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Abstract

A number of recent studies have shown that cell shape and cytoskeletal texture
can be used as sensitive readouts of the physiological state of the cell. However,
utilization of this information requires the development of quantitative measures
that can describe relevant aspects of cell shape. In this paper we develop a
toolbox, TISMorph, to calculate set of quantitative measures to address this
need. Some of the measures introduced here are used previously and others
are new and have desirable properties for shape and texture quantification
of cells. These measures, broadly classifiable into the categories of textural,
spreading and irregularity measures, are tested by using them to discriminate
between osteosarcoma cell lines treated with different cytoskeletal drugs. We
find that even though specific classification tasks often rely on a few measures,
these are not the same between all classification tasks, thus requiring the use of
the entire suite of measures for classification and discrimination. We provide
detailed descriptions of the measures, well as TISMorph package to implement
them. Image based quantitative analysis has the potential to become a new field
of biological data (“image-omics”), providing quantitative insight into cellular
processes.
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Introduction

The shape of a cell spread on a substrate is determined by the balance between
the internal and external forces exerted on the cell boundary. The cell exerts
forces and responds to external forces, from the extra-cellular matrix (ECM)
or from neighboring cells, with the help of molecular motors and the cellular
cytoskeleton, which is thus the ultimate determinant of cell shape [1, 2]. The cy-
toskeleton is a complex network, made of three major kinds of filaments – f-actin,
microtubules and intermediate filaments – that form a cross-linked dynamic
meshwork in the cytoplasm, providing shape and structure to the cell [1, 3]. The
most dynamic constituent of the cytoskeleton, which is especially important in
force generation and motility, is the filamentous actin (f-actin) network [4]. The
f-actin network is directly involved in the formation of lamellipodia and filopodia
through polymerization of f-actin against the cell membrane [5]. A third kind of
cellular protrusions, blebs, are a result of the cortical actin network detaching
from the cell membrane [6], and the convex shapes of adherent cells have been
shown to result from myosin-II driven actin contractility [7].
The f-actin network is also deeply involved in force generation, force sensing and
mechanotransduction. Contractile forces generated by myosin motors within
cytoskeletal networks, membrane extension caused by actin polymerization,
changes in osmotic pressure by opening of water or ion channels are examples
of internal forces that play a role in shape of a cell. External forces leading to
shape changes are applied through neighboring cells or ECM [8]. Actin filaments
can generate and also resist mechanical stresses and cell deformation. But they
can also eventually reorganize and change their structure, thereby sometimes
relaxing external stresses. Different mechanical properties of the cell cytoskeleton
and ECM will lead to different shapes for the cell. Thus the f-actin network
is primarily responsible for the shape acquired by the adherent cell. It follows
that the structure of the f-actin network must be related to the global shape of
the cell, though the exact relation between the two is likely to be complex and
non-linear.
Image-based screens have been used as a marker and predictor of cellular pheno-
type and behavior. Advancements in microscopy technology has provided the
means to capture subcellular organization and cell shape with high resolution.
However, our ability to gain insight into cellular processes through subcellular
organization and cell shape is limited by the quantitative measures that we use
to represent them. In machine learning algorithms information of each pixel in
the image can be used to screen phenotype. However, implementing features of
objects instead of pixels provides interpretable results at single cell resolution,
which is more beneficial in biological applications. In addition using object
features leads to reduced noise in the data, and may improve results.
Cell shape has been investigated as a marker and predictor of cellular phenotype
and behavior. In our previous work, we used Zernike moments and geometric
parameters as a measure of cell shape to distinguish between high metastatic and
low metastatic osteosarcoma cancer cell lines with 99% accuracy [9,10]. Other
groups have also reported that cell shape can predict tumor grade [11], changes
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in the nuclear/cytoplasmic ratio of NFkB [12], and YAP (Yes-associated pro-
tein), [13], chemosensitivity of human colon cancer cell lines [14,15], differences in
motility [16], forms of motility [17], the progress of the Epithelial to Mesenchymal
transition (EMT) [18] and the differentiation of Human Mesenchymal Stem Cells
(hMSCs) into osteoblasts [19].
In addition to the importance of the actin cytoskeleton in determining the
shape of the cell and the nucleus, the structure and organization of the f-actin
network may provide additional information that can improve the prediction of
cell physiology and better distinguish between cells in different states. There is
a case to be made, therefore, of including measures of actin organization into
studies of cell shape and its relation with cell phenotype, especially as actin
staining is often used as the primary mean to determine the shape of the cell.
Actin staining also provides textural information, which is directly related with
actin structure, and as we show below, addition of this textural information
significantly improves the discrimination between cell types.
The importance of cell and nuclear morphology and cytoskeletal organization as
a tool for understanding and predicting cell behavior raises the need to appro-
priately quantify the shape and cytoskeletal texture of a cell. Here we introduce
TISMorph as a tool to quantify Morphology and sub cellular structure of a
cell. Good quantitative measures, should be capable of capturing biologically
important differences between different experimental conditions. However, not
all measures will be optimal for each comparison, and thus one will have to
begin with a larger set of quantitative measures and discard uninformative ones
if needed. Furthermore, good measures must not show significant differences
between technical replicates in the same experiment. Based on these arguments
we chose to test the measures calculated by TISMorph for cells treated with phar-
macological modulators of the cytoskeleton. Features calculated by TISMorph
can also be generalized to be used to quantify other subcellular structures such as
intermediate filaments, plasma membrane, endoplasmic reticulum, mitochondria
or even super cellular structures such as histopathology images and Magnetic
resonance images of brain. These quantitative measures also meet the criteria
proposed for good morphometrics by Pincus et. al. [20], i.e., that shape mea-
sures should possess fidelity, capture biologically important variation and be
meaningful and interpretable.

