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Abstract		24 

The	“apparent	motion”	illusion	is	evoked	when	stationary	stimuli	are	successively	flashed	in	spatially	25 

separated	positions.	It	depends	on	the	precise	spatial	and	temporal	separations	of	the	stimuli.	For	large	26 

spatiotemporal	separation,	the	long-range	apparent	motion	(lrAM),	it	remains	unclear	how	the	visual	27 

system	computes	unambiguous	motion	signals.	Here	we	investigated	whether	intracortical	interactions	28 

within	retinotopic	maps	could	shape	a	global	motion	representation	at	the	level	of	V1	population	in	29 

response	to	a	lrAM.	In	fixating	monkeys,	voltage-sensitive	dye	imaging	revealed	the	emergence	of	a	30 

spatio-temporal	representation	of	the	motion	trajectory	at	the	scale	of	V1	population	activity,	shaped	by	31 

systematic	backward	suppressive	waves.	We	show	that	these	waves	are	the	expected	emergent	32 

property	of	a	recurrent	gain	control	fed	by	the	horizontal	intra-cortical	network.	Such	non-linearities	33 

explain	away	ambiguous	correspondence	problems	of	the	stimulus	along	the	motion	path,	preformating	34 

V1	population	response	for	an	optimal	read-out	by	downstream	areas.	35 

		36 

Introduction	37 

When	two	stationary	stimuli	are	successively	flashed	in	spatially	separated	positions,	it	generates	the	so-38 

called	“apparent	motion”	illusion	(Wertheimer	1912).	This	illusion,	well	characterized	in	psychophysics	39 

(Burr	and	Thompson	2011),	depends	on	the	spatio-temporal	characteristics	of	the	stimulus,	being	called	40 

“short-range”	vs	“long-range”	apparent	motion	(lrAM)	for	spatial	separation	below	or	above	0.25°	and	41 

temporal	separation	below	or	above	80	ms	respectively	(Braddick	1980).	In	psychophysics,	intrinsic	42 

differences	were	reported	between	these	two	types	of	apparent	motion,	however,	there	is	some	debate	43 

whether	it	is	underlined	by	same	or	different	process	(Cavanagh	and	Mather	1989).	In	physiology,	while	44 

we	have	a	clear	idea	on	the	neuronal	processing	generating	direction-selective	neuronal	response	to	45 

short-range	apparent	motion	stimuli	(Mikami,	Newsome,	and	Wurtz	1986b),	we	still	have	a	poor	46 
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understanding	of	how	the	visual	system	process	lrAM.	This	is	probably	because	the	spatial	separation	47 

between	individual	strokes	of	the	lrAM	extend	beyond	the	typical	extent	of	receptive	fields	in	the	early	48 

visual	system,	at	least	in	primates.	In	the	case	of	the	lrAM,	psychophysicists	have	long	highlighted	the	49 

necessity	to	have	a	process,	such	as	the	“reviewing	process”	(Kahneman,	Treisman,	and	Gibbs	1992),	50 

that	will	link	the	transient	apparitions	of	stimuli	in	different	spatial	and	temporal	positions	in	order	to	51 

generate	a	coherent	motion	percept	of	a	single	object,	hereby	solving	the	problem	of	“phenomenal	52 

identity”	(Ternus	1926)	or	“correspondence”	(Ullman	1978).	Downstream	areas	with	large	receptive	53 

fields	are	a	natural	expected	integration	unit	for	such	extended	spatiotemporal	input.	Indeed,	it	has	54 

been	recently	shown	in	human	that	the	feedback	from	MT	to	V1	plays	an	important	role	in	the	55 

processing	of	lrAM	(Wibral	et	al.	2009;	Muckli	et	al.	2002;	Vetter,	Grosbras,	and	Muckli	2015),	as	well	as	56 

evidences	of	downstream	activation	along		the	ventral	stream	(Zhuo	et	al.	2003).	However,	it	is	still	57 

unclear	whether	and	how	the	“reviewing”	process,	needed	to	keep	track	of	the	object	identity	along	the	58 

motion	trajectory,	can	be	achieved	within	these	receptive	fields.	59 

As	suggested	from	fMRI	experiments	in	human,	the	neuronal	processing	within	V1	could	60 

participate	in	formatting	the	representation	of	lrAM	(Muckli	et	al.	2005).	The	extended	precise	61 

retinotopic	map	in	V1	makes	it	indeed	an	ideal	platform	for	representing	and	disambiguating,	at	the	62 

level	of	the	neuronal	population,	the	trajectory	of	the	apparent	motion	illusion,	a	representation	that	63 

could	be	read-out	by	downstream	areas	(Mumford	1991;	Lee	et	al.	1998).	In	particular,	V1	has	the	64 

highest	resolution	(Lee	et	al.	1998)		to	achieve	the	interactions	in	space	and	time	needed	to	link	the	65 

individual	strokes	of	the	apparent	motion	(Lee	et	al.	1998;	Adelson	and	Bergen	1985).	In	such	context,	66 

intra-cortical	and	inter-cortical	connectivity	would	be	the	natural	substrate	to	underlie	the	necessary	67 

spatio-temporal	interactions	(Deco	and	Roland	2010;	Muller	et	al.	2018).	Importantly,	these	two	68 

networks	have	intrinsically	different	spatio-temporal	properties,	the	inter-cortical	network	operating	69 

over	very	large	extent	but	with	poor	spatial	and	temporal	resolution	(Angelucci	et	al.	2002;	Stetter	70 
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2002),	and	the	intra-cortical	network	has	a	more	limited	extent	but	with	high	spatial	and	temporal	71 

resolution	(Muller	et	al.	2014;	Bringuier	et	al.	1999;	Bullier	2001).	Furthermore,	they	constitute	the	vast	72 

majority	of	synaptic	contacts	in	the	cortex,	the	feedback	accounting	for	less	than	20%	and	the	intra-73 

cortical	connectivity	contributing	to	80%	of	the	number	of	neuronal	contacts,	while	the	feedforward	less	74 

than	1%	(Markov	et	al.	2011).	Such	connectivity	seems	therefore	like	a	good	candidate	to	link	transient	75 

spatio-temporal	events	(Muller	et	al.	2018).	It	was	indeed	shown,	in	the	anesthetized	cat,		to	shape	76 

visual	information	for	a	dynamic	representations	of	sequences	of	static	stimuli	(Jancke	et	al.	2004;	77 

Gerard-Mercier	et	al.	2016)	through	non-linear	gain	controls	of	the	feedforward	input	(Reynaud,	78 

Masson,	and	Chavane	2012).	However,	it	is	still	unclear	whether	and	how	the	cortico-cortical	79 

interactions	could	participate	to	shape	the	representation	of	lrAM	within	V1	retinotopic	map	in	the	80 

awake	monkey.		81 

To	answer	this	question,	we	used	optical	imaging	of	voltage-sensitive	dyes	(VSDI)	in	the	awake	82 

fixating	monkey,	to	measure	how	V1	neuronal	population	integrates	a	two-stroke	lrAM	that	83 

overreached	individual	neuronal	receptive	field	size.	In	response	to	a	single	stroke,	activity	in	V1	84 

propagates	in	space	and	time,	as	already	documented	(A.	Grinvald	et	al.	1994;	Slovin	et	al.	2002;	Sato,	85 

Nauhaus,	and	Carandini	2012;	Bringuier	et	al.	1999;	Muller	et	al.	2014),	with	spatial	and	temporal	86 

constants	that	cover	about	3	mm	and	80	ms.	In	response	to	the	lrAM	of	various	spatio-temporal	87 

separations,	we	observed	that	the	cortical	response	systematically	deviates	from	the	linear	prediction	88 

and	generates	a	wave	of	suppression	that	is	initiated	right	at	the	second	stimulus	onset	and	propagates	89 

to	suppress	the	residual	response	to	the	first	stimulus.	A	computational	model	was	developed	to	90 

understand	the	potential	origin	of	such	suppressive	waves.	The	model	shows	that	two	ingredients	are	91 

necessary	to	explain	suppressive	waves:	the	higher	gain	of	inhibitory	cells,	and	the	shunting	effect	of	the	92 

associated	synaptic	conductances.	Using	a	spatio-temporal	decoding	approach,	we	demonstrate	that	93 

such	suppression	waves	explain	away	ambiguous	representation	of	stimulus	position	along	the	apparent	94 
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motion	trajectory.	These	waves	thus	preformat	V1	population	response	for	an	unambiguous	95 

representation	of	the	lrAM.	Using	an	opponent	motion	energy	approach,	we	demonstrate	that	this	96 

results	in	an	optimal	encoding	of	the	stimulus	velocity	that	could	be	easily	read-out	by	downstream	97 

areas.				98 

	99 

Results	100 

Characterizing	the	mesoscopic	spatio-temporal	impulse	response	function	101 

Two-step	apparent	motion	sequences	of	various	spatio-temporal	characteristics	(Fig	1,	A	and	B)	were	102 

presented	to	two	behaving	monkeys	involved	in	a	fixation	task.	The	primary	visual	cortical	response	was	103 

measured	at	the	level	of	the	population	using	voltage-sensitive	dye	imaging	(Amiram	Grinvald	and	104 

