, so we 111

define 112

〈Ua,Wb〉 = meanj 6=k〈Uaj ,W b
k〉.

which is a scalar function of frequency, f , for each a, b = e, i, x and 113

U,W = E, I,X, S,R, T . It is also convenient to define the 2× 2 mean-field matrix form, 114

〈U ,W 〉 =

[
〈Ue,We〉 〈Ue,Wi〉
〈Ui,We〉 〈Ui,Wi〉

]
.
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for U ,W = E, I,X,S,R,T . We also define the recurrent and feedforward mean-field 115

connectivity matrices, 116

W =

[
wee wei
wie wii

]
and Wx =

[
wex
wix

]
where wab(f) = pabjabqbη̃b(f) ∼ O(1) with η̃b(f) the Fourier transform of ηb(t). For the 117

exponential kernels we use, η̃b(f) = 1/(1 + 2πifτb). The zero-frequency values, 118

wab = wab(0) = pabjabqb, define time-averaged interactions and mean-field connection 119

matrices, W = W (0) and W x = Wx(0). 120

This choice of notation allows us to perform computations on mean-field spike train 121

and input statistics in a mathematically compact way. To demonstrate this, we first 122

review the mean-field analysis of firing rates in the balanced state [27, 28, 40–42]. Mean 123

external input is given by X =
√
N W xrx and mean recurrent input by R =

√
N Wr 124

so that mean total synaptic input is given by 125

T =
√
N
[
Wr +W xrx

]
.

In the balanced state, T , r ∼ O(1), which can only be obtained by a cancellation 126

between external and recurrent synaptic inputs. This cancellation requires 127

Wr +W xrx ∼ O(1/
√
N) so that [27,28,40–42] 128

lim
N→∞

r = −W−1W xrx (4)

in the balanced state. Hence, the balanced state can only be realized when this solution 129

has positive entries, re, ri > 0, which requires that [27,28,40] 130

Xe/Xi > wei/wii > wee/wie. Below, we perform analogous derivations of mean-field 131

CSDs in balanced networks. 132

A review of the asynchronous balanced state 133

We first review prior theoretical work that derives mean-field CSDs when spike trains in 134

the external population are uncorrelated Poisson processes (Fig. 1A,B), so 135

〈Sx, Sx〉 = 0.

Since the derivations of these results [38] and analogous derivations for networks of 136

binary neuron models [29] are presented elsewhere and since the derivations are similar 137

to those presented below, we only review the results here and give the details of the 138

derivation in Materials and Methods. 139

Since spike trains in the external population are uncorrelated, correlations between 140

the external input to neurons in the recurrent network arise solely from overlapping 141

feedforward synaptic projections with [29,38] (see Materials and Methods) 142

〈X,X〉 = q−1x WxrxW
∗
x ∼ O(1). (5)

where W ∗x is the conjugate transpose of Wx. If the spike trains in the external layer 143

were uncorrelated, but not Poisson, then rx in this equation could be replaced by the 144

power spectral density of the spike trains. 145

It would at first seem that this O(1) external input correlation would lead to O(1) 146

correlations between neurons’ spike trains, but this is prevented by a cancellation 147

between positive and negative sources of input correlation. In particular, correlations 148

between neurons’ recurrent synaptic inputs, 〈R,R〉, are also positive and O(1), but 149

these positive sources of input correlations are canceled by negative correlations 150
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Fig 1. The asynchronous state in densely connected balanced networks. A)
Network diagram. An external population, X, of uncorrelated Poisson processes
provides feedforward input to a randomly connected recurrent network of excitatory, E,
and inhibitory, I, neurons. Feedforward input correlations are solely from overlapping
projections from X. B,C) Raster plot of 200 randomly selected neurons from
population X and E respectively. D) Histogram of external (X, green) recurrent
(R = E + I, purple) and total (T = X + E + I, black) to all excitatory neurons.
Currents here and elsewhere are reported in units CmV/s where Cm is the arbitrary
membrane capacitance. E) Mean external (green), recurrent (purple), and total (black)
input to excitatory neurons for networks of different sizes, N . F) Mean excitatory (red)
and inhibitory (blue) neuron firing rates for difference network sizes. Solid curves are
from simulations and dashed curves are from Eq. (4). G) Mean covariance between
pairs of excitatory neurons’ external inputs (green), recurrent inputs (purple), total
inputs (black), and mean covariance between the recurrent input to one excitatory
neuron and external input to the other (yellow) for different network sizes. Covariances
were computed by integrating the inputs over 250ms windows then computing
covariances between the integrals, which is proportional to zero-frequency CSD and has
a closer relationship with spike count covariance (see Eq. (3) and surrounding
discussion). Integrated currents have units CmmV , so their covariances have units
C2
mmV

2. H) Zoomed in view of black curve from E on a log-log axis (mean total input
covariance, black) plotted alongside the function c/N (dashed gray) where c was chosen
so that the two curves match at the largest N value. I) Mean spike count covariance
between excitatory neuron spike trains (red), between inhibitory neuron spike trains
(blue), and between excitatory-inhibitory pairs of spike trains (purple). Counts were
computed over 250ms time windows. Solid curves are from simulations, dashed from
Eq. (7) evaluated at zero frequency. Network size was N = 105 in B-D.

between neurons’ recurrent and external inputs, 〈X,R〉, in such a way that the total 151

synaptic input correlation is weak, 152

〈T ,T 〉 = 〈X,X〉+ 〈X,R〉+ 〈R,X〉+ 〈R,R〉 ∼ O(1/N)

where 〈R,X〉 = 〈X,R〉∗. This cancellation is realized when the mean-field CSD 153

between spike trains satisfies [38] 154

〈S,S〉 =
1

N
W−1〈X,X〉W−∗ +

1

N
C0 + o(1/N) (6)

where N × o(1/N)→ 0 as N →∞ and W−∗ is the inverse of W ∗. The first term in 155

this equation represents spike train correlations inherited from external inputs, namely 156

〈X,X〉. The second term, C0, represents correlations generated intrinsically by chaotic 157

or chaos-like dynamics in the network [28,38,40,43]. For example, a network with 158

deterministic, constant external input, Xa
j (t) = Xa, generates correlated variability [40] 159

despite the fact that such networks are deterministic once an initial condition is 160

specified and therefore 〈X,X〉 = 0 for such networks. While an exact expression for C0 161

is unknown, we show empirically below that its effects are small compared to 162

correlations inherited from external input, at least for the network parameters that we 163

consider. Therefore, the following approximation is relatively accurate 164

〈S,S〉 ≈ 1

N
W−1〈X,X〉W−∗. (7)

To demonstrate these results, we first simulated a network of N = 104 randomly and 165

recurrently connected neurons receiving feedforward input from a population of 166
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Fig 2. The correlated state in densely connected balanced networks. A,B)
Same as Fig. 1 B,C except spike trains in the external population, X, were correlated
Poisson processes with spike count correlation c = 0.1. C) Mean CSD between
excitatory neuron spike trains (red), between inhibitory neuron spike trains (blue), and
between excitatory-inhibitory pairs (purple). Solid curves are from simulations (each
CSD averaged over 105 pairs) and dashed are from Eq. (14). D-I) Same as Fig. 1D-I
except spike trains in the external population, X, were correlated Poisson processes
with spike count correlation c = 0.1. Dashed lines in I are from Eq. (14) evaluated at
zero frequency. Network size was N = 105 in A-D.