Experimental methods

For this study DUNN and DLM8 osteosarcoma cancer cells were used. The
DLM8 line is derived from the DUNN cell line with selection for metastasis [21].
Therefore, DLM8 is closely related to DUNN except for degree of its invasiveness.
Both cell lines were a gift from Dr. Douglas Thamm (Colorado State University,
CO, USA). They were cultured on glass detergent washed and air dried (GDA)
substrates with standard culture conditions of 37oC and 5% carbon dioxide
concentration in Dulbecco’s Modified Eagle Medium (DMEM) (Sigma Alrdich).
DMEM was supplemented with 10% EquaFETAL Fetal Bovine Serum (Atlas
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Biologicals) and 100 Units/ml penicillin with 100 µg/ml streptomycin (Fisher
Scientific-Hyclone). After 45 hours of culture, cells were incubated with different
cytoskeletal drugs with description, conditions, and vendors listed in the Table 1
for 3 hours. Then the cells were washed and fixed with 4% paraformaldehyde.
Finally, they were fluorescently stained for nuclei (DAPI from Molecular probes)
and actin (Acti-stain 488 phalloidin from Cytoskeleton, Inc). All the drugs were
dissolved in Dimethyl sulfoxide (DMSO) (Fisher BioReagents™) and to drop
its effect on cell shape and actin structure control study was also treated with
DMSO with the same molarity as other drugs. Then the cells were imaged using
fluorescent microscopy. Representative images of each cell line treated with these
drugs are shown in Fig 1.

Fig 1. Representative images of DUNN and DLM8 osteosarcoma
cancer cell lines with different drug treatments. Blue color represents
nuclei and green color represents actin cytoskeleton.