Hildesheim	2004;	Chemla	and	Chavane	2010a).	In	response	to	a	local	stimulus	(0.25°	in	diameter)	105 

presented	for	100	ms	in	two	different	visual	positions	(separated	vertically	by	1°	or	2°),	activity	arises	at	106 

the	retinotopic	representation	of	these	two	positions	and	then	spreads	laterally	over	millimeters	of	107 

cortical	surface	(Fig.1C:	lower	position,	Fig.	1D:	upper	position)	(A.	Grinvald	et	al.	1994;	Reynaud,	108 

Masson,	and	Chavane	2012;	Muller	et	al.	2014).	V1	activity	is	hereby	reaching	positions	in	space	and	109 

time	well	beyond	1°	and	50ms.	As	a	consequence,	the	evoked	spread	covers	a	large	cortical	extent	that	110 

can	reach	the	representation	of	the	other	stimulus	in	space	and	beyond	the	inter-stimulus	interval	in	111 

time.	The	space-	and	time-	constants	of	our	responses	were	systematically	quantified	on	the	two	112 

monkeys	and	for	the	three	stimulus	durations	we	used	(10,	50	and	100ms)	on	a	2D	spatio-temporal	(ST)	113 

map	(Fig.	2A).	To	produce	these	ST	maps,	cortical	activity	was	averaged	within	the	apparent-motion	114 

trajectory	(dotted	rectangle	at	frame	216	ms	in	Fig.	1,	C-G)	to	provide	a	unique	spatial	cortical	dimension	115 

(ordinate	in	Fig.	2A).		First,	we	extracted	the	space-constant	of	a	gaussian	spatial	fit	for	all	time	points	116 

(see	Fig.	2A,	right-side	of	the	maps).	In	both	monkeys	and	across	19	sessions	overall,	the	space-constant	117 
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increased	from	1.6	+/-	0.5	mm	at	response	onset	to	reach	a	maximum	of	3.3	+/-	0.2	mm,	independent	of	118 

the	stimulus	duration	and	monkeys	(Fig.	2B,	no	significant	difference	observed	between	all	stimuli	119 

durations,	t-test	with	p>0.01).	The	time-constants	of	the	response	time-course	at	the	central	120 

representation	of	the	stimulus	were	measured	using	two	halve	gaussian	functions	fits	(see	Fig.	2A,	121 

below	the	maps).	In	both	monkeys,	the	time-constant	at	response	onset	was	on	average		23.6+/-	17.2	122 

ms	for	all	stimuli	durations	(except	for	monkey	BR	with	a	mean	value	of	44.5	+/-	14.5	ms	for	100	ms	123 

stimuli,	see	blue	histogram	in	Fig.	2E),	and	80	+/-	43.6	ms	for	response	offset	(Fig.	2F,	no	significant	124 

difference	observed	between	all	stimuli	durations,	t-test	with	p>0.01).	Lastly,	we	also	extracted	the	125 

speed	at	which	the	response	spreads	across	the	cortical	surface	(see	Fig.	2A,	slanting	lines)	and	obtained	126 

a	distribution	with	peak	values	of	about	0.26	+/-	0.14	m/s,	similar	across	monkeys	and	stimulus	127 

durations	(t-test	with	p>0.01),	and	similar	to	what	has	been	observed	in	different	species	and	states	128 

(Slovin	et	al.	2002;	Sato,	Nauhaus,	and	Carandini	2012;	Bringuier	et	al.	1999;	Reynaud,	Masson,	and	129 

Chavane	2012;	Muller	et	al.	2014).	This	analysis	showed	that	the	spatio-temporal	integrative	properties	130 

of	the	primary	visual	cortex	are	mostly	independent	of	stimulus	duration	and	are	able	to	cover	a	large	131 

spatial	(3mm)	and	temporal	(100ms)	extent,	bridging	the	cortical	representation	between	our	individual	132 

stimuli	in	space	and	time.		133 

	134 

 135 

Figure	1:		Experimental	protocol	and	time-sequence	of	the	cortical	response	to	the	long-range	apparent	motion	136 
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(lrAM).		A:	Two-step	lrAM	stimuli	are	presented	to	two	awake	fixating	monkeys	in	their	bottom	left	visual	field,	137 

while	recording	in	their	right	visual	cortex	using	VSDI.		B:	Spatio-temporal	characteristics	of	lrAM	stimuli,	i.e.	138 

duration	(DUR)	,	interstimulus	interval	(ISI)	and	spatial	interval	(SI),	were	varied	to	cover	a	[5-66.6]°/s	range	of	139 

speed.	C-E:	Cortical	representation	of	evoked	VSDI	activity	as	a	function	of	time,	in	response	to	respectively,	a	100	140 

ms	local	stimulus	in	the	down	position,	another	one	in	the	up	position,	and	the	sequence	of	these	two	stimuli	(ISI		=	141 

50	ms	and	SI	=	1°).	The	cortical	area	imaged	is	shown	at	upper	left.	The	edge	of	the	image	color	codes	the	142 

retinotopic	borders	as	represented	in	A	such	as	the	vertical	meridian	(magenta),	eccentricities	(green	and	blue).	143 

Scale	bar:	2	mm;	A:	anterior,	P:	posterior,	M:	medial,	L:	lateral.	Time	in	milliseconds	after	stimulus	onset	is	shown	at	144 

the	top,	while	stimulation	time	is	drawn	at	the	bottom	of	each	row	(black	lines).		F:	Activity	pattern	predicted	by	the	145 

linear	combination	in	space	and	time	of	the	response	to	stimulus	1	(row	C)	and	the	response	to	stimulus	2	(row	D).	146 

G:	Suppression	pattern	obtained	by	subtracting	the	observed	apparent	motion	response	(row	E)	and	the	linear	147 

prediction	(row	F).	Red	contours	delimit	amplitude	activity	above	a	certain	threshold:	1	�‰	in	panels	C-F	and		-148 

0.5‰	in	panel	G.	149 

	150 

The	evoked	response	to	the	lrAM	is	shaped	by	a	suppressive	wave	151 

We	next	asked	whether	such	lateral	interactions	contribute	to	shape	the	evoked	population	response	to	152 

the	temporal	succession	of	these	two	stimuli.		For	that	purpose	we	measured	the	cortical	population	153 

response	to	a	two-stroke	upward	apparent	motion	sequence	(Fig.	1E).	Such	temporal	sequence	154 

generates	a	propagation	of	activity	starting	at	the	cortical	representation	of	the	first	stimulus	(S1)	and	155 

moving	to	the	cortical	representation	of	the	second	stimulus	(S2),	a	cortical	correlate	of	the	illusory	156 

motion	(Jancke	et	al.	2004).	The	observed	pattern	of	activity	departs	from	the	pattern	predicted	by	a	157 

simple	linear	summation	of	the	lower	and	upper	stimuli	(Fig.	1F).	If	we	subtract	the	observed	(Fig.	1E)	158 

and	the	linear	predicted	responses	(Fig.	1F),	two	deviations	from	non-linearities	are	observed.	First,	a	159 

suppression	emerges	at	response	onset	and	at	the	cortical	representation	of	S2	(compare	1D	and	1G	at	160 

frame	216ms).	The	suppression	then	gradually	propagates	over	the	cortical	surface	towards	the	161 
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representation	of	S1	(Fig.	1G).	We	can	hypothesize	that	the	evoked	activities	by	the	two	stimuli	162 

composing	the	lrAM	sequence	interact	together	to	generate	this	dynamic	pattern	of	suppression.	Since	163 

the	suppression	is	observed	at	the	onset	time	of	the	response	to	S2,	it	has	to	be	due	to	the	activity	164 

dynamics	generated	by	S1	interacting	with	the	integration	of	S2.	However,	the	propagation	of	165 

suppression	from	the	representation	of	S2	towards	the	representation	of	S1	is	probably	due	to	the	166 

activity	dynamics	evoked	by	S2	interacting	with	the	residual	activity	evoked	by	S1.	Therefore,	the	167 

suppression	wave	could	likely	be	the	result	of	multiple	interactions	(e.g	bidirectional)	between	the	168 

activities	evoked	by	the	stimulus	sequence.	169 

	170 

 171 

Figure	2:	Spatio-temporal	characteristics	of	cortical	responses	to	a	local	stimuli.	A-C:Spatio-temporal	172 
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representations	(ST)	of	the	evoked	cortical	response	to,	respectively,	10	ms	(A,	red)	,	50	ms	(B,	purple)	and	100	ms	173 