Nx = 2000 uncorrelated Poisson-spiking neurons (Fig. 1A,B). As predicted, spiking 167

activity in the recurrent network was asynchronous and irregular (Fig. 1C; mean spike 168

count correlation between neurons with rates at least 1 Hz was 5.2× 10−4) with 169

approximate balance between external (X) and recurrent (R) synaptic input sources 170

(Fig. 1D). Varying the network size, N , demonstrates the O(
√
N) growth of mean 171

external (X) and recurrent (R) synaptic input currents that cancel to produce O(1) 172

mean total input current (T ) (Fig. 1E), as predicted by the mean-field theory of balance. 173

As a result, firing rates converge to the limiting values predicted by Eq. (4) (Fig. 1F). 174

As predicted by the analysis of the asynchronous state, the mean covariances 175

between individual sources of synaptic inputs appear O(1) (Fig. 1G), but cancel to 176

produce much smaller, O(1/N), total input covariance (Fig. 1G,H). Mean spike count 177

covariances also appear O(1/N) and show good agreement with the closed form 178

approximation from Eq. (7) (Fig. 1I). 179

The fact that the approximation in Eq. (7) accurately captures the scaling of spike 180

count covariances from simulations implies that correlated variability inherited by 181

overlapping synaptic inputs dominate intrinsic correlations, C0, which are ignored in 182

Eq. (7). Similar results were found in previous work [38]. This contrasts with previous 183

findings in networks of binary neurons, in which intrinsic variability appeared to 184

dominate [44]. 185

The correlated state in balanced networks 186

Above, we analyzed correlated variability when spike trains in the external population 187

were uncorrelated, 〈Sx, Sx〉 = 0, which produced asynchronous spiking in the recurrent 188

network, 〈S,S〉 ∼ O(1/N). We now relax this assumption by considering moderate 189

correlations between neurons in the external layer (Fig. 2A), 190

〈Sx, Sx〉 ∼ O(1).

Most previous work analyzing spike train correlations in recurrent networks relies on 191

knowledge of the “correlation susceptibility” or “transfer” function, which quantifies the 192

mapping from synaptic input covariance to spike train covariance, e.g., the mapping 193

from 〈Te, Te〉 to 〈Se, Se〉. However, susceptibility functions depend sensitively on the 194

neuron model being used and their derivation typically relies on diffusion 195

approximations that assume neurons’ input currents can be approximated by Gaussian 196

white noise and are weakly correlated [8, 11]. These assumptions are not valid for the 197

densely connected, correlated networks with exponentially-decaying PSC kernels we 198

consider here. 199

Instead of assuming knowledge of a covariance transfer or susceptibility function, our 200

derivation relies only on an assumption that transfer of mean-field covariance is O(1), 201

specifically that 202

〈Sa, Ub〉
〈Ta, Ub〉

∼ O(1). (8)
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In other words, mean-field spiking statistics are not drastically different in magnitude 203

than mean-field input statistics because neurons transfer inputs to outputs in an O(1) 204

fashion. Importantly, we do not need to know the value of the fraction in Eq. (8). 205

In addition to this assumption, all of our derivations follow from a few simple
arithmetical rules that rely on the bilinearity of the operator 〈·, ·〉. Specifically (see
Materials and Methods for derivations),

〈T ,U〉 = 〈R,U〉+ 〈X,U〉 (9)

〈R,U〉 =
√
NW 〈S,U〉 (10)

〈X,U〉 =
√
NWx〈Sx,U〉 (11)

〈U ,Z〉 = 〈Z,U〉∗ (12)

for any U ,Z = E, I,X,R,S, Sx,T where A∗ is the conjugate-transpose of A and 206

where we omit smaller order terms here and below (see Materials and Methods for 207

details). Eq. (9) follows from the fact that total input is composed of recurrent and 208

external sources, T = R + X. Eqs. (10) and (11) follow from the fact that recurrent 209

and external inputs are composed of linear combinations of O(N) spike trains, c.f. 210

Eq. (1), and that synaptic weights are O(1/
√
N). Eq. (12) is simply a property of the 211

Hermitian cross-spectral operator. 212

We first derive the CSD between external inputs to neurons in the recurrent network. 213

Applying of Eqs. (11) and (12) gives 214

〈X,X〉 =
√
NWx〈Sx,X〉

= NWx〈Sx, Sx〉W ∗x
∼ O(N)

Hence, O(1) covariance between the spike trains in the external population induces 215

O(N) covariance between the external input currents to neurons in the recurrent 216

network. This is a result of the effects of “pooling” on correlations and covariances, 217

namely that the covariance between two sums of N correlated random variables is 218

typically O(N) times larger than the covariances between the individual summed 219

variables [29,45,46]. 220

We next derive the CSD between spike trains and external inputs. First note that 221

〈T ,X〉 = 〈R,X〉+ 〈X,X〉

=
√
NW 〈S,X〉+ 〈X,X〉.

(13)

However, it follows from our assumption that neuronal transfer is O(1) (see Eq. (8)) 222

that 〈T ,X〉 ∼ 〈S,X〉. Therefore, we have 223

〈S,X〉 ∼
√
NW 〈S,X〉+ 〈X,X〉,

which is only consistent if there is a cancellation between the two terms on the right 224

hand side. Specifically, we must have that 225

〈S,X〉 = − 1√
N
W−1〈X,X〉 ∼ O(

√
N)

since 〈X,X〉 ∼ O(N) from above where we have omitted terms smaller than O(
√
N). 226

We can now calculate the CSD between spike trains in the recurrent network. First note 227

that 228

〈S,T 〉 =
√
N〈S,S〉W ∗ + 〈S,X〉

=
√
N〈S,S〉W ∗ − 1√

N
W−1〈X,X〉.
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However, our assumption of O(1) transfer implies that 〈S,T 〉 ∼ 〈S,S〉 so 229

〈S,T 〉 ∼
√
N〈S,S〉W ∗ − 1√

N
W−1〈X,X〉,

which is only consistent if there is cancellation between the terms on the right hand side. 230

This cancellation can only be realized if 231

〈S,S〉 =
1

N
W−1〈X,X〉W−∗

= W−1Wx〈Sx, Sx〉W ∗xW−∗
(14)

which is O(1) and where we have omitted terms of smaller order. Notably, evaluating 232

Eq. (14) does not depend on knowledge of neurons’ correlation susceptibility functions 233

or any other neuronal transfer properties, but only depends on synaptic parameters and 234

input statistics. 235

In summary, O(1) covariance between spike trains in the external population 236

produces O(N) covariance between neurons’ external inputs, but O(1) covariance 237

between spike trains in the recurrent network on average. We hereafter refer to this 238

state as the “correlated state” since it produces moderately strong spike train 239

correlations in contrast to the asynchronous state characterized by extremely weak spike 240

train correlations. The reduction from O(N) external input covariance to O(1) spike 241

train covariance arises from a cancellation mechanism analogous to the one that reduces 242

O(1) external input correlation to O(1/N) spike train correlations in the asynchronous 243

state (see above). 244

To demonstrate these results, we simulated a network of N = 104 neurons identical 245

to the network from Fig. 1 except that spike trains in the external population were 246

correlated Poisson processes (Fig. 2A) with 247

〈Sx, Sx〉(f) = crxe
−4f2π2τ2

c . (15)

Here, rx = 10Hz is the same firing rate used in Fig. 1 and c = 0.1 quantifies the spike 248

count correlation coefficient between the spike trains in the external population over 249

large counting windows. See Materials and Methods for a description of the algorithm 250

used to generate the spike trains. 251

The recurrent network exhibited moderately correlated spike trains in contrast to 252

spike trains in the asynchronous state (Fig. 2B, compare to Fig. 1C; mean spike count 253

correlation between neurons with rates at least 1 Hz was 0.077) . The mean CSDs 254

between spike trains in the recurrent network closely matched the theoretical 255

predictions from Eq. (14) (Fig. 2C). As in the asynchronous state, external and 256

recurrent synaptic input sources approximately canceled (Fig. 2D), as predicted by 257

balanced network theory. 258

Varying N demonstrates that the network exhibits the same cancellation between 259