Image processing

In order to strike a balance between the throughput and the accuracy of the
image processing, the image processing is fully supervised by the operator to
reduce the number of artifacts and also automated as much as possible to speed-
up the processing of the images. The image processing code is stream-lined into
a consecutive step-by-step workflow which consists of four steps as follows. 1) A
graphic user interface (GUI) enables the binary thresholding of the actin and
nucleus images. While a thresholding value is suggested automatically by Otsu’s
method, users can easily adjust the thresholding value using a slide bar in the GUI
by visually checking the original image and the thresholded image displayed side-
by-side in the GUI. 2) Cell declustering in the thresholded images is done using an
optimized template of the open-source software CellProfiler [22]. 3) The outputs
from the CellProfiler are then visually examined by the operator and corrections
can be made if necessary using the modules functionalized into this step. To
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facilitate the following analyses, each cell is centered and saved separately into
one 1024x1024 image. Except for CellProfiler, all the other image processing
codes were programmed in-house using Matlab (Mathworks) and are available
on https://github.com/Wenlong-Xu/Image_Processing_Cell_Shape. Also
available are the detailed protocol on how to configure the image processing
codes and the CellProfiler template used for cell declustering.

Data analysis methods

Quantifying changes in multidimensional shape space

Each cell can be represented as a point in multidimensional shape space. For ease
of analysis this vector can be projected down to a lower-dimensional space of the
first few principal components (PCs). Differences between different conditions or
different cell lines can be represented by p-value between their shape distributions
for each PC space. While doing multiple comparisons, we will often pick the
most informative principal component for our analysis from among the first four
PCs. This is done in the following manner. We pick the PC whose worst case, i.e.
largest p-value among all comparisons, is better (i.e. smaller p-value) than that
of any other PC, so that it is the best single measure for distinguishing between
all the comparisons. In other words, for each principal component maximum
p-value between all comparisons is calculated as Eq (1).

MAX-PPC1 = Max(P-valuePC1,1, ...,P-valuePC1,n) (1)

Where P-valuePC1,n is the p-value for nth comparison in the first principal
component. Then from the first four PCs, the one that has the smallest MAX-P,
maximum p-value between different comparisons, is chosen. In each shape
category, we choose the best principal component by this criteria, and will
describe them as the Primary Principal Components (PPC) of each shape
quantification measure or category, for each analysis.

Pearson correlation

Pearson correlation coefficient is calculated between features as shown in Eq (2).
Here r is Pearson correlation coefficient, xi is the feature x for ith sample, yi is
the feature y for ith sample, µx is the average value of the feature x for all of
the samples, and µy is the average value of the feature y for all of the samples.
This coefficient is calculated for all 14 cell lines and drug combinations (2 cell
lines x 7 drugs) and the averaged coefficient is recorded. The results are shown
in heat map plots in S1 Fig. In these plots the diagonal elements are correlation
between features with themselves, so they are all 1. Also, Pearson correlation
coefficient is symmetric so each heat map plot will be symmetric as well.

r =

∑n
i=1(xi − µx)(yi − µy)√∑n

i=1(xi − µx)2
√∑n

i=1(yi − µy)2
(2)
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(a) (b) (c)

Fig 2. Representation of cell shape. a). Gray scale images using labeled
actin.Intensity of each pixel is recorded and represented as a grayscale intensity
plot. b). 2D outline: Position of each pixel in the boundary is recorded in polar
or Cartesian coordinate. c). Binary image of actin.

Results

Developing shape quantifiers

The actin structure is obtained from pixel intensities of labelled actin, which
we can represent by a grayscale image, Fig 2a. These grayscale images of cells,
or images of stained nuclei, are converted into a binary image (Fig 2c) and the
coordinates of the edges are recorded (Fig 2b), yielding the cell boundary. To
extract features of the morphology from this numerical data, we introduce three
classes of shape measures, described as textural, spreading, and irregularity
classes. Textural measures are divided into three subcategories called band based
measurements, gray scale fractal dimension, and gray scale measures which are
calculated based on the intensity plots of actin, Fig 2a. Spreading measures,
which include measures based on a Zernike moment representation of shape as
well as subcategories involving basic geometric parameters such as area and
perimeter, are extracted from the binary representation of the cell(Fig 2c), its
convex hull, or a similar image of the nuclei. Irregularity measures include
parameters such as the waviness and roughness, which use information regarding
the pixels at the boundary of the cell, Fig 2b. Each of these shape categories
have been described below.