(C,	blue)	local	stimuli.	To	produce	the	ST	representation,	we	averaged	spatial	data	along	the	stimulus	trajectory	174 

(rectangle	in	frame	216ms,	Fig1C-G).	For	each	spatial	point,	the	temporal	data	were	fitted	to	a	combination	of	two	175 

half	Gaussians,	as	illustrated	for	one	specific	point	in	space	(horizontal	white	line	on	the	ST	diagram)	below	the	ST	176 

maps.	Similarly,	for	each	time	frame,	the	spatial	data	were	fitted	to	a	Gaussian	function	as	shown	on	the	right	side	177 

of	each	ST	map	for	one	specific	point	in	time	(vertical	white	line).	D:		Space-constant	of	the	Gaussian	spatial	fit	178 

(sigma	parameter)	plotted	as	a	function	of	time	for	the	three	considered	durations	(10	ms	in	red,	50	ms	in	magenta	179 

and	100	ms	in	blue)	and	for	the	two	monkeys	(top:	monkey	WA,	bottom:	monkey	BR).	E:	Histograms	of	time-180 

constant	at	response	onset	(�on)	estimated	from		the	temporal	fit	of	the	response	for	the	three	considered	181 

durations	and	the	two	monkeys.	F:	Histograms	of	time-constant	at	response	offset	(�off)	estimated	from	the	182 

temporal	fit	of	the	response	for	the	three	considered	durations	and	the	two	monkeys.	G:	Histograms	of	cortical	183 

speed	of	propagation	estimated	by	linear	regression	on	response	latency	(stairs-step	contours,		slanting	lines	and	184 

slope	of	the	linear	regression)	for	the	three	considered	durations	and	the	two	monkeys. 185 

	186 

The	suppressive	wave	is	systematically	observed	187 

To	better	investigate	how	spreads	of	evoked	activity	and	suppression	shape	the	representation	of	lrAM,	188 

we	first	show	ST	representations	of	examples	taken	for	both	monkeys	and	three	stimuli	speeds.	The	189 

example	of	Figure	1	is	shown	in	Figure	3A	(6.6°/s).	In	these	ST	representations,	we	can	observe	a	clear	190 

propagation	of	activity	in	response	to	a	local	stimulus	(slanting	lines	in	Fig.	3,	A	and	B)	that	is	remarkably	191 

similar	across	both	monkeys	(Fig.	3,	A	and	B,		first	rows)	and	speeds	(three	columns	respectively	for	192 

6.6°/s,	10°/s	and	33.3°/s,	as	shown	in	Fig.	2F).	The	ST	representation	of	non-linearities	(lower	rows)	193 

recentered	on	S2	onset,	shows	that	suppression	first	appears	at	the	cortical	representation	of	S2	and	at	194 

S2	response	onset,	and	then	propagates	towards	the	representation	of	S1,	at	a	similar	speed	than	the	195 

one	observed	for	the	evoked	activity	to	the	first	stimulus	(Fig.	3,	A	and	B,	second	rows,	slanting	lines).	In	196 

both	monkeys	and	the	three	examples	shown,	this	suppression	propagates	in	a	direction	opposite	to	the	197 
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apparent	motion	sequence,	from	S2	to	S1	representations.	Functionally	it	results	in	silencing	the	residual	198 

activity	generated	by	S1.		199 

	200 

Figure	3:		The	apparent	motion	stimulus	induces	a	systematic	suppression	wave.	Spatio-temporal	representation	201 

of	VSDI	responses	to	two-stroke	apparent	motion	stimuli	for	three	different	speed	(6.6°/s,	10°/s	and	33.3	°/s)	and	202 

two	animals	(A:	monkey	WA,	B:	monkey	BR).	The	upper	rows	of	A	and	B	represent	the	observed	response	and	the	203 

lower	rows	the	non-linearities	of	the	response	(observed	-	linear	prediction).	Estimates	of	speed	propagation	are	204 

reported	on	each	ST	diagram	(black	stairs-step	are	contours	at	threshold	level,	slanting	lines	are	the	slope	of	the	205 
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linear	regression).	Similar	values	are	observed	for	both	the	observed	activity	and	the	non-linearities.	206 

The	suppressive	wave	propagates	at	the	same	speed	and	with	same	extent	as	the	evoked	spread	207 

This	suppressive	wave	was	systematically	observed	for	all	two-stroke	lrAM	conditions	tested	(see	208 

Fig.1B).	This	can	be	seen	in	the	ST	evoked	response	(centered	on	the	onset	of	S1)	and	nonlinearities	209 

(centered	on	the	onset	of	S2)	averaged	across	all	conditions	and	sessions	for	both	monkeys	(Fig.	4A).	To	210 

better	understand	the	origin	of	the	suppression	dynamics,	and	its	dependence	on	stimulus	conditions,	211 

we	characterized	its	spatio-temporal	properties.	First,	we	measured	the	onset	of	the	apparition	of	the	212 

suppression	at	S2	position.	The	latency	of	the	observed	suppression	was	the	same	as	the	latency	of	the	213 

activity	evoked	by	S2	alone	(Fig.	4B,	respectively	39.5	+/-	2.0	ms	vs.	38.6	+/-	1.6	ms	for	monkey	WA	and	214 

36.6	+/-	1.8	ms	vs.	36.9	+/-2.1	ms	for	monkey	BR,	non-significantly	different,	t-test	with	p	=	0.77	and	p	=	215 

0.35	respectively	for	WA	and	BR).	However,	the	suppression	resulted	in	significantly	delaying	the	216 

response	onset	evoked	by	S2	when	presented	within	the	apparent	motion	sequence	(54.2	+/-	2.0	ms	217 

and	68.3	+/-	5.3	ms	for	WA	and	BR	respectively,	Fig.	4B).	Then,	we	quantified	the	spatial	extent	of	the	218 

suppression	(𝛔	of	a	Gaussian	fit,	Fig.	4C).	In	all	conditions,	the	spatial	extent	of	the	suppression	was	of	219 

about	2.8	mm	(2.49	+/-	0.14	mm	for	WA	and	3.08	+/-	0.18	mm	for	BR),	similar	and	non	significantly	220 

different	than	the	spatial	extent	of	the	evoked	response	(2.99	+/-	0.11	mm	and	2.41	+/-	0.17	mm	for	WA	221 

and	BR	respectively).	Thus	the	suppressive	wave	starts	at	similar	latency	and	covers	similar	spatial	222 

extent.	We	next	characterized	the	speed	of	propagation	of	activity	(Fig.	4D	black)	and	suppression	(Fig.	223 

4D	blue),	plotted	as	a	function	of	stimulus	speed.	Remarkably,	on	both	monkeys,	the	observed	cortical	224 

speeds	were	identical	for	both	the	propagation	of	activity	and	the	suppression	and	completely	225 

independent	of	the	lrAM	speed	(0.28	+/-	0.26	m/s	and	0.27	+/-	0.4	m/s	respectively	for	WA	and	0.21	+/-	226 

0.15	m/s	and	0.27	+/-	0.2	m/s	respectively	for	BR).	However,	from	the	ST	plots	in	Figure	3,	we	noticed	227 

that	the	suppression	does	not	seem	to	spread	but	rather	propagates	as	a	wave	(Muller	et	al.	2014,	228 

2018).	To	probe	for	this	hypothesis	we	thus	compared	the	dynamics	of	the	response	peak	position	(𝛍	of	229 
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a	Gaussian	fit).	In	a	spread,	typically,	the	response	peak	will	not	move	in	space,	as	observed	for	evoked	230 

response	(Fig.	4E,	the	peak	spatial	position	is	not	changing	with	time,	slope	of	-1.3x10-5	+/-	1.1x10-4	m/s	231 

and	1.6x10-4	+/-	3.4x10-4	m/s	for	WA	and	BR	respectively),	whereas	in	a	wave	it	will	follow	the	onset	232 

spatial	displacement,	which	is	what	we	found	for	the	suppression	(Fig.	4E,	the	peak	moves	from	position	233 