O(
√
N) mean external and recurrent synaptic input sources and that Eq. (4) for the 260

mean firing rates is accurate (Fig. 2E,F). As predicted by the analysis of the correlated 261

state, the covariance between individual sources of input currents appear O(N) 262

(Fig. 2G), but cancel to produce much smaller, approximately O(1), total input 263

covariance (Fig. 2G,H). Mean spike count covariances also appear O(1) and converge 264

toward the limit predicted by Eq. (14) (Fig. 2I). Hence, despite the complexity of spike 265

timing dynamics in densely connected balanced networks, mean-field spike train 266

covariances is accurately predicted by a simple, linear equation in terms of synaptic 267

parameters. The derivation of this equation does not require the use of linear response 268

theory, which can be problematic for densely connected networks with synaptic kinetics 269

and non-vanishing correlations. 270
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Fig 3. Excitatory-inhibitory tracking in vivo and in simulations. A) In vivo
membrane potential recordings from neurons in rat barrel cortex, reproduced from [22].
Each pair of traces are simultaneously recorded membrane potentials. Red traces were
recorded in current clamp mode near the reversal potential of inhibition and blue traces
near the reversal potential of excitation (with action potentials pharmacologically
suppressed), so red traces are approximately proportional to excitatory input current
fluctuations and blue traces approximate inhibitory input current fluctuations. Vertical
scale bars are 20mV. B,C) Excitatory (red) and inhibitory (blue) synaptic input
currents to two randomly selected excitatory neurons in the asynchronous (B) and
correlated (C) states. Simulations were the same as those in Figs. 1B-D and 2A-D
respectively. Currents are plotted with outward polarity negative and inward positive.

The correlated state produces tight balance between excitatory 271

and inhibitory input fluctuations consistent with cortical 272

recordings 273

We have so far considered cancellation between positive and negative sources of input 274

correlations at the mean-field level, i.e., averaged over pairs of postsynaptic neurons 275

(Figs. 1G,H and 2G,H). In vivo cortical recordings reveal that this cancellation occurs 276

even at the level of single postsynaptic neuron pairs. When one neuron was clamped 277

near its inhibitory reversal potential and another neuron is clamped near its excitatory 278

reversal potential (with spiking suppressed), recorded membrane potential fluctuations 279

are approximately mirror images of one another (Fig. 3A, top). Similarly, if both 280

neurons are held near their excitatory reversal potential (Fig. 3A, middle) or both near 281

their inhibitory reversal potential (Fig. 3A, bottom), recorded membrane potential 282

fluctuations are highly correlated. This implies that fluctuations in the excitatory and 283

inhibitory synaptic input to one neuron are strongly correlated with fluctuations in the 284

excitatory and inhibitory input to other nearby neurons (see [22] for more details and 285

interpretation). 286

To test whether this phenomenon occurred in our simulations, we randomly chose 287

two neurons and decomposed their synaptic input into the total excitatory (E +X) and 288

the inhibitory (I) components. In the asynchronous state, input current fluctuations 289

were fast and largely unshared between neurons or between current sources in the same 290

neuron (Fig. 3B), in contrast to evidence from in vivo recordings. Input current 291

fluctuations in the correlated state were slower, larger, and most importantly largely 292

synchronized between neurons (Fig. 3C), consistent with evidence from in vivo 293

recordings. This precise tracking of fluctuations in excitatory and inhibitory synaptic 294

currents is referred to as “tight balance” [47] (as opposed to the “loose balance” of the 295

asynchronous state). The results would be similar if we decomposed inputs into their 296

external (X) and recurrent (R = E + I) sources instead of excitatory (E +X) and 297

inhibitory (I). 298

To better understand this striking difference between input currents in the 299

asynchronous and correlated states, we first computed the average covariance between 300

the excitatory and inhibitory input to pairs of (excitatory) neurons in the network. 301

These averages have the same dependence on network size, N , as they do when input 302

currents are broken into external and recurrent sources (compare Fig. 4A,B to Figs. 1G 303

and 2G). Specifically, in the asynchronous state, covariances between individual current 304

sources are O(1) on average, but cancel to produce weak O(1/N) covariance between 305

the total synaptic input to neurons on average (Fig. 4A). In the correlated state, the 306

average covariance between individual input sources is O(N) and cancellation produces 307

O(1) average total input covariance (Fig. 4B). 308

Hence, despite the precise cancellation of positive and negative sources of input 309
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Fig 4. The scaling of mean and variance of excitatory and inhibitory input
covariance in the asynchronous and correlated states. A,B) Same as Figs. 1G
and 2G, except inputs were decomposed into their excitatory (E +X), and inhibitory
(I) components instead of external and recurrent. Red curves show mean
excitatory-excitatory input covariance, blue show inhibitory-inhibitory, purple show
excitatory-inhibitory, and black curves show total (same as black curves in Figs. 1G and
2G). C,D) Histogram of input current covariances across all excitatory cell pairs for a
network of size N = 105. E,F) Same as A,B except we plotted the variance of
covariances across cell pairs instead of the mean. As above, integrated currents have
units CmmV , so input covariances have units C2

mmV
2 and the variance of covariances

have units C4
mmV

4 where Cm is the arbitrary membrane capacitance.

covariance at the mean-field level in the asynchronous state (Fig. 4A), this cancellation 310

is apparently not observed at the level of individual neuron pairs (Fig. 3B). To see why 311

this is the case, we computed the distribution of input current covariances across all 312

pairs of excitatory neurons. We found that these distributions were broad and the 313

distribution of total input covariance was highly overlapping with the distributions of 314

individual input current sources (Fig. 4C, the black distribution overlaps with the 315

others). This implies that cancellation does not reliably occur at the level of individual 316

pairs since, for example, the total input covariance for a pair of neurons can be similar in 317

magnitude or even larger than the covariance between those neurons’ excitatory inputs. 318

The distributions of input covariances were strikingly difference in the correlated 319

state. The distribution of total input covariances was far narrower than the 320

distributions of individual input current sources and the distributions were virtually 321

non-overlapping (Fig. 4D). Hence, a precise cancellation between positive and negative 322

sources of input covariance must occur for every neuron pair, leading to the tight 323

balance observed in Fig. 3C. 324

These results are more precisely understood by computing the variance across 325

neuron pairs of input covariances as N is varied. In the asynchronous state, the 326

variance of input covariances from all sources appear to scale like O(1) (Fig. 4E). Since 327

the mean input covariance between individual sources are also O(1) (Fig. 4A), the 328

overlap between distributions in Fig. 4C is expected. In the correlated state, the 329

variances of input covariances appear to scale like O(N) except for the variance of the 330

total input covariance, which appears to scale like O(1) (Fig. 4F). Since the variances 331

scale like O(N), the standard deviations scale like O(
√
N). This, combined with the 332

fact that the mean input covariances between individual sources scale like O(N), 333

implies that the distributions in Fig. 4E will be non-overlapping when N is large. The 334

same conclusions would be reached if we decomposed inputs into their external (X) and 335

recurrent (R = E + I) sources instead of total excitatory (X + E) and inhibitory (I). 336

Testing linear response approximations to pairwise spike train 337

covariance 338

As discussed above, Eqs. (7) and (14) are appealing because, unlike many previous 339

approximations of spike train CSD and spike count covariance in recurrent 340

networks [8–11,13], they do not require knowledge of neurons’ correlation susceptibility 341

functions or any other neuronal transfer properties. However, they are limited because 342

they only give the population-averaged covariance or CSD. 343

Previous studies that provide approximations for the full N ×N matrix of all spike 344

train CSDs or spike count covariances use linear response approximations that rely on 345

assumptions that the network is sparsely or weakly coupled and/or that external input 346

is uncorrelated or weakly correlated Gaussian white noise [10,11]. These assumptions 347
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permit the application of Fokker-Planck and linear response techniques. External input 348

in our models is not weakly correlated and is not approximated well by Gaussian white 349

noise, so these approaches are not fully justified in out model, but might nevertheless 350

yield a useful approximation. We next derive and test a linear response approximation 351

to spike train covariability in our model. 352

First define ~S(t) = [Se1(t) . . . SeNe
(t) Si1(t) . . . SiNi

(t)]T to be the full N × 1 vector 353

of spike trains in the recurrent network obtained by concatenating the excitatory and 354

inhibitory spike train vectors. Define the N × 1 synaptic input vectors ~T (t), ~R(t), and 355

~X(t) similarly. The total input vector can be written as 356

~T = ~R+ ~X

with 357

~R = J ∗ ~S

and 358

~X = Jx ∗ ~Sx.