Textural measures

Band based measurements This parameter is sensitive to changes in the
radial symmetry of the distribution of actin filaments. We divide the image
into 10 equally spaced concentric regions (∆r) around the center of mass of the
image, called bands, as shown in S2 Fig. Five quantifiers are used to measure the
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differences in actin distribution between these bands. First, average intensity for
each band is calculated. Then indices of the bands which have the lowest or the
highest average intensity and their value are recorded. The last measurement is
what is called above average adjusted intensity of the bands which is formulated
in S1 Table along with other band based measures [23]. Band based measures are
especially important in characterizing the actin distribution of the cells treated
with Cytochalasin D, where actin has very unique symmetrical distribution. In
these cells, dense foci are formed around the nucleus. The bands located in the
central region of the cells are void of actin. At the outer bands, short linear
actin structures aligned along the radius are observed.

Gray scale fractal dimension Fractal dimension (FD) is a measure of
roughness of objects, and can be applied to the characterization of texture
in engineered and natural images. There are many methods to calculate this
measure, and we chose the box counting method for its inherent simplicity. In
this method the binary image is first covered with an evenly spaced grid with
side length of ε. Then, the number of boxes which cover the fractal image are
counted. This process is repeated by decreasing the side length and the FD is
calculated based on Eq (3)

FD = lim
ε→0

logN(ε)

log 1
ε

(3)

Here ε is the size of each box in the grid and the variable N(ε) is the number of the
boxes which contain the fractal. We calculate FD based on a binarization of the
grayscale image using edge detection methods to identify actin voids. This is done
using four different edge detection methods in Matlab. To provide an example,
binarized images of a cell from DUNN cell line treated with Cytochalasin D
using these four edge detection methods are shown in S3 Fig. We found that
different edge detection methods pick up different aspects of the actin structure,
and so for every cell their gray scale image is binarized using these four methods,
and their FD calculated [24].

Other gray scale measures Haralik et, al introduced a procedure for quan-
tifying the texture of satellite images based on the spatial relation between the
gray tone of neighboring pixels in an image, for image classification [25]. This
method is based on the Gray Level Co-occurrence Matrix (GLCM, sometimes
called Spatial-Dependence Matrix), calculated as follows. For an image that has
intensities of 1, 2, ..., g, the co-occurrence matrix is a g x g matrix such that its
ijth element is the number of the times that a pixel in the image has intensity
equal to “i” and the pixel at a pre-defined distance ~d (which we choose to be 1
pixel) from it has intensity of j. An example of a 4 pixels x 4 pixels image with 5
gray tone levels is shown in S4 Fig. In a GLCM matrix when there are very few
dominant transitions in gray tone of an image in neighboring pixels, the matrix
will have small value for all of the entries. Each diagonal element of a GLCM
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matrix represents the number of the times that gray tone does not change in the
neighboring pixel. Large diagonal elements imply that the image is homogeneous.
Large numbers in the far upper right and far lower left of the matrix implies
large transitions in intensity and high contrast in an image. After calculating the
GCLM matrix, shown for the example image in S4(c) Fig., 23 different measures
are calculated to quantify the texture in an image. The list of measures are
tabulated in S2 Table [25–27]. For example one of the parameters is the contrast.
For interpretation of this measure, it is useful to keep in mind that the contrast
in an image is proportional to the changes in gray tone, n = |i− j|, so the far
upper right and far lower left which have bigger value of n will have bigger
contribution to the contrast parameter. For homogeneous images, the diagonal
entries will be large, and will have a bigger contribution to the homogeneity
measure. In this study we calculate the GLCM matrix for the vector ~d equal
to 1 pixel in magnitude and with directions of 0o, 45o, 90o, and 135o and then
the average value for each parameter is reported. This process yields rotation
invariant measures.