2	to	position	1,	negative	slope	of	-0.05	+/-	0.007	m/s	and	-0.034	+/-	0.005	m/s	for	WA	and	BR	234 

respectively).	Altogether,	our	results	show	that	the	suppression	is	initiated	at	response	onset,	have	235 

similar	spatial	extent	and	propagation	speed	as	the	activity	evoked	response.	Furthermore,	although	236 

evoked	activity	are	waves	hidden	by	spatial	averaging	(Muller	et	al.	2014),	the	suppression	is	still	seen	as	237 

a	wave	in	the	averaged	data.	This	strongly	suggests	that	the	suppression	is	likely	to	be	mediated	by	the	238 

same	general	process	generating	the	propagation	of	evoked	activity,	most	probably	the	intra-cortical	239 

horizontal	network	(Muller	et	al.	2014).	If	the	suppression	is	generated	along	the	propagation	of	activity,	240 

one	prediction	is	that	it	should	decrease	in	strength	with	spatial	and	temporal	separation	between	the	241 

two	stimuli	composing	the	lrAM.	This	is	indeed	what	was	observed,	the	suppression	strength	decreases	242 

as	a	function	of	stimulus	onset	asynchrony	and	spatial	separation	(Fig.	4F,	t-statistics	on	the	slope	of	the	243 

linear	regression	gives	t	=	-0.92	with	p=0.18	and	t	=	-6.3	with	p	=	3.6x10-6,	respectively	for	a	spatial	244 

interval	of	1⁰	and	2⁰	(WA);	t	=	-1.2	with	p=0.12	and	t	=	-1.6	with	p	=	0.05	(BR)).	245 

	246 
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 247 

Figure	4:	The	suppressive	wave	has	the	same	properties	as	the	evoked	intra-cortical	propagation.																											248 

A:	Spatio-temporal	VSDI	activity	(top	row)	and	non-linearities	(bottom	row)	averaged	across	all	lrAM	speed	249 

conditions	and	centered	on	stimulus	1	(S1,	top	row)	or	stimulus	2	(S2,	bottom	row)	onset,	for	both	monkeys	250 

(columns).	B:	Boxplot	of	latency	estimates	comparing	the	onset	of	activity	evoked	by	S2	alone	(“evoked”	condition),	251 

the	response	onset	evoked	by	S2	when	embedded	in	the	lrAM	sequence	(“lrAM”	condition)	and	the	onset	of	the	252 

suppression	at	S2	position	(“suppr”	condition).	Boxplots	illustrate	median,	25	and	75%	quartiles	and	minimum	and	253 

maximum	of	the	distributions	across	all	lrAM	speed	conditions,	for	the	two	monkeys	(black	WA,	gray	BR).	C:	Boxplot	254 

of	space-constants	(parameter	𝛔	of	a	Gaussian	spatial	fit)	comparing	the	evoked	response	and	the	suppression,	for	255 

the	two	monkeys.	D:	For	each	condition	in	both	monkeys	(columns),	we	estimated	the	speed	of	propagation	of	the	256 

VSDI	(black)	and	the	non-linearity	(blue).	The	upper	row	shows	frequency	histograms	and	the	lower	row	these	257 

speeds	as	a	function	of	the	speed	of	the	lrAM	stimulus.	E:	Boxplot	of	the	response	peak	propagation	speed	(slope	of	258 

the	linear	regression	on	the	parameter	𝛍	of	a	Gaussian	spatial	fit)	comparing	the	evoked	response	and	the	259 

suppression,	for	both	monkeys.	F:	Suppression	strength	(normalized	to	the	maximal	response	activity)	as	a	function	260 

of	stimulus	onset	asynchrony	and	spatial	interval	(open	circle	for	SI	=	1⁰,	open	square	for	SI	=	2⁰),	for	both	monkeys	261 

(black	WA,	gray	for	BR).	262 
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	263 

The	suppressive	wave	can	be	the	result	of	a	dynamic	gain	control	264 

What	can	be	the	origin	of	such	suppressive	wave?	Since	inhibitory	intra-cortical	axons	have	more	limited	265 

spatial	extent	(Buzás	et	al.	2001),	and	that	feedback	from	higher	areas	are	excitatory	(Salin	and	Bullier	266 

1995),	we	can	hypothesize	that	is	does	not	result	from	a	simple	net	inhibition,	but	rather	as	a	byproduct	267 

of	the	excitatory/inhibitory	balance	(Tsodyks	et	al.	1997;	Ozeki	et	al.	2009).	Indeed,	as	demonstrated	268 

using	center-surround	stimulations,	the	suppressive	wave	can	be	the	result	of	a	simple	dynamic	input	269 

normalization	fed	by	propagation	along	the	horizontal	network	(Reynaud,	Masson,	and	Chavane	2012).	270 

To	determine	the	possible	mechanisms	generating	the	observed	suppression,	we	used	a	mean-field	271 

model	designed	to	reproduce	accurately	VSDI	(Zerlaut	et	al.	2018).		In	this	model,	it	was	assumed	that	272 

each	pixel	of	the	VSDI	represents	the	average	Vm	of	two	populations	of	interacting	neurons,	excitatory	273 

regular-spiking	(RS)	neurons,	and	inhibitory	fast-spiking	(FS)	neurons	(Chemla	and	Chavane	2010b).	274 

Arranging	this	model	into	a	spatially	extended	interconnected	populations	of	RS-FS	cells	(Fig.	5A,	see	275 

Methods)	allows	to	simulate	the	propagating	waves	observed	in	awake	monkey	under	VSDI.	The	great	276 

advantage	of	such	model	is	to	explicitly	take	into	account	conductance-based	interactions	(COBA)	as	277 

well	as	a	different	gain	between	excitation	and	inhibition.	These	ingredients	are	often	neglected	as	they	278 

introduce	difficulties	in	mathematical	tractability	of	mean	field	models	(Landau	et	al.	2016;	Vogels,	279 

Rajan,	and	Abbott	2005).	Nevertheless,	these	features	are	biologically	relevant	and,	as	we	show	here,	280 

are	actually	the	main	elements	determining	waves	suppression.	Examples	of	two	independent	waves	281 

are	shown	in	Fig.	5B	(upper	row).	When	the	two	stimuli	are	presented	in	succession		(see	Fig.	5B	lower	282 

left)	the	observed	response	shows	a	suppression	(Fig.	5B	lower	right),	whose	values	are	quantitatively	283 

similar	to	those	of	experimental	data	(	suppression	of	around	50%	of	the	response	max).	Such	284 

suppressive	effect	was	robustly	observed	across	a	wide	range	of	the	parameters	space.	The	first	285 

parameter	that	was	found	to	strongly	affect	the	suppression	is	the	ongoing	spontaneous	activity	of	the	286 
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system	pre-stimulus.	As	we	report	in	Fig.	5C	(COBA	model,	red	dots),	the	suppression	decreases	when	287 

the	spontaneous	activity	of	the	system	increases	(see	example	marked	by	a	circle,	Fig	5D).	Moreover,	288 

two	further	mechanisms	were	necessary	to	explain	this	suppressive	effect.	First,	inhibitory	cells	need	to	289 

have	a	higher	gain	than	excitatory	cells.	When	the	gain	of	FS	cells	was	reduced	(see	inset	of	Fig.	5C)	to	290 

have	a	gain	closer	to	the	one	of	RS	cells,	the	suppression	effect	was	strongly	affected	(blue	dots	in	Fig.	291 

5C,	example	marked	by	a	square	in	Fig.	5D).	Accordingly,	increasing	FS	cell	gain	(cyan	dots		in	Fig.	5C,	292 

example	marked	by	a	pentagon	in	Fig.	5D)	increases	the	suppression	strength.		Second,	the	interaction	293 

between	excitatory	and	inhibitory	inputs	needed	to	occur	through	conductances-based	mechanisms.		294 

Indeed,	when	using	a	current-based	(CUBA)	model	(see	Methods),	we	mostly	observed	facilitation	(black	295 

triangles	in	Fig.	5C)	that	do	not	appear	to	propagate	(see	example	marked	by	a	triangle,	Fig.	5D).	While	296 

we	do	not	exclude	that	such	suppression	may	be	observed	in	current-based	synapses,	it	is	clear	from	297 

these	data	that	the	non-linearity	of	voltage	dependent	synapses	induces	a	strong	suppression	in	VSDI	298 

signal.	The	suppression	can	thus	be	explained	by	the	mesoscopic	combination	of	the	nonlinearity	of	299 

conductance	interactions	and	the	differential	gain	of	excitatory	and	inhibitory	cells.	300 

	301 
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 302 

Figure	5:	A	computational	model	to	investigate	the	possible	origin	of	the	suppressive	wave.																																						303 

A:	Mean-field	model	of	excitatory	and	inhibitory	neurons	distributed	on	the	cortical	trajectory	of	the	stimulus	with	304 

horizontal	connectivity	(longer	for	excitatory	than	inhibitory	neurons).	B:	Model	ST	response	to	the	first	stimulus	305 

(upper	left),	the	second	(upper	right),	the	apparent	motion	sequence	(lower	left)	and	the	non-linearities	normalized	306 

to	the	maximal	response	over	space	and	time	of	the	response	to	single	stimuli	(lower	right).	The	input	has	an	307 

amplitude	ν0=20	Hz.	C:	Amount	of	suppression/facilitation		as	a	function	of	the	spontaneous	excitatory	firing	rate.	308 