Here, 359

J =

[
Jee Jei
Jie Jii

]
,

is the N ×N recurrent connectivity matrix and 360

Jx =

[
Jex
Jie

]
,

is the N ×Nx feedforward connectivity matrix with Na ×Nb blocks defined by 361

[Jab]jk(t) = Jabjkηb(t). Note that the connection weights are time dependent and ∗ 362

denotes the matrix product with multiplication replaced by convolution [11]. 363

The linearity of transfer from ~S to ~R and from ~Sx to ~X implies that 364

〈~R, ~U〉 = J̃〈~S, ~U〉 (16)

and 365

〈 ~X, ~U〉 = J̃x〈~Sx, ~U〉

for ~U = ~S, ~Sx, ~R, ~X, ~T where J̃(f) is the element-wise Fourier transform of the matrix 366

J(t) and similarly for J̃x(f). This implies, for example, that the N ×N matrix of 367

external input CSDs is given by 368

〈 ~X, ~X〉 = J̃x〈~Sx, ~Sx〉J̃∗x

and similarly for the CSDs between recurrent inputs, 369

〈~R, ~R〉 = J̃〈~S, ~S〉J̃∗

In summary, the transfer of spike train CSDs to input CSDs follows easily from the 370

linearity of transfer from spike trains to inputs [4]. However, a closed expression for the 371

matrix of spike train CSDs in the recurrent network, 〈~S, ~S〉, requires knowledge of the 372

transfer from total input to spike train CSDs. 373

If spike trains were related linearly to total input, ~S = A ∗ ~T for some diagonal 374

matrix, A(t), then we could derive an exact closed equation for 〈~S, ~S〉. However, 375

integrate-and-fire neuron models transfer their input currents to spike trains nonlinearly. 376
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Fig 5. Testing the accuracy of linear response approximations in densely
connected balanced networks in the asynchronous and correlated states.
A,B) Spike count covariance from simulations of a network with N = 105 in the
asynchronous (A) and correlated (B) states plotted against the theoretical value given
by evaluating Eq. (18) evaluated at zero frequency, with empirically estimated gains

used for Ãj(0). C,D) The left-hand-side (LHS) of Eq. (19) plotted against the

right-hand-side (RHS) using 〈~S, ~S〉 estimated from the same simulations as in A,B and
using the same empirically estimated gains. E,F) Same as C,D except we used the

mean gain for all values of Ãj(0).

Nevertheless, we can obtain an approximation to spike train CSDs by assuming an 377

approximate linear transfer of CSDs, specifically that [11] 378

〈~S, ~X〉 ≈ Ã〈~T , ~X〉,

〈~S, ~T 〉 ≈ Ã〈~T , ~T 〉,

〈~S, ~S〉 ≈ Ã〈~T , ~S〉

(17)

where Ã(f) is a diagonal matrix with Ãjj(f) the “susceptibility function” of neuron 379

j [8, 48–50]. Note that these equations would be exactly true if neural transfer were 380

linear, ~S = A ∗ ~T . It can be derived from these assumptions that (see Materials and 381

Methods for derivation and [11] for similar derivations) 382

〈~S, ~S〉 ≈ [Ã−1 − J̃ ]−1〈 ~X, ~X〉[Ã−1 − J̃ ]−∗. (18)

One problem with testing the approximation in Eq. (18) is that we do not have an 383

estimate of Ãjj(f). Spike count covariances over large windows are proportional to 384

zero-frequency CSD (see Eq. (3) and surrounding discussion). Evaluated at zero 385

frequency, a neuron’s susceptibility function is equal to its gain, i.e. the derivative of 386

the neuron’s firing rate with respect to its mean input [49,50], 387

Ãj(0) =
drj

dT j
.

We therefore tested Eq. (18) for spike count covariances by estimating the gain 388

empirically from simulations. In doing so, we found that Eq. (18) is only moderately 389

accurate at approximating spike count covariances from simulations, both in the 390

asynchronous state (Fig. 5A) and in the correlated state (Fig. 5B). We suspected that 391

some of the error was due to numerical inaccuracies introduced by inverting the large, 392

ill-conditioned matrices in Eq. (18). To test this hypothesis, we re-wrote Eq. (18) in a 393

mathematically equivalent formulation that does not involve matrix inverses, 394

(Id− ÃJ̃)〈~S, ~S〉(Id− ÃJ̃) ≈ Ã〈 ~X, ~X〉Ã∗ (19)

where Id is the N ×N identity matrix. We tested the accuracy of Eq. (19) at zero 395

frequency using the same empirically estimated values of the gains and using the matrix, 396

〈~S, ~S〉(0), of spike count covariances estimated from simulations and found that it was 397

very accurate, especially in the correlated state (Fig. 5C,D). Since Eqs. (18) and (19) 398

are mathematically equivalent, this suggests that much of the observed inaccuracy of 399

Eq. (18) is due to the presence of inverses of large, ill-conditioned matrices. 400

One shortcoming of Eqs. (18) and (19) is that they require an estimate of Ã. We 401

obtained this estimate empirically by simulating the entire network and numerically 402

estimating the gains, which greatly limits the utility of the equations. We next 403
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wondered whether the accuracy of the equations is sensitive to the accuracy of the gain 404

estimate, or if a rough approximation to the gains would be sufficient. To answer this 405

question, we tested Eq. (19) again, but replaced the individual estimated gains on the 406

diagonal of Ã with their mean. In other words, we used Ã(0) = gId where g is the 407

average gain estimated from simulations and Id is the N ×N identity matrix. This 408

replacement greatly decreased the accuracy of Eq. (19) (Fig. 5E,F), suggesting that an 409

accurate estimate of the individual gains is necessary for applying and interpreting 410

Eqs. (18) and (19). 411

In summary, linear response approximations are fairly accurate in the densely 412

connected balanced networks with spatially and temporally correlated noisy feedforward 413

input studied here (Fig. 5C,D). However, their utility is limited by two factors: First, 414

that using linear response theory to approximate spike train CSDs or spike count 415

covariances requires the inversion of large, ill-conditioned matrices, which introduces 416

substantial error (Fig. 5A,B). Secondly, that the application of linear response 417

approximation requires estimates of neurons’ individual susceptibility functions or gains. 418

The mean-field equations (7) and (14) do not have these shortcomings, but only give 419

the population-averaged CSDs and covariances. It should also be noted that 420

correlations were weak in our simulations, even in the correlated state (mean spike 421

count correlations between neurons with firing rate above 1 Hz was 0.077). Stronger 422

correlations can be obtained with alternative parameters, which could potentially make 423