Irregularity of boundary measures

In addition to cell spreading, irregularities in the boundary also carries infor-
mation about the state of the cell. For example an irregular border could arise
due to a large number of filopodia in the cell, which is a signature of a highly
dynamic cytoskeleton. A highly contractile cell may retract from focal adhesions
at the boundary creating many membrane protrusions that increase variability.
To quantify irregularity of the cell boundary, the 2D boundary of the cell is used
as shown in Fig 2c. We use the pixel positions that mark the boundary of the
cell to calculate waviness, which estimates the periodic variation in the boundary,
and roughness, which measures the non-periodic variation in the boundary, as
discussed below.

Waviness measures Using a Fourier series, a signal can be expanded in terms
of linear combinations of orthogonal basis functions of sines and cosines with
increasing frequencies. In the Fourier series expansion, it is assumed that the
input signal is periodic. The outline of a cell is a closed curve, hence it is counted
as periodic signal. The boundary of the cell could be represented in Cartesian
coordinates, x and y, or polar coordinates, ρ and θ. Regardless of coordinate
selection, it will lead to two independent signals which can be separately written
as linear combination of cos and sin basis functions as Eq (4).

f(x) = Cx,0 +
nPixel∑
n=1

(Ax,n cos (wnx) +Bx,n sin (wnx)) (4)

Where nPixel is the number of the pixels in the boundary of a cell and w
2π is

fundamental frequency which is equal to 1
2πnPixel . The variable n is an integer

number and n ∗w is the nth frequency in the decomposition. Variables Ax,n and
Bx,n are amplitudes of nth frequency, Cx,0 is the mean of the signal, and f(x) is
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the input signal. If we use a very large number of frequencies, we can reconstruct
the cell almost perfectly, but the number of descriptors will be unnecessarily high.
There is a tradeoff between the number of frequencies (shape descriptors) used
and the accuracy of the reconstruction. We are interested in quantifying shape
without dealing with high number of parameters. Since the amplitude decreases
with increasing frequency, we can filter higher frequencies and just use lower
frequencies to decrease the number of descriptors used for the analysis. Here,
with qualitative analysis of reconstructed cells with different frequency we decided
to use only the first 35 frequencies as descriptor of the cell. Reconstruction of
the shape of even rather irregular cells using these 35 frequencies is excellent,
as shown in Fig 3. Finally, a remaining issue for the Fourier coefficients is that
they are not rotationally invariant. We can construct a rotationally invariant
measure by using Eq (5), which removes the phase difference in the Fourier
expansion. This also reduces the number of parameters by half. Even though
reconstruction of cell shape will not be possible with the rotationally invariant
measures, our results show that they are nevertheless useful parameters for
distinguishing between cells with different degree of variations in the radius. We
will refer to these parameters as Waviness parameters. Interestingly, for Fourier
parameters, all the features show low correlation coefficient with each other
( 0.35), suggesting that each coefficient carries mostly independent information.
This observation was expected since we use orthogonal basis functions.

Cn =

√
An

2 +Bn
2 (5)

Roughness As explained earlier, in the Fourier series decomposition of shape,
higher frequencies have small amplitude and we neglect them. However, we
can still obtain information about small amplitude variations from those high
frequency terms. Following the method of Villanueva et. al. [28] to account for
high frequency measures, we reconstruct the cell with the 35 Fourier components
and subtract it from the original signal. The difference represents the roughness
of the perimeter on a smaller scale than the variations picked up faithfully by the
35 Fourier frequencies. Statistical measures of the magnitide of this difference
are called roughness measures and are listed in S7 Table. Visual examples of
roughness as defined here can be seen in the lower panel of Fig 3.