Colored	dot	stand	for	different	interneurons	gain	(see	inset),	while	black	triangles	stand	for	the	Current-based	309 

(CUBA)	model,	that	shows	little	suppression	but	facilitation.	The	input	has	an	amplitude	ν0=10	Hz.	D:	310 

Representative	ST	suppressive/facilitative	patterns	as	marked	in	C	by	different	geometric	shapes	(circle,	square,	311 
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pentagon,	triangle).	The	star	in	C	corresponds	to	the	model	parameters	used	for	obtaining	the	suppressive	pattern	312 

shown	in	B. 313 

 314 

The	function	of	the	suppressive	wave	is	to	explain	away	ambiguous	representations	315 

What	can	be	the	function	of	the	suppressive	wave?	Here	we	propose	that	it	will	shape	an	unambiguous	316 

representation	of	motion	along	the	apparent-motion	trajectory.	Indeed,	silencing	the	cortical	317 

representation	of	the	initial	stimulus	when	the	second	stimulus	is	being	processed	will	have	as	a	318 

consequence	to	represent	only	one	stimulus	at	a	time,	hereby	improving	motion	representation	by	319 

explaining	away	ambiguous	position	representation	(problem	of	“phenomenal	identity”)	(Ternus	1926).	320 

To	quantify	such	hypothesis,	we	developed	a	simple	algorithm	to	decode,	at	every	instant,	what	is	the	321 

most	probable	stimulus	position	that	evoked	the	observed	cortical	spatial	profile	out	of	four	categories:	322 

no	stimulus,	S1,	S2,	or	joint	S1	&	S2.	We	used	the	ST	representations	of	the	evoked	activity	to	the	323 

apparent	motion	sequence	(Fig.	6A)	and	used	the	linear	prediction	(Fig.	6B)	as	a	control.	The	decoding	324 

was	computed	using	the	joint	probability	that	the	spatial	profile	observed	at	one	point	in	time	(white	325 

profile)	is	drawn	from	the	spatial	profile	observed	during	blank	(first	row,	black),	S1	(second	row,	red),	326 

S2	(third	row,	blue),	or	the	joint	S1	&	S2	(last	row,	green).	In	the	example	shown	in	figure	6,	we	apply	327 

this	decoding	method	to	the	activity	evoked	by		a	6.6°/s	two	stroke	apparent	motion	stimulus	(Fig.6A).	328 

When	S1	is	presented	(red),	the	probability	that	the	spatial	profile	of	the	evoked	response	will	be	similar	329 

to	the	blank	distribution	is	quickly	dropping	from	1	to	0	and	the	probability	that	the	evoked	response	330 

will	be	decoded	as	being	evoked	by	S1	alone	is	jumping	from	0	to	1	very	rapidly	(in	10ms).	When	S2	is	331 

presented	(at	time	50ms)	there	is	a	sharp	and	rapid	transition	from	the	evoked	activity	being	decoded	as	332 

S1	to	S2	(blue)	in	about	50ms.	However,	the	probability	that	the	evoked	activity	is	evoked	by	S1	&	S2	at	333 

the	same	time	(green)	is	only	increased	moderately	(peaking	at	0.5)	and	transiently.	In	contrast,	when	334 

we	apply	the	same	approach	to	the	linear	prediction	(Fig.6B),	while	the	beginning	of	the	decoding	is	the	335 
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same	(two	first	rows),	as	expected,	when	S2	appears,	the	evoked	activity	is	ambiguously	decoded	as	336 

being	attributed	to	S2	or	S1	&	S2	conjointly	with	similar	probability	(around	0.5).		337 

	338 

	339 

Figure	6:	A	dynamic	decoding	of	stimulus	position:	Principle.	The	decoding	of	stimulus	position	on		ST	maps,	here	340 

taking	the	example	of	the	activity	evoked	by	a	6.6	°/s	lrAM	stimulus	shown	in	A	or	the	activity	pattern	predicted	by	341 

the	linear	combination	in	space	and	time	of	the	responses	to	both	individual	stimuli	in	B.	The	decoding	consists	in	342 

evaluating	the	probabilities	that	the	spatial	profile	observed	at	each	point	in	time	(white	contours	in	A	and	B)	is	343 
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similar	to	one	of	the	four	spatial	profiles	shown	on	the	left	column:	Blank	(first	row,	black	profile),	S1	(second	row,	344 

red	profile),	S2	(third	row,	blue	profile),	and	the	joint	S1	&	S2	(last	row,	green	profile).	Each	profile	was	computed	by	345 

averaging	the	corresponding	ST	response	in	a	50ms-window	around	the	time	of	maximum	response	and	346 

normalized.	The	four	color-coded	probabilities	are	respectively	plotted	as	a	function	of	time	(time	0	corresponds	to	347 

the	onset	of	S2)	for	the	lrAM	response	(column	A)	and	for	the	linear	prediction	(column	B).	Compared	to	the	linear	348 

prediction,	the	actual	signal	is	more	rapidly	decoded,	revealing	a	likely	function	of	the	suppressive	wave:	349 

disambiguating	stimulus	position	representation.	350 

	351 

We	applied	this	approach	to	all	speeds	and	sessions	in	both	monkeys	(Figure	7A&B),	for	spatial	interval	352 

of	1°,	differentiated	across	the	different	inter-stimulus	intervals	(ISI).	We	separated	these	conditions	353 

because,	when	S2	appears,	the	residual	activity	in	response	to	S1	will	be	less	important	for	long	ISI	(the	354 

offset	time	constant	being	of	the	order	of	80	ms).	In	both	monkeys	and	for	ISI	<=	50ms,	the	averaged	355 

results	confirm	the	individual	example	shown	in	Figure	6:	the	evoked	activity	results	in	a	sharp	and	clear	356 

transition	from	the	representation	of	S1	to	the	representation	of	S2,	with	only	transient	increase	of	the	357 

representation	of	S1	&	S2	conjointly.	In	comparison,	the	linear	prediction	always	leads	to	an	ambiguous	358 

representation	that	cannot	tease	apart	the	probability	that	the	evoked	activity	is	coming	from	S2	alone	359 

or	S1	&	S2	together	(blue	and	green	curves	merging	together).	For	an	ISI	>=	100ms,	in	contrast,	the	360 

evoked	activity	resembles	more	the	linear	prediction,	as	expected.		361 
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	362 

Figure	7:	A	dynamic	decoding	of	stimulus	position:	Application	to	all	lrAM	speeds	and	sessions.																																363 

A:	Color-coded	probabilities	(same	as	Figure	6)	for	the	observed	lrAM	response	(first	row)	and	its	corresponding	364 

linear	prediction	(second	row)	for	monkey	WA,	averaged	across	three	ISI	categories:	ISI	<	25	ms	(left	column),	ISI	=	365 

50	(central	column)	and	ISI	>	100	ms	(right	column).		B:	Application	of	the	decoding	algorithm	to	all	the	data	of	366 

monkey	BR.	C:	Explaining	away	index	(see	text	and	methods)	computed	as	the	probability	of	detecting	joint	S1	&	S2		367 

in	the	observed	response	minus	the	probability	of	detecting	joint	S1	&	S2	in	the	linear	prediction,	from	monkey	WA	368 

data	shown	in	panel	A.	D:	Explaining	away	index	from	monkey	BR	data	shown	in	panel	B.	369 

	370 

To	quantify	the	effect	of	explaining	away	ambiguous	positional	representations	during	lrAM	371 

stimulations,	we	calculated	an	index	by	subtracting	the	probability	of	detecting	joint	S1&S2	in	the	372 

observed	and	the	linear	prediction	for	both	monkeys,	𝐼!.!. = 𝑃!1&!2!"# − 𝑃!1&!2
!"#$ 	(Fig.	7C&D),	and	both	373 

stimuli	spatial	intervals	(SI)	of	1	and	2°	(first	and	second	rows	respectively).	In	all	conditions	but	the	long	374 

SI	and	long	ISI,	a	systematic	decrease	of	the	index	was	observed.	This	reveals	a	dynamic	effect	of	375 

explaining	away	the	ambiguous	representation	of	S1&S2.	Importantly,	in	both	monkeys	and	practically	376 

all	conditions	(ISIs	and	stimulus	separation),	we	observed	two	peaks	in	the	index	decrease.	They	377 
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correspond	to	the	bidirectional	interactions	occurring	for	each	of	the	two	evoked	waves.	The	first	peak	378 

corresponds	to	the	effect	of	delaying	response	onset	to	S2	(by	propagating	activity	from	S1	to	S2)	,	and	379 

the	second	peak	corresponds	to	a	shortening	of	the	representation	of	S1	(by	propagating	activity	from	380 