Eqs. (18) and (19) less accurate. 424

Correlated variability from singular mean-field connectivity 425

structure 426

We have shown that O(1) spike train correlations can be obtained in balanced networks 427

by including correlations between neurons in an external layer (〈Sx, Sx〉 ∼ O(1)), 428

defining what we refer to as the “correlated state.” Previous work shows that O(1) 429

spike train correlations can be obtained in the recurrent network with uncorrelated 430

external spike trains (〈Sx, Sx〉 = 0) when the mean-field connectivity matrix is 431

constructed in such a way that the recurrent network cannot achieve the cancellation 432

required for these states to be realized [37–39]. This is most easily achieved using 433

networks with several discrete sub-populations or networks with distance-dependent 434

connectivity. For simplicity, we restrict our analysis to discrete sub-populations. We 435

first extend the mean-field theory from above to such networks, then generalize and 436

extend the analysis from previous work to understand the emergence of O(1) 437

correlations when the mean-field connectivity matrix is singular. 438

The recurrent networks considered above have two statistically homogeneous 439

sub-populations: one excitatory and one inhibitory and the external population is a 440

single homogeneous population. Suppose instead that there are K sub-populations in 441

the recurrent network, with the kth popualtion containing Nk = qkN neurons where 442∑
k qk = 1. Connectivity is random with pjk denoting the connection probability from 443

population k to j, and jjk/
√
N denoting the strengths of the connections for 444

j, k = 1, . . .K. All neurons in population k are assumed to have the PSC kernel ηk(t) 445

which is again assumed to have integral 1. Similarly, suppose that the external network 446

contains Kx sub-populations each with Nx
k = qxkNx neurons where qxk =

∑
k qx,k = 1. 447

Feedforward connection probabilities and strengths are given by pxjk and jxjk/
√
N for 448

j = 1, . . .K and k = 1, . . . ,Kx. Assume that qk, pjk, jjk, qxk , pxjk, and jxjk are all O(1). 449

We then define the K ×K mean-field recurrent connectivity matrix by 450

[W ]jk = pjkjjkqkη̃k and the mean-field feedforward connectivity matrix by 451

[Wx]jk = pxjkj
x
jkq

x
k η̃

x
k . For all of the networks considered above, we had K = 2 and 452

Kx = 1. 453
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When W is an invertible matrix, Eqs. (4), (7), and (14) are equally valid for 454

networks with several subpopulations as they are for the simpler networks considered 455

above. Hence, the mean-field theory of firing rates and correlations extends naturally to 456

networks with several populations [38–42,51]. However, when W is singular, Eqs. (4), 457

(7), and (14) cannot be evaluated. Instead, Eq. (4) can be re-written as 458

Wr = −Wxrx. (20)

When W is singular, this equation only has a solution, r, when X = −Wxrx is in the 459

range or “column space” of W . Otherwise, balance is broken. An in-depth analysis of 460

firing rates in such networks is provided in previous work [41,42,51] (and extended to 461

spatially continuous networks in [40, 51]), so we hereafter assume that X is in the range 462

of W and balance is achieved. 463

A similar analysis may be applied to spike train CSDs. For simplicity, we assume 464

here that spike trains in the external population are uncorrelated, 〈Sx, Sx〉 = 0, since 465

this is the case considered in previous work and since this is the case in which a singular 466

W breaks the asynchronous state. Eq. (7) can be re-written as 467

W 〈S,S〉W ∗ =
1

N
〈X,X〉. (21)

where we have ignored smaller order terms. When W is singular, Eq. (21) is not
guaranteed to have a solution, 〈S,S〉. More precisely, a solution can only exist when
the K ×K matrix, 〈X,X〉, is in the range of the linear operator L defined by

LU = WUW ∗.

In that case, Eq. (21) has a solution so that 〈S,S〉 ∼ O(1/N) and the asynchronous 468

state is still realized. However, if 〈X,X〉 is not in the range of L, the asynchronous 469

state cannot be realized because Eq. (21) does not have a solution. 470

Darshan et al. [39] looked at a similar scenario except the singularity of their 471

networks made them incapable of cancelling internally generated covariance, in contrast 472

to the external input covariance considered here. Other work [37,38] analyzed the 473

scenario with external input covariance and singular connectivity, as well as the 474

extension to spatially extended networks. However, this previous work did not 475

completely analyze the structure of correlations, but only showed that the asynchronous 476

state was broken. We next show that correlations in the recurrent network are O(1) and 477

derive their structure. 478

Using Eqs. (9), (10), and (12), we can write the mean-field total input CSD as 479

〈T ,T 〉 = NW 〈S,S〉W ∗ +
√
N(W 〈S,X〉+ 〈X,S〉W ∗) + 〈X,X〉. (22)

If W is not invertible, then W ∗ has a non-trivial nullspace. Let v1, v2, . . . , vn be a basis
for the nullspace of W ∗ and define

P = v1v
∗
1 + v2v

∗
1 + · · ·+ vnv

∗
n

which is a self-adjoint matrix that defines the orthogonal projection onto the nullspace
of W ∗. Note that P is a Hermitian matrix (P = P ∗) and PW = W ∗P = 0 (the zero
matrix). Define the projection A0 = PAP for any matrix A. Unless 〈X,X〉 is carefully
constructed otherwise, we can expect that

〈X,X〉0 ∼ 〈X,X〉 ∼ O(1).

Then take the projection of both sides of Eq. (22) above to get 480

〈T ,T 〉0 = 〈X,X〉0 ∼ O(1) (23)
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Fig 6. Correlated variability in a balanced network with singular
mean-field connectivity matrix. A) Network schematic. The recurrent network is
statistically identical to the networks considered previously, but there are two external
populations that each connect to a different half of the neurons in the recurrent network.
B) Same as Fig. 1F, but for the multi-population network from A. C) Same as Fig. 1G,
but for the network in A and where input covariances are only averaged over
postsynaptic neurons in the same group (both postsynaptic cells in e1 or both in e2).
The dashed gray curve shows the theoretical prediction for total input covariance (the
black curve) from Eq. (24). D) Same as Fig. 1I, but for the network in A and where
spike count covariances are only averaged over postsynaptic neurons in the same group
(first cell in aj and second cell in bj for a, b = e, i and j = 1, 2). E,F) Same as C and D,
but covariances are computed between cells in opposite groups (one cell in a1 and the
other cell in b2).

where we have omitted terms of order 〈X,X〉/N (see Materials and Methods for more 481

details). Hence, the total input CSD is O(1) when 〈X,X〉 is not in the range of L, even 482

though it is 〈X,X〉/N when W is invertible (i.e., in the asynchronous state). Moreover, 483

the structure of 〈T ,T 〉 is given to highest order in N by 〈X,X〉0 = P 〈X,X〉P , which 484

can be computed exactly from knowledge of the structure of 〈X,X〉 and W . 485

When neural transfer from T to S is O(1) (see Eq. (8) and surrounding discussion), 486

this implies that 〈S,S〉 ∼ O(1) so that the asynchronous state is broken when 〈X,X〉 487

is not in the range of L. While we cannot be certain that 〈S,S〉 has the same structure 488

as 〈T ,T 〉, it should have a similar structure as long as neural transfer of correlations is 489

similar for each sub-population. 490

To demonstrate these results, we consider the same network from above with 491

re-wired feedforward projections from the external population. Specifically, divide the 492

excitatory, inhibitory, and external populations each into two equal-sized 493

sub-populations, labeled e1, i1, x1, e2, i2, and x2 where population ak contains Na/2 494

neurons. Hence the network has the same total number of neurons as before, but we 495

have simply sub-divided the populations. To distinguish this network from the one 496

considered in Figs. 1 and 2, we refer to the previous network as the 3-population 497

network and to this modified network as the 6-population network. 498

We re-wire the feedforward connections so that x1 only connects to e1 and i1, and x2 499

only projects to e2 and i2. Specifically, we set the connection probabilities to 500

pajxk
= 2pax if j = k and pajxk

= 0 if j 6= k for a, b = e, i and j, k = 1, 2, where pab are 501

the connection probabilities for the 3-population network and pajbk for the 6-population 502

network. This re-wiring assures that neurons in the recurrent network receive the same 503

number of feedforward connections on average from the external population. The 504

recurrent connectivity structure is not changed at all. Specifically, we set pajbk = pab for 505

a, b = e, i. All connection strengths are unchanged, jajbk = jab for a = e, i and b = e, i, x 506

and all neurons in the external population have the same firing rate, rx, as before. See 507