Spreading measures

In this class of shape quantifiers, the binary image of cell and nuclei is used.
These measures include geometric parameters for nuclei and cell, convex hull
measures and Zernike moments for cells.

Geometric measures Parameters like area, perimeter, major axis of fitted
ellipse, minor axis of fitted ellipse, and their ratio are examples of geometric
measures. All geometric measures used in this study to quantify cell and nuclei’s
shapes are listed in S4 Table and S5 Table .
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Fig 3. Reconstruction of the cells using Fourier decomposition. The
red line is the actual boundary of the cell and black line is the reconstruction of
the cell using the first 35 terms in the Fourier series expansion.

Convex Hull measurements A convex polygon is a closed polygon such
that the connecting line between any pair of points inside the polygon, lies
completely inside the polygon. S5(a) Fig and S5(b) Fig. shows an example of a
convex and non-convex polygon. The convex hull of a 2D shape is the smallest
convex polygon that encloses the whole shape [29]. An example of the convex
hull of a 2D cell shape is shown in S5(c) Fig. Convex hull geometric measures
used in this study are listed in S6 Table .

Zernike moments To calculate Zernike moments, the image of the cell is
projected to the Zernike Polynomial basis function and the coefficients, called
Zernike moments, are used as descriptor of cell shape. Zernike moments are
complex numbers whose magnitude is rotation invariant, and can be made
displacement invariant by moving the cell to the center of the imaging frame such
that the center of mass of the image falls on the geometric center of the frame.
The procedure has been discussed extensively previously [9],and Zernike moments
have been used previously in other types of biological image recognition [30].
The Zernike moment expansion is also a basis function expansion like the Fourier
series, and is capable of perfect reconstruction of the cell in principle. However
in practice numerical errors prevent an accurate reconstruction when too many
moments are used, and thus Zernike moments cannot capture the fine features
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of cell shape as well as Fourier series can. We found the best results when using
about 147 Zernike moments (order upto 30, repetition for each order upto 10),
which is what is currently calculated by TISMorph. These numbers can be
changed by the user if needed.

Validating performance of developed measures on osteosar-
coma cells perturbed with different cytoskeletal drugs.

Drugs which directly perturb microtubules, myosin-II or actin leave a
unique signature on actin structure which is quantifiable by textural
measures

We found that the most dramatic and unique effects on cell shape and texture
arise from drugs that directly perturb microtubules or actin filaments. As
shown in Fig 1, control cells acquire a polygonal shape on surfaces. Depoly-
merizing actin using Cytochalasin D leads to rounded cells where the actin has
re-organized into alternating concentric rings of high and low density. Within
each ring the actin is structured in very unique radial streaks! Increasing the
depolymerization rate of microtubules using Nocodazole leads to a small rounded
morphology. Inhibiting myosin II activity and decreasing cell’s contractility
using Blebbistatin leads to increase in irregularities in the cell boundary. These
changes in shape and structure of a cell are similar for both DUNN and DLM8
cell lines. Changes in structure and morphology of the cells using the other
drugs in our experiments, with more indirect effects on the cytoskeleton, are
subtle and not easily identifiable by eye. To quantify changes in shape and
structure of the cells perturbed with different drugs, gray scale and binary image
of the cells along with information of the boundary of the cells were used to
measure all features in the 9 shape categories detailed above for each cell. S9
Table demonstrates quantified changes in all the measures for all the drugs. As
demonstrated in this table the changes in textural measures for all the drugs are
significant. This means that all the drugs that perturbed actin either directly, or
indirectly through perturbing other cytoskeletal components, lead to significant
changes in actin cytoskeleton organization.