S2	to	S1).	Importantly,	this	calculation	revealed	two	further	phenomena	that	are	expected	because	of	381 

the	propagation	delay	and	spatial	extent.	First,	the	timing	of	the	second	peak	is	delayed	when	going	382 

from	1	to	2°	spatial	separation.	Second,	the	general	amplitude	of	the	decrease	diminishes	from	short	to	383 

longer	ISI.		384 

	385 

Unambiguous	representation	for	optimal	encoding	of	velocity	in	V1	386 

Disambiguating	the	cortical	population	representation	of	the	lrAM	could	promote	an	accurate	387 

encoding	of	direction-selective	motion	signals	for	an	optimal	read-out	by	downstream	area.	To	test	388 

whether	the	measured	cortical	response	encodes	an	accurate	direction-selective	signal,	we	applied	389 

opponent	motion	energy	filters	directly	to	V1	population	responses	(Adelson	and	Bergen	1985).	Indeed,	390 

direction	selectivity	in	MT	is	well	described	and	captured	by	motion	energy	models	(Adelson	and	Bergen	391 

1985;	Rust	et	al.	2006).	Such	an	approach	is	generally	developed	to	model	MT	receptive	field	from	a	392 

spatio-temporal	input	image.	The	rationale	here	is	to	apply	the	same	processing	directly	to	V1	393 

population	responses	that	feed	downstream	areas	such	as	MT	or	V4.	This	is	justified	by	the	fact	that	the	394 

cortical	extent	imaged	here	(~	9mm,	corresponding	to	3°,	see	(Dow	et	al.	1981;	Van	Essen,	Newsome,	395 

and	Maunsell	1984))	actually	corresponds	to	the	V1	cortical	extent	converging	to	a	MT	or	V4	neuron	at	396 

our	recorded	eccentricity	(3°,	see	Albright	and	Desimone	1987;	Gattass,	Sousa,	and	Gross	1988).	Since	397 

we	record	VSD	responses	that	represent	both	sub-	and	supra-thresholds	activities	(Chemla	and	Chavane	398 

2010b),	we	first	processed	our	ST	maps	through	a	non-linearity	to	account	for	the	VSD	to	spike	rate	399 

transformation	(Chen,	Palmer,	and	Seidemann	2012)	(Fig	8A).	The	resulting	ST	maps	were	convolved	400 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/372763doi: bioRxiv preprint 

https://doi.org/10.1101/372763


.	 	 	 	 	

 
22.  

with	a	set	of	spatio-temporal	filters	covering	a	wide	range	of	speeds	and	scales.	For	a	given	value	of	401 

filter	speed	and	scale,	we	squared	and	summed	the	convolution	from	filters	in	quadrature,	and	402 

subtracted	the	resulting	phase-independent	measure	of	local	motion	energy	for	opposite	directions	(ie.	403 

MEu	-	MEd)	to	obtain	the	opponent	motion	energy	response	(OME,	Fig.	8A).	We	thereby	obtained	the	404 

opponent	motion	energy	for	all	speeds,	scales	and	directions.	For	each	position	on	the	ST	map,	we	could	405 

hence	extract	the	filter	velocity	for	which	the	opponent	motion	energy	is	maximal,	that	we	represented	406 

for	both	monkeys,	and	different	velocities	(10°/s	upward	in	monkey1,	Fig.	8B	and	-33°/s	downward	in	407 

monkey	2,	Fig.	8C).	In	this	representation,	the	color	hue	represents	the	velocity	of	the	filter	yielding	a	408 

maximal	opponent	motion	energy	and	the	color	intensity	its	amplitude	(as	a	fraction	of	the	maximum	409 

evoked	fluorescence	response).	The	contour	of	the	evoked	response	is	overlaid	in	white	to	ease	410 

comparison.	The	same	analysis	on	the	corresponding	linear	predictions	serves	as	a	control.	For	all	the	411 

conditions	we	explored,	we	then	extracted	the	values	of	the	optimal	velocity	within	a	ST	region	of	412 

interest	(between	S1	and	S2’s	centers	and	from	10	to	200	ms	after	stimulus	2	onset)	and	represented	413 

them	as	a	function	of	the	AM	speed	for	both	monkeys	(Fig.	8D	and	8E).	Our	results	show	that	the	ST	414 

response,	disambiguated	through	the	suppressive	wave,	is	indeed	generating	a	direction	selective	415 

motion	energy	for	a	speed	that	is	well	correlated	with	the	stimulus	speed.	In	other	words,	intra-cortical	416 

non-linear	interactions	in	V1	promote	an	unambiguous	optimal	encoding	of	velocity-selective	motion	417 

signal	along	the	apparent	motion	path.	418 
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	419 

Figure	8:	Encoding	of	direction-selective	motion	signal.	A:		Application	of	the	opponent	motion	energy	model		420 

(Adelson	&	Bergen,	1985)	to	the	ST	representation	of	cortical	response	to	an	upward	10°	/s	AM	sequence	shown	at	421 

the	top.	The	first	step	consists		in	convolving	the	ST	data	with	a	set	of	oriented	ST	filters.	Phase-independency	is	422 

obtained	by	squaring	and	summing	the	outputs	of	quadrature	pair	of	filters,	while	motion	opponency	is	obtained	by	423 

subtracted	the	two	oriented	motion	energies	(OME	=	MEu-MEd).	The	maximal	energy	values	for	each	ST	filter	are	424 

plotted	as	a	function	of	speed	(in	°/s)	and	scale	(in	mm).	The	energy	values	resulting	from	the	same	computation	425 

applied	on	the	linear	prediction	and	the	non-linearities		for	this	AM	sequence	are	respectively	shown	at	the	bottom	426 

left	and	right.	B:	ST	representation	of	the	opponent	motion	energies	computed	in	panel	A.	For	each	ST	position,	the	427 

filter	velocity	for	which	the	energy	was	maximal	is	represented	as	different	color	hue.	The	amplitude	of	the	energy	428 

is	coded	as	color	intensity.	For	comparison,	the	result	for	the	corresponding	linear	prediction	is	shown	below.		C:	429 

Same	than	B	for	monkey	BR,	for	another	AM	sequence	condition	(33.3°	/s	downward	motion).	D:	Filter	speed	that	430 

generated	the	strongest	OME	within	a	ST	region	of	interest	(see	Methods)	as	a	function	of	the	actual	lrAM	speed	431 

for	monkey	WA.	The	color	and	size	of	the	dots	(upward	motion	conditions)	and	squares	(downward	motion	432 

conditions)	code	for	the	value	of	the	direction-selectivity	index	(DI).	E:	Same	than	D	for	monkey	BR.	433 
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	434 

Discussion	435 

We	showed	that	intra-cortical	interactions	are	playing	a	key	role	in	shaping	the	sensory	representation	436 

of	the	long-range	apparent	motion	within	the	retinotopic	map	of	V1	in	awake	monkeys.	Our	results	437 

demonstrate	that	intra-cortical	propagation	encompasses	large	spatial	and	temporal	distances	allowing	438 

to	link	information	between	stimuli	presented	in	distal	spatial	positions	(spatial	constant	of	about	3	mm,	439 

equivalent	to	1°,	and	time	constant	of	about	80	ms).	Interestingly,	above	these	values,	the	apparent	440 

motion	illusion	gradually	fades	out	(Kolers	1972;	Cavanagh	and	Mather	1989).	In	response	to	a	two-441 

stroke	lrAM	sequence,	we	observe	a	clear	displacement	of	activity	on	the	cortical	surface	that	deviates	442 

from	the	linear	prediction	in	two	aspects.	First,	the	initial	stimulus	suppresses	and	delays	the	response	443 

to	the	second	stimulus.	Then,	a	suppressive	wave	is	evoked	by	the	second	stimulus	that	strongly	and	444 

rapidly	attenuates	the	residual	activity	evoked	by	the	first	stimulus.	The	spatio-temporal	characteristics	445 

of	the	suppression	showed	similar	spatial	constant	and	similar	propagation	speed	as	what	was	observed	446 

for	the	evoked	activity,	independent	of	the	speed	of	the	apparent	motion	stimulus.	However,	the	447 

suppression	propagated	as	a	true	wave	in	direction	of	the	initial	stimulus	position,	even	at	the	trial-448 

averaged	level,	an	observation	that	departs	from	what	we	observed	in	the	evoked	activity	(Muller	et	al.	449 

2014).	We	propose	that	the	suppression	arises	from	a	simple	gain-control	mechanisms	pooling	450 

feedforward	and	horizontal	inputs	(Reynaud,	Masson,	and	Chavane	2012).	To	demonstrate	this,	we	used	451 

a	conductance	based	mean-field	model	developed	to	account	for	VSD	dynamics	(Zerlaut	et	al.	2018).	452 