Fig. 6A for a schematic of this network. 508

The feedforward mean-field connectivity matrix can be written in block form as

Wx =

[
W 2×1
x 0
0 W 2×1

x

]
where 0 is the 2× 1 zero-matrix and W 2×1

x = [wex wix]T is the 2× 1 feedforward
connectivity matrix for the 3-population network. Note that Wx is 4× 2 since there are
4 populations in the recurrent network and 2 populations in the external population.
The recurrent mean-field connectivity matrix is

W =
1

2

[
W 2×2 W 2×2

W 2×2 W 2×2

]

PLOS 16/27

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2018. ; https://doi.org/10.1101/372607doi: bioRxiv preprint 

https://doi.org/10.1101/372607
http://creativecommons.org/licenses/by/4.0/


where

W 2×2 =

[
wee wei
wie wii

]
is the 2× 2 recurrent connectivity matrix for the 3-population network. Note that W is 509

4× 4. Here, wab = pabjabqbη̃b are the same values used above for analyzing the 510

3-population network. 511

Even though W is non-invertible, X = Wx[rx rx]T is in the range of W for this 512

example, so firing rates in the balanced state can be computed using Eq. (20), and are 513

identical to the firing rates for the 3-population networks considered above. 514

The nullspace of W ∗ is spanned by the orthonormal vectors

v1 =
1√
2


1
0
−1
0


and

v2 =
1√
2


0
1
0
−1


so the projection matrix is given in block form by

P =
1

2

[
I2 −I2
−I2 I2

]
where I2 is the 2× 2 identity matrix. 515

The external input CSD is determined by the average number of overlapping
feedforward projections to any pair of neurons in the recurrent network (multiplied by
their connection strength and rx), which gives (in block form)

〈X,X〉 = 2

[
〈X,X〉2×2 0

0 〈X,X〉2×2
]

where 0 is the 2× 2 zero matrix and 〈X,X〉2×2 is the external input CSD from the 516

3-population network, given by Eq. (5). Therefore, by Eq. (23), 517

〈T ,T 〉0 = 〈X,X〉0 = P 〈X,X〉P =

[
〈X,X〉2×2 −〈X,X〉2×2
−〈X,X〉2×2 〈X,X〉2×2

]
. (24)

In other words, the mean total input CSD between excitatory neurons in the same 518

subgroup (two neurons in e1 or two neurons in e2; diagonal blocks above) is positive 519

and equal to half the mean external input between the same neurons. Hence, the 520

cancellation by the recurrent network only reduces the external input CSD by a factor 521

of 1/2, as opposed to the O(1/N) reduction realized in the asynchronous state (when W 522

is invertible). In contrast, the mean total input CSD between excitatory neurons in 523

opposite subgroups (one neuron in e1 and the other in e2; off-diagonal blocks above) has 524

the same magnitude as for same-subgroup pairs, but is negative. This represents a 525

competitive dynamic between the two groups since they inhibit one another (recurrent 526

connections are net-inhibitory in balanced networks [27,42]), but receive different 527

feedforward input noise. Interestingly, the average CSD between all pairs of spike trains 528

is still O(1/N) in this example, but it is easy to design examples with singular W in 529

which this is not true. A similar example was considered in previous work [38], but 530

external input was generated artificially instead of coming from an external population. 531
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Fig 7. Synaptic input currents in a balanced network with correlations
from singular mean-field connectivity. Same as Fig. 3A except for the network
from Fig. 6. The left two traces are input currents to two excitatory neurons in
population e1 (cells 1 and 2). The right traces are input currents to an excitatory
neuron in population e2 (cell 3).

Simulating this network for varying values of N shows that firing rates approach 532

those predicted by the balance equation (20) (Fig. 6B), confirming that balance is 533

realized. Pairs of excitatory neurons in the same group (both neurons in e1 or both 534

neurons in e2) receive positively correlated external input and recurrent input (Fig. 6C, 535

purple and green curves) that are partially canceled by negative correlations between 536

their recurrent and excitatory input (Fig. 6C, yellow curve). Because the cancellation is 537

only partial, the correlation between the neurons’ total inputs is O(1) (Fig. 6C, black 538

curve) in contrast to the asynchronous state (compare to Fig. 1G,H where cancellation 539

is perfect at large N). The total input covariance agrees well with the theoretical 540

prediction from Eq. (24) (Fig. 6C, dashed gray line). As a result of this lack of 541

cancellation between total input covariance, spike count covariances are also O(1) and 542

positive between same-group pairs (Fig. 6D). For opposite group pairs (one neuron in e1 543

and the other in e2), cancellation is also imperfect, but this leads to negative total input 544

covariance, in agreement with the theoretical prediction from Eq. (24) (Fig. 6E), and 545

leads to negative spike count covariances between neurons in opposite populations 546

(Fig. 6F). 547

In summary, we have analyzed two mechanisms to generate O(1) spike train 548

correlations in balanced networks. For the first mechanism (Fig. 2), spike trains in the 549

external population are correlated so that external input correlations are O(N). 550

Cancellation is achieved so that spike train correlations are reduced to O(1). For the 551

other mechanism (Fig. 6), external input correlation is O(1), but precise cancellation 552

cannot be achieved so that spike trains inherit the O(1) correlations from the input. 553

How could these two mechanisms be distinguished in cortical recordings? Under the first 554

mechanism, we showed that fluctuations of inhibitory input to individual neurons closely 555

tracks fluctuations of other neurons’ excitatory inputs (Fig. 3C). This should not be the 556

case under the second mechanism because precise cancellation is not realized. Indeed, 557

plotting the excitatory and inhibitory input to three excitatory neurons (two in e1 and 558

one in e2) shows that input fluctuations are not closely tracked (Fig. 7). This provides a 559

way to distinguish the two mechanisms from paired intracellular recordings. Indeed, the 560

first mechanism (which we refer to as the “correlated state”) appears more consistent 561

with the cortical recordings considered here (compare Fig. 3A to Figs. 3C and 7). 562

Discussion 563

We analyzed correlated variability in recurrent, balanced networks of integrate-and-fire 564

neurons receiving correlated feedforward input from an external population. We showed 565

that correlations between spike trains in the recurrent network are small (O(1/N)) 566

when spike trains in the external population are uncorrelated, consistent with previous 567

work on the asynchronous state [29,38], but much larger (O(1)) when spike trains in the 568

external population are correlated, giving rise to a “correlated state.” In both states, 569

strong correlations in the feedforward input are canceled by recurrent synaptic input 570

due to the excitatory-inhibitory tracking that arises naturally in densely connected 571

balanced networks. This cancellation allows for the derivation of a concise and accurate 572

closed form expression for spike train CSDs in terms of synaptic parameters alone. 573