Actin reorganization changes the spreading measures for both the cell
and the nucleus

To explore changes in 2D shape of a cell and nuclei by changing actin distribution
we compare the PPC of the geometric measures of the cell and nuclei. As shown
in Table 2 perturbing actin significantly changes cell geometric measures other
than for DLM8 cell line treated with Jasplakinolide. Interestingly changes in
actin structure not only changes cell geometric measures, but it also changes
nuclei geometric measures for all conditions other than both cell lines treated
with Blebbistatin and DUNN cell line treated with Jasplakinolide and PP2
drugs. Zernike moments and Convex Hull parameters are similar in some
respects. Although their quantification method is very different, as shown in
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reconstruction of the image of cells using Zernike moments (S6 Fig) both measures
ignore the irregularities and fine fluctuations in the boundary. As demonstrated
in Table 2, changes in the PPC for both measures are not distinguishable
for DUNN cell lines treated with PP2, and both cell lines treated with FAKI
14. Moreover, hull geometric measures do not change significantly for DLM8
cells treated with Cytochalasin-D and DUNN cells treated with Jasplakinolide.
In addition, Zernike moments do not change significantly for the DLM8 cells
treated with Blebbistatin and DUNN cells treated with Cytochalasin-D. All
other drugs lead to distinguishable changes in convex hull and Zernike moment
measures. Since many cell shape parameters are expected to be correlated with
each other, we performed a correlation analysis of all the measures within each
shape quantification category, which are shown in S1 Fig. These results indicate
that Zernike moments, cell geometric measures, nuclei geometric measures, and
convex hull geometric measures are highly correlated with each other.

Cytoskeletal reorganization leads to changes in irregularities of a cell’s
boundary

As shown in Table 2, waviness measures for all the drug conditions, except
for DUNN cell lines treated with Jasplakinolide or PP2 and both cell lines
treated with FAKI 14, changes significantly with respect to controls. In addition,
the roughness measures change significantly for both cell lines treated with
Blebbistatin, Cytochalasin-D, FAKI 14, and Nocodazole. In both cell lines,
Jasplakinolide does not change the roughness measure significantly, which is also
the case for the DUNN cell lines treated with PP2.

Different categories of shape quantifiers represent partly non-redundant
shape information

While we have shown that each of our major categories and subcategories serve
as good shape measures, in that they can be used to look for interpretable
shape changes in different drug conditions, it is not clear whether we need
all of them to represent shape. In order to estimate the degree of redundant
information carried by the different shape categories, we calculated the Pearson
correlation coefficient between all the features from different shape categories
(shown in S1 File). In general, features from two different shape categories are
relatively weakly correlated (< 0.4) except for Convex Hull and Cell Geometric
features which are highly correlated with each other. There are a few other
specific exceptions for which the features are also highly correlated. They are
as follows. Zernike moments with n < 16 and m = 0 are highly correlated
with Area. The correlation coefficient between Cell Area and Zernike Moment
0-0 is 1. It decreases with increasing order till it is almost zero for Zernike
Moment (22-0), then it becomes negative and increases in magnitude (S7 Fig).
The coefficient C0 from waviness features has a correlation of 1 with the Mean
Cell Radius. It is also highly correlated with Cell Area (0.93) and Convex Hull
area. Since the Fourier decomposition is based on a radial representation of the
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cell shape, C0 is a measure of the average cell radius, and should be expected
to show these high correlations. Fractal Dimension measures also have high
correlation with Cell Geometric, Nuclei Geometric, Gray Scale measures, and
Zernike moments with m = 0 and n < 17. However, apart from these specific
cases, the relatively high number of weak correlations between different shape
categories implies that these shape categories contain non-redundant information
about cell shape. Thus, quantitative shape analysis should ideally be carried out
with representations from all of these shape categories in order for most efficient
discrimination between different experimental conditions.