This	model	shows	that	the	observed	suppression	can	be	explained	by	nonlinear	conductance	453 

interactions,	combined	with	the	different	gain	of	excitatory	and	inhibitory	cells.	A	decoding	approach	454 

demonstrates	that	the	suppressive	wave	acts	as	explaining	away	the	ambiguous	representation	allowing	455 

to	represent	only	one	stimulus	at	a	time	in	the	cortex.	Using	opponent	motion	analysis	applied	to	the	456 
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population	response,	we	demonstrate	that	such	unambiguous	representation	allows	V1	to	encode	457 

accurately	the	velocity	signal	of	the	lrAM	that	could	support	the	read-out	process	from	downstream	458 

areas.	459 

	460 

Suppression	and	normalization	as	generic	operations	in	the	visual	system	461 

The	dynamics	of	the	suppression	is	seen	here	as	a	central	and	key	mechanism	by	which	the	input	is	462 

shaped	and	normalized	by	V1	populations.	When	more	than	one	stimulus	is	present	in	a	visual	scene,	463 

suppressive	interactions	between	the	feedforward-driven	activities	is	what	is	traditionally	reported,	464 

such	as	the	well	documented	surround	suppression	(Blakemore	and	Tobin	1972;	Angelucci	et	al.	2002;	465 

Cavanaugh,	Bair,	and	Movshon	2002).	This	suppression	is	generally	attributed	to	be	an	emergent	466 

property	of	the	divisive	normalization	computation	(Carandini	and	Heeger	2011).	Importantly,	we	have	467 

shown	that	this	normalization	process	is	dynamic	and	propagate	from	the	representation	of	the	stimulus	468 

surround	towards	the	representation	of	the	center	(Reynaud,	Masson,	and	Chavane	2012).	Adding	a	469 

new	lateral	input	(mostly	excitatory	at	long-distance)	is	therefore	resulting	in	a	decrease	from	the	linear	470 

prediction,	a	paradoxical	inhibitory	effect	(Tsodyks	et	al.	1997)	well	captured	by	Stabilized	Supralinear	471 

Networks	(Ozeki	et	al.	2009).	Similar	suppression	was	also	seen	in	response	to	the	line-motion	stimulus	472 

(Jancke	et	al.	2004),	however,	in	that	stimulus	conditions,	it	was	preceded	by	a	transient	facilitation.	The	473 

main	difference	with	our	paradigm	is	that,	in	the	line-motion	condition,	the	second	stimulus,	a	bar,	is	474 

providing	a	feedforward	activation	all	along	the	trajectory	of	the	evoked	wave.	In	the	apparent	motion,	475 

the	interactions	involve	only	cortical	interactions	at	positions	that	do	not	receive	any	feedforward	input.	476 

This	may	explain	the	differences	observed	with	the	line-motion	stimulus.	We	believe	that	dynamic	non-477 

linear	interactions	subtended	by	intra-cortical	network	acts	as	a	general	gain	control	shaping	the	478 

representation	of	visual	stimulus	in	space	and	in	time.		479 

	480 
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Modeling	the	suppressive	waves	481 

Possible	mechanisms	underlying	the	observed	suppressive	effects	were	investigated	using	a	spatially	482 

extended	computational	model.	We	found	that	the	model	can	reproduce	the	observed	suppression,	483 

provided	two	mechanisms	are	present:	excitatory	and	inhibitory	cells	have	a	different	gain,	with	a	484 

higher	gain	for	inhibition,	and	excitatory	and	inhibitory	synaptic	inputs	must	combine	through	485 

conductance-based	interactions.	Although	these	two	mechanisms	are	well	known,	they	are	usually	486 

neglected	in	mean-field	models	because	they	represent	a	mathematical	difficulty.	The	classic	mean-487 

field	models	with	linear	(current-based)	interactions	and	uniform	gain	in	all	cells,	fail	to	reproduce	488 

the	suppressive	effect	of	propagating	waves,	and	thus	the	present	model	can	be	considered	as	a	step	489 

towards	biologically	more	realistic	mean-field	models.	Hence,	by	constructing	a	realistic	mean-field	490 

model,	we	could	demonstrate	that	this	suppression	wave	is	an	expected	byproduct	of	the	known	491 

anatomy	and	does	not	need	to	be	expressed	solely	by	pure	inhibition.	This	computational	approach	492 

demonstrates	how	excitatory	and	inhibitory	propagation	of	activity	along	horizontal	network	can	493 

dynamically	change	the	cortical	gain	control	resulting	in	the	emergence	of	the	observed	suppression	494 

dynamics.	495 

	496 

Backward	suppression	to	keep	track	of	object	identity	along	the	apparent	motion	path	497 

This	suppression	can	help	to	represent	unambiguously	one	object	at	a	time	on	the	cortical	surface,	as	498 

our	decoding	model	suggests.	This	means	that	the	lateral	interactions	can	link	the	transient	spatio-499 

temporal	events	while	keeping	track	of	the	object	moving	along	the	trajectory.		This	could	be	a	first	500 

mechanism	involved	in	solving	the	correspondence	problem	(Ullman	1978).	This	problem,	first	501 

introduced	by	Ternus	as	a	problem	of	phenomenal	identity	(Ullman	1978;	Ternus	1926),	explicit	the	fact	502 

we	need	to	keep	track	of	the	identity	of	an	object	in	movement,	and,	in	the	case	of	multiple	objects	503 

present	at	each	time	frame,	a	problem	of	correspondence	may	occur.	The		literature	clearly	show	that	504 
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the	correspondence	is	solved	through	spatio-temporal	coherence	more	than	shape	or	color	consistency	505 

(Kahneman,	Treisman,	and	Gibbs	1992).	The	correspondence,	called	“reviewing”	by	Kahneman	et	al.	506 

(1992)	was	proposed	by	these	authors	to	“operate(...)	backward,	(...)	select(...)	only	a	single	item,	and	507 

(...)	is	guided	mainly	by	the	features	that	control	the	unity	and	continuity	of	an	object	over	time,	but	not	508 

by	the	shape,	color,	or	content	of	the	target.”		We	believe	that	the	mechanisms	of	backward	suppression	509 

demonstrated	here	is	an	elementary	and	preliminary	form	of	this	reviewing	process,	explaining	away	510 

ambiguities	in	the	representation	of	the	object	trajectory,	that	will	evidently	necessitate	further	511 

processing	downstream	the	visual	system.	For	instance,	what	we	documented	here	could	explain	the	512 

ability	of	our	visual	system	to	detect	objects	based	solely	on	the	coherence	of	their	spatio-temporal	513 

trajectory.		In	their	seminal	work,	Watamaniuk	and	collaborators	(1995)	indeed	showed	that	a	single	dot	514 

following	a	temporally	coherent	trajectory	can	be	detected	against	a	background	of	dots	following	a	515 

random	walk,	the	only	difference	between	signal	and	noise	dots	movement	being	their	spatio-temporal	516 

coherence	(Watamaniuk,	McKee,	and	Grzywacz	1995).	Computational	studies	suggested	that	this	ability	517 

to	detect	coherent	trajectories	necessitates	propagation	of	information	in	retinotopic	reference	frames	518 

(Perrinet	and	Masson	2012),	in	full	accordance	with	our	results.	519 

	520 

Local	vs	Global	motion	processing	521 

The	processing	that	we	describe	here	clearly	departs	from	classical	motion	integration	documented	in	522 

short-range	apparent	motion	using	random-dot	kinetogram	(Mikami,	Newsome,	and	Wurtz	1986b,	[a]	523 

1986)	In	these	stimuli,	motion	occurs	and	is	evenly	distributed	within	a	stationary	aperture	typically	524 

covering	a	receptive	field,	and	motion	is	extracted	locally	through	motion	energy	detectors	(Majaj,	525 

Carandini,	and	Movshon	2007;	Pack	et	al.	2006).	Simple	L-NL	hierarchical	models	account	very	well	for	526 

the	selective	properties	of	neurons	in	V1	and	MT	in	response	to	such	kind	of	drifting	or	RDK	stimuli	(Rust	527 

et	al.	2006;	Carandini	et	al.	2005).	However,	there	should	be	intrinsic	differences	in	the	processes	528 
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involved	in	integrating	local	drifting	motion	vs	global	trajectory	motion	of	a	single	object.		Indeed,	529 