Hence correlations in balanced networks are determined predominately by synaptic 574
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connectivity structure, not neuronal dynamics. The tracking of excitatory synaptic 575

input by inhibition was observable on a pair-by-pair basis in the correlated state, but 576

not the asynchronous state, suggesting that the correlated state is more consistent with 577

in vivo recordings. 578

We only considered recurrent networks with two, statistically homogeneous neural 579

populations: one excitatory and one inhibitory. Our analysis can be extended to 580

multiple subpopulations as long as each sub-population contains O(N) neurons, and 581

also extends to networks with connection probabilities that depend on distance, 582

orientation tuning, or other continuous quantities. This analysis has been developed for 583

the asynchronous state in previous work [38] and is easily extended to the correlated 584

state as well. The primary difference is that 〈X,X〉 is O(N) instead of O(1). 585

Previous work has shown that networks with multiple sub-populations and networks 586

with distance-dependent connectivity can break the asynchronous state in balanced 587

networks when the network connectivity structure is constructed in such a way that the 588

recurrent network cannot achieve the cancellation required for the asynchronous 589

state [37–39], leading to O(1) correlations between some cell pairs. We showed that the 590

precise tracking of excitation by inhibition provides an experimentally testable 591

prediction for distinguishing this mechanism from the one underlying the correlated 592

state (see Fig. 7 and surrounding discussion). 593

Another alternative mechanism for achieving larger correlations in balanced 594

networks is through instabilities of the balanced state. Such instabilities, especially in 595

spatially extended networks, can create pattern-forming dynamics that produce 596

correlated spiking without hypersynchrony [40,52–57]. Future studies should work 597

towards experimentally testable predictions that distinguish correlations that arise from 598

instabilities from those that arise through the mechanisms considered here. For 599

example, since instabilities generate correlations internally, they should produce weak 600

correlations between activity in the recurrent network and activity in the external 601

population(s) providing input to that network [57], in contrast to the mechanisms we 602

consider here. Indeed, some recordings show that local circuit connectivity can increase 603

correlations [58], which is consistent with internally generated correlations, but 604

inconsistent with the mechanisms that we consider here. 605

In the correlated state, spike train correlations in the recurrent network are 606

essentially inherited from correlations between spike trains in the external population. 607

Hence, the O(1) correlations realized by this mechanism require the presence of another 608

local network with O(1) correlations. This raises the question of where the O(1) 609

correlations are originally generated. One possibility is that they could be generated in 610

a presynaptic cortical area or layer through the alternative mechanisms discussed in the 611

previous paragraph. Another possibility is that they originate from a network that is 612

not in the balanced state at all. Non-balanced networks can easily achieve O(1) spike 613

train correlations simply from overlapping synaptic projections. While cortical circuits 614

are commonly believed to operate in a balanced state, correlations could originate in 615

thalamus, retina, or other sub-cortical neural populations then eventually propagate to 616

cortex. 617

The cancellation between variances of covariances observed empirically in Fig. 4F is, 618

to our knowledge, a novel observation, but we were unable to derive it analytically. 619

Path integral approaches have recently been applied to compute variances of covariances 620

in linear network models with uncorrelated external input [59] (〈X,X〉 = 0), and could 621

potentially be extended to the networks considered here. This previous work derives a 622

simple relationship between a network’s criticality and a parameter, ∆, that represents 623

the ratio between the variance of covariances and the mean spike count variance. 624

Specifically, they showed that in their networks, the eigenvalue spectrum of the network 625

dynamics is given to leading order in N by λmax =
√

1−
√

1/(1 +N∆2). In our model, 626
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where external input is correlated, the variance of covariances and spike count variances 627

both appear to be O(1), so that ∆ ∼ O(1) and their expression for λmax would tend to 628

zero regardless of the network’s dynamical state. We interpret this to imply that their 629

expression is not accurate for networks with correlated external input. Future work 630

should consider the possibility of extending their analysis of criticality to such networks. 631

Our mean-field analysis applies to networks of integrate-and-fire neuron models, 632

which are arguably more biologically realistic than networks of binary model neurons 633

that are often used for mean-field analysis of neuronal networks. Binary neuron 634

networks are appealing due to the mathematical tractability of their mean-field analysis, 635

but our work demonstrates that integrate-and-fire networks are similarly tractable, 636

calling into question the utility and appeal of binary network models. 637

Two unproven assumptions underly our mean-field analysis of the correlated state. 638

The first assumption is that neural transfer is O(1) (Eq. (8) and surrounding 639

discussion). The second assumption is that individual connection strengths are not 640

strongly correlated with individual CSD values so that the step from Eq. (26) to (27) is 641

valid when ignoring smaller order terms. These assumptions are made in other work, 642

even if not stated explicitly. We have been unable to prove these assumptions rigorously 643

for the model studied here, leaving an open problem for future work. 644

We showed that linear approximations to spike train covariance developed for small, 645

sparsely coupled networks [10–12] can also be accurate for large, densely connected 646

balanced networks (Fig. 5). However, their usefulness is limited by the need to invert 647

large, ill-conditioned matrices and to approximate the susceptibility functions of 648

individual neurons. The simpler equations we derived for mean-field spike train CSDs 649

(Eqs. (7) and (14)) do not have these problems. Moreover, while linear response 650

approximations require that neural transfer of input is approximately linear, our 651

mean-field derivations did not depend on this assumption. Recent work has called for 652

looking beyond linear analysis of neuronal networks [60]. Our analysis shows that, even 653

in networks where neural transfer of inputs is nonlinear, linear mean-field analysis could 654

still be accurate and useful. 655

In summary, we showed that correlations in balanced networks can be caused by 656

feedforward input from a population of neurons with correlated spike trains, defining 657

the “correlated state” that is quantitatively captured by a linear mean-field theory. In 658

contrast to other mechanisms of correlation in balanced networks, the correlated state 659

predicts a precise balance between the fluctuations in excitatory and inhibitory synaptic 660

input to individual neuron pairs, consistent with some in vivo recordings [22]. 661

Materials and Methods 662

Details for the derivation of mean-field CSDs. 663

We now provide details in the derivations of Eqs. (6) and (14), which can both be 664

written as 665

〈S,S〉 =
1

N
W−1〈X,X〉W−∗ +

1

N
C0 + o(〈X,X〉/N) (25)

where o(〈X,X〉/N) scales smaller than 〈X,X〉/N as N →∞ and where C0 ∼ O(1). 666

Note that in the correlated state, 〈X,X〉 ∼ O(N) so that the C0/N term can be 667

absorbed into the o(〈X,X〉/N) term. A sketch of the derivation for the correlated state 668

is given in Results, and the derivation is similar in the asynchronous state. Here, we 669

give the details of this derivation. 670

We first derive Eq. (5) for 〈X,X〉 in the asynchronous state, i.e. when spike trains 671

in the external population are uncorrelated Poisson processes, so 〈Sx, Sx〉 = 0. In that 672
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case, the CSD between two neurons’ external input is given by 673

〈Xa
j , X

b
k〉 =

〈
Nx∑
m=1

Jaxjmηx ∗ Sxm,
Nx∑
n=1

Jbxknηx ∗ Sxn

〉

=

Nx∑
m,n=1

JaxjmJ
bx
knη̃xη̃

∗
x〈Sxm, Sxn〉

for a, b = e, i where we have used the fact that the cross-spectral operator, 〈·, ·〉 is a 674

Hermitian operator. Since external spike trains are uncorrelated Poisson processes, 675

〈Sxm, Sxn〉 = 0 when m 6= n and 〈Sxm, Sxm〉 = rx. Therefore, we can rewrite the equation 676

above as 677

〈Xa
j , X

b
k〉 = |η̃x|2rx

Nx∑
m=1

JaxjmJ
bx
km.

From Eq. (2), the expectation of the summand in this equation is 678

E[JaxjmJ
bx
km] =

paxpbxjaxjbx
N

.