Discussion

In this paper we introduce and provide the TISMorph package to quantify cell
shape and cytoskeletal structure based on two dimensional images of cell mor-
phology and actin structure. The Matlab toolbox used to process the images and
quantify the shape and structure of a cell is shared in GitHub repository to be used
by others. These toolboxes can be found in the following addresses, https://
github.com/Wenlong-Xu/Image_Processing_Cell_Shape , https://github.

com/Elaheh-Alizadeh/Quantifiction-of-shape-and-structure. Some of
the textural and morphological features calculated by TISMorph are similar to
the measures calculated by CellProfiler(CP) [22]. Geometric features of nuclei
and cell, and gray scale measures calculated in this paper overlap with the
measures calculated in CellProfiler by MeasureObjectSizeShape and Measure-
Texture module. CP also calculates Zernike moments, though only to order
10, while we use Zernike moments up to order 30, because we find that fewer
orders do not resolve objects sufficiently. Some of the measures we calculate are
not implemented in the version of CP current during the time of submission.
These are Fractal dimension, hull geometric measures, band based measures, and
irregularity measures. However CP does calculate a few additional measures in
the MeasureObjectIntensity module, which are statistical measures of intensity
of objects such as mean and standard deviation of intensity, that are currently
not included in TISMorph. Thus TISMorph includes significant additions to the
previous state of the art as represented by the quantitative metrics calculated
by CP.

The quantitative measures in the TISMorph package have been developed on
the basis of empirical investigation of statistically significant differences between
experimental conditions in principal component space. In this paper we explored
the capacity of these quantitative measures to capture biologically important
information. We perturbed the cytoskeleton of the cells with different drugs
and explored their effect on cell shape and its structure. We first used textural
measures to verify that the actin structure of the cell changes in the cells treated
by cytoskeletal drugs and then we explored changes in the cell’s and nuclei’s 2D
shape and irregularities of the cell boundary accompanied by changes in actin
structure. Here we showed that most of the drugs used in this study directly or
indirectly lead to significant changes in actin structure. Then we explored effect
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of changes in the structure of the cell on the measures of irregularities of cell
boundary, nuclei spreading, and cell spreading. In most of the cases changes in
actin structure are accompanied with significant changes in irregularities of cell
boundary, and cell and nuclei spreading. The results show that textural measures
and spreading measures are related but their relation is not simple, and the two
classes of measures carry non-redundant information. It is worth mentioning that
although we implemented textural measures to quantify actin structure, they can
be used to quantify other sub-cellular and super-cellular structures as well. Shape
quantification methods presented in this paper will prove useful for morphological
screening for use in computer aided diagnostics in diseases such as cancer that
are associated with cytoskeletal perturbations, assessment of qualitative cellular
changes in different experimental conditions, and for mechanistic understanding
of the determination of cell shape. In particular, morphological screening is
emerging as a new high-throughput technique with wide applications in assessing
functional biological responses [?,?], and TISMorph should help increase the
sensitivity and specificity of morphological comparisons.
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29. Welzl E, Gärtner B. Computational Geometry; 2014. Available from:
https://www.ti.inf.ethz.ch/ew/Lehre/CG13/index.html.

30. Tahmasbi A, Saki F, Shokouhi SB. Classification of benign and malignant
masses based on Zernike moments. Computers in Biology and Medicine.
2011;41(8):726–735. doi:10.1016/j.compbiomed.2011.06.009.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 21, 2018. ; https://doi.org/10.1101/372755doi: bioRxiv preprint 

https://www.mathworks.com/matlabcentral/fileexchange/30329-hausdorff--box-counting--fractal-dimension
https://www.mathworks.com/matlabcentral/fileexchange/30329-hausdorff--box-counting--fractal-dimension
https://www.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?s{_}tid=prof{_}contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?s{_}tid=prof{_}contriblnk
https://www.mathworks.com/matlabcentral/fileexchange/22354-glcm-features4-m--vectorized-version-of-glcm-features1-m--with-code-changes-?s{_}tid=prof{_}contriblnk
https://www.ti.inf.ethz.ch/ew/Lehre/CG13/index.html
https://doi.org/10.1101/372755
http://creativecommons.org/licenses/by/4.0/