Hence, taking expectations across the Nx elements of the sum and the coefficient in 679

front of the sum gives 680

〈Xa, Xb〉 = qxjaxjbxpaxpbx|η̃x|2rx
which, in matrix form, is equivalent to Eq. (5). 681

We next derive Eq. (10). Noting that recurrent input to neuron j in population 682

a = e, i is composed of excitatory and inhibitory components, Raj (t) = Eaj (t) + Iaj (t), we 683

have 684

〈Raj , U bk〉 = 〈Eaj , U bk〉+ 〈Iaj , U bk〉

where we can compute

〈Eaj , U bk〉 =

〈
Ne∑
m=1

Jaejmηe ∗ Sem, U bk

〉
(26)

= η̃e

Ne∑
m=1

Jaejm〈Sem, U bk〉 (27)

= η̃e
∑
m6=k

Jaejm〈Sem, U bk〉+ η̃eJ
ae
jk 〈Sek, U bk〉. (28)

Taking expectation over j and k as above gives 685

〈Ea, Ub〉 =
√
Npaejaeqeη̃e〈Se, Ub〉+O(avgk,b〈Sek, U bk〉/

√
N).

where O(avgk,b〈Sek, U bk〉/
√
N) accounts for the diagonal terms not counted in the 686

definition of 〈Se, Ub〉. Note that this step requires us to assume that individual values of 687

the random variable, Jaejm, are not strongly correlated with individual values of 〈Sem, U bk〉, 688

so that the expectation of their product can be replaced by the product of their 689

expectations. This assumption is implicit in derivations in other studies [29,38,59], even 690

though it is never proven and often not made explicit. 691

Repeating this calculation for 〈Iaj , U bk〉 and putting them together gives the average 692

〈Ra, Ub〉 =
√
N(wae〈Se, Ub〉+ wai〈Si, Ub〉) +O(avgk,b,c〈Sck, U bk〉/

√
N〉).
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In matrix form, this becomes 693

〈R,U〉 =
√
NW 〈S,U〉+O(avgk,b,c〈Sck, U bk〉/

√
N〉).

An identical calculation, replacing R with X and S with Sx, gives 694

〈X,U〉 =
√
NWx〈Sx,U〉+O(avgk,b〈Sxk , U bk〉/

√
N〉)

For the correction terms, O(avgk,b,c〈Sck, U bk〉/
√
N〉) and O(avgk,b〈Sxk , U bk〉/

√
N〉), to 695

contribute at largest order in N , it needs to be true that 696

avgk,b〈Sck, U bk〉 ≥ NO(〈S,U〉)

for c = e, i, or x. In the correlated state, this is never the case, so the correction term 697

can be ignored, giving Eqs. (10) and (11). In the asynchronous state, 698

avgk,b〈Sbk, Sbk〉 ∼ O(1) since spike train power spectral densities are O(1) due to 699

intrinsically generated variability, but 〈S,S〉 ∼ O(1/N). This causes the power spectral 700

densities, i.e. auto-correlations, to contribute to correlated variability in the network at 701

the largest order in N and ultimately leads to the presence of the C0 term in Eq. (6) 702

where (1/N)C0 represents mean-field CSDs that would be obtained in the absence of 703

external input correlations, 〈X,X〉 = 0 (see other work [38,39,44] for an in-depth 704

treatment of intrinsically generated correlations). 705

Derivation of linear response approximation to pairwise spike 706

train CSDs. 707

We next give a derivation of Eq. (18) from Eqs. (16) and (17). Similar derivations have 708

previously been given for integrate-and-fire networks [11,12] and other 709

models [10,13,44,59,61]. First compute 710

〈 ~X, ~T 〉 = 〈 ~X, ~R〉+ 〈 ~X, ~X〉

= 〈 ~X, ~S〉W ∗ + 〈 ~X, ~X〉

≈ 〈 ~X, ~T 〉Ã∗W ∗ + 〈 ~X, ~X〉

from Eqs. (16) and (17). This can be solved for 711

〈 ~X, ~T 〉 = 〈 ~X, ~X〉(Id−WÃ)−∗.

Similarly, compute 712

〈~T , ~T 〉 = 〈~R, ~T 〉+ 〈 ~X, ~T 〉

= W 〈~S, ~T 〉+ 〈 ~X, ~T 〉

≈WÃ〈~T , ~T 〉+ 〈 ~X, ~X〉(Id−WÃ)−∗

which can be solved to obtain 713

〈~T , ~T 〉 = (Id−WÃ)−1〈 ~X, ~X〉(Id−WÃ)−∗.

Finally, making the substitution 〈~S, ~S〉 = A〈~T , ~T 〉A∗, which follows from Eqs. (17), 714

gives Eq. (18). 715
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Generation of correlated spike trains for external inputs. 716

To generate correlated, Poisson spike trains for the external population in the correlated 717

state we used the multiple interaction process (MIP) method [62] with jittering. 718

Specifically, we generated one shared “mother” process with firing rate rm = rx/c. 719

Then, for each of the Nx “daughter” processes, we randomly kept each spike in the 720

mother process with probability c. As a result, each daughter process is a Poisson 721

process with firing rate crm = rx and a proportion of c of the spikes are shared between 722

any two daughter processes. To get rid of perfect synchrony between the daughter 723

processes, we jittered each spike time in each daughter process by a normally 724

distributed random variable with mean zero and standard deviation τc = 5ms. Upon 725

jittering, the daughter processes remain Poisson and the resulting CSD between 726

daughter processes is given by Eq. (15). Spike count correlations between the daughter 727

processes over large time windows are exactly c. The daughter processes were used as 728

the spike trains, Sxj (t) in the external population in the correlated state. See [62] for a 729

deeper analysis of this algorithm. 730

Parameters for simulations 731

All connection probabilities were pab = 0.1 for a = e, i and b = e, i, x. Synaptic 732

timescales were τe = 8ms, τi = 4ms, and τx = 10ms. The firing rate of the external 733

population was rx = 10Hz and, in the correlated state, the correlation was c = 0.1 with 734

a jitter of τc = 5ms. All covariances and correlations were computed by counting spikes 735

or integrating continuous processes over a window of length 250ms. Membrane 736

capacitance, Cm, is arbitrary so we report all current-based parameters in relation to 737

Cm. For convenience, one can therefore set Cm = 1. Unscaled connection strengths 738

were jee/Cm = 25mV, jei/Cm = −150mV, jie/Cm = 112.5mV, jii/Cm = −250mV, 739

jex/Cm = 180mV, and jixCm = 135mV. Note that jab was scaled by
√
N to produce 740

the true connection strengths, as indicated in Results. Neuron parameters are 741

gL = Cm/15, EL = −72mV, Vth = −50mV, Vre = −75mV, Vlb = −100mV, ∆T = 1mV, 742

and VT = −55mV. Synaptic currents in figures are reported in units CmV/s. 743

Covariances between synaptic currents are computed between integrals of the currents 744

(see Eq. (3) and surrounding discussion), so the covariances have units C2
mmV

2. 745

Details of computer simulations. 746

All simulations and numerical computations were performed on a MacBook Pro running 747

OS X 10.9.5 with a 2.3 GHz Intel Core i7 processor. All simulations were written in 748

Matlab (Matlab R 2018a, MathWorks). The differential equations defining the neuron 749

model were solved using a forward Euler method with time step 0.1ms. Statistics in 750

Figs. 1D, 2C,D, and 4C,D were computed from a simulation of duration 50s. Statistics 751

in Figs. 1E-I, 2E–I, and 4A,B,E,F were computed by repeating a simulation of duration 752

50s over ten trials for each value of N , then averaging over trials. For each trial, 753

network connectivity was generated with a different random seed, so the statistics are 754

averaged over time and over realizations of the “quenched” variability of network 755

connectivity. Statistics in Fig. 5 were computed by repeating a simulation of duration 756

100s for 50 trials, with network connectivity the same for each trial. Statistics were then 757

averaged over trials. Gains were estimated by fitting a rectified quadratic function to 758

the relationship between all neurons’ firing rates and mean total inputs (rj and T j), 759

then computing the derivative of the fitted quadratic at the input value for each neuron. 760

The same approach was used in previous work [38,51] to estimate a mean-field gain. 761

Matlab files to produce all figures are available from the XXX database (accession 762

number(s) XXX, XXX). 763
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