Hedges	and	collaborators	(2011)	have	showed	that	MT	receptive	fields	are	only	sensitive	to	local	motion	530 

presented	within	stationary	aperture,	totally	independent	of	the	direction	of	long-range	trajectory	531 

simulation	in	which	these	local	motion	stimuli	are	embedded	(Hedges	et	al.	2011).	We	have	very	limited	532 

understanding	of	the	processing	actually	required	to	extract	motion	information	along	a	trajectory.	The	533 

experiments	of	Watamaniuk	and	colleagues	show	that	this	processing	cannot	be	simply	integrated	from	534 

large	receptive	field	of	downstream	areas	(Watamaniuk,	McKee,	and	Grzywacz	1995).	Here	we	suggest	535 

that	the	visual	system	can	simply	encodes	the	trajectory	at	mesoscopic	level	within	retinotopic	map.		536 

	537 

Encoding	the	motion	trajectory	in	the	retinotopic	map	for	optimal	read-out		538 

The	suppressive	wave	we	documented	decreases	the	residual	activity	evoked	by	the	first	stimulus,	539 

hereby	shaping	the	dynamic	response	within	the	retinotopic	map	of	V1	that	could	be	read	out	as	motion	540 

information	by	a	downstream	area.	V4	or	MT	neurons	have	receptive	fields	whose	retinotopic	size	541 

encompasses	the	cortical	region	we	imaged	in	this	study.	As	shown	by	our	read-out	analysis	(Fig.	8),	542 

those	neurons	will	be	able	to	simply	detect	this	population-encoded	direction	selective	motion	543 

information	through	motion	energy	detectors	(Adelson	and	Bergen	1985).	This	signifies	that	V1	intra-544 

cortical	interactions	would	preformat	the	population	representation	of	long-range	apparent	motion	for	545 

an	optimal	read-out	by	downstream	areas	(Adelson	and	Bergen	1985;	Mumford	1991,	1992).	One	546 

intriguing	consequence	is	that	encoding	of	motion	signal	at	the	level	of	the	population	could	be	547 

operated	without	specific	extraction	of	motion	signal	at	the	level	of	local	V1	neuronal	receptive	fields.	548 

Indeed,	neurons	with	non-optimal	direction	preference	or	no	direction	selectivity	could	still	participate	549 

into	this	population	response	by	small	variations	of	their	response	that	would	occur	at	the	right	moment	550 

depending	on	their	position	in	the	retinotopic	space.	In	other	words,	V1	would	have	the	possibility	to	551 

encode	multiple	motion	signals	in	parallel	at	local	and	global	level.	These	results	are	in	accordance	with	552 
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human	fMRI	experiments	that	showed	that	V1	is	actively	involved	in	the	network	that	processes	and	553 

represents	the	perceived	illusory	lrAM	(Muckli	et	al.	2005).		554 

	555 

lrAM	along	ventral	and	dorsal	streams,	feedback	vs	horizontal	propagation		556 

In	the	visual	cortex	of	the	ferret,	it	was	shown	using	VSDI,	that	lrAM	induces	feedback	propagation	of	557 

differential	activity	from	area	21	down	to	area	17	(Roland	et	al.	2006).	Similarly,	using	stimuli	that	could	558 

span	a	much	large	visual	scale	(16.5°	spatial	separation)	and	systematically	larger	cortical	separations,	it	559 

was	suggested	that	human	MT	complex	feedbacks	on	early	visual	cortices	to	process	long-range	560 

apparent	motion	(Wibral	et	al.	2009;	Vetter,	Grosbras,	and	Muckli	2015).	Areas	on	the	ventral	stream	561 

(LOC)	seems	to	be	also	implicated	in	processing	such	stimuli	(Zhuo	et	al.	2003).	Ventral	stream	areas	562 

may	actually	be	well	suited	since	they	will	process	the	information	about	object	through	strong	563 

feedback	interactions	with	V1	(Poort	et	al.	2012)	and	are	as	well	strongly	involved	in	motion	processing	564 

(Roe	et	al.	2012;	Ferrera,	Rudolph,	and	Maunsell	1994).	The	experiment	from	Hedges	et	al.	(2011)	565 

indeed	suggested	that	MT	may	not	be	the	most	appropriate	area,	at	least	in	non-human	primates,	for	566 

extracting	motion	along	a	lrAM	trajectory.	It	is	important	to	consider	though	that,	in	all	these	studies,	567 

there	are	important	difference	in	the	spatial	and	a	temporal	scales	of	the	lrAM	has	been	presented	that	568 

may	affect	the	relative	weight	of	intra-cortical	and	feedback	mechanisms	processing	this	information	569 

between	and	within	the	different	visual	areas	(see	Discussion	in	Reynaud,	Masson,	and	Chavane	2012).		570 

	571 

Conclusion	572 

As	recently	proposed	by	Muller	et	al.	(Muller	et	al.	2018),	traveling	waves	within	and	between	cortical	573 

areas	can	provide	an	advantageous	framework	for	dynamic	computations	that	will	influence	neuronal	574 

processing.	However,	in	this	review,	it	was	also	noted	that	there	is	a	lack	of	evidence	for	a	functional	575 

role	of	these	waves.	Here	we	show	that	two	discrete	stimuli	generating	the	long-range	apparent	motion	576 
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illusion,	will	induce	multiple	wave	interactions	resulting	in	propagation	of	suppression	in	a	direction	577 

opposite	to	that	of	the	stimuli.	Such	suppression	shapes	the	stimulus	and	helps	the	visual	system	to	578 

keep	track	of	the	stimulus	position	along	the	motion	trajectory,	resulting	in	a	precise	encoding	of	579 

velocity	information	at	a	very	early	stage	of	processing.	We	believe	that	our	work	has	revealed	a	first	580 

elementary	step	in	processing	lrAM	signals	that	will	need	further	integration	in	downstream	areas	and	581 

feedback	controls.	Further	work	is	therefore	needed	to	understand	which	areas,	if	any,	is	reading-out	582 

the	population	representation	of	motion	trajectory	on	V1	retinotopic	map	and	the	relative	role	of	intra-	583 

and	inter-cortical	interactions.		584 

 585 

Materials	and	Methods 586 

The	experiments	were	conducted	on	two	male	rhesus	macaque	monkeys	(macaca	mulatta,	aged	14	and	587 

11	years	old	respectively	for	monkey	WA	and	monkey	BR)	over	a	period	of	three	years.	The	588 

experimental	protocols	had	been	previously	approved	by	the	local	Ethical	Committee	for	Animal	589 

Research	(approval	A10/01/13,	official	national	registration	71-French	Ministry	of	Research)	and	all	590 

procedures	complied	with	the	French	and	European	regulations	for	Animal	Research	as	well	as	the	591 

Guidelines	from	the	Society	for	Neuroscience.	592 

	593 

Surgical	preparation	and	VSDI	protocol.	The	monkeys	were	chronically	implanted	with	a	head-holder	594 

and	a	recording	chamber	located	above	the	V1	and	V2	cortical	areas	of	the	right	hemisphere.	After	full	595 

recovery,	the	monkeys	were	trained	to	perform	foveal	fixation	of	a	small	red	target	presented	over	596 

different	static	and	moving	backgrounds	for	up	to	2-3s,	with	their	head	fixed.	Once	a	good	fixation	597 

behavior	was	achieved,	a	third	surgery	was	performed.	The	dura	was	removed	surgically	over	the	598 

recording	aperture	(18mm	diameter)	and	a	silicon-made	artificial	dura	was	inserted	under	aseptic	599 

conditions	to	allow	for	a	good	optical	access	to	the	cortex	over	the	whole	period	of	weekly	recordings.	600 
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Before	each	recording	session	conducted	in	awake	animal,	the	cortical	surface	was	stained	with	the	601 

Voltage	Sensitive	Dye	(VSD)	RH-1691	(Optical	Imaging	©)	with	the	following	procedure:	The	optical	602 

chamber	was	open,	artificial	dura-mater	was	removed	and	cortical	surface	was	cleaned	under	strict	603 

sterile	conditions.	The	dye	solution	was	prepared	in	artificial	cerebrospinal	fluid	(aCSF)	at	a	604 

concentration	of	0.2	mg/ml,	and	filtered	through	a	0.2µm	filter.	The	recording	chamber	was	filled	with	605 

this	solution	and	closed	for	three	hours,	corresponding	to	the	time	lapse	needed	for	a	correct	cortical	606 

staining.	The	chamber	was	then	rinsed	thoroughly	with	filtered	aCSF	to	remove	any	supernatant	dye.	607 

Before	imaging,	the	artificial	dura	was	placed	back	in	position	and	the	chamber	was	closed	with	608 

transparent	agar	and	cover	glass.	Experimental	control,	data	collection	and	eye	position	monitoring	609 

were	performed	by	the	ReX	software	(NEI-NIH)	running	under	the	QNX	operating	system	(Hays	et	al.,	610 

1982).	During	each	trial,	the	cortex	was	illuminated	at	630	nm	using	epi-illumination	and	we	recorded	611 

optical	signals	high-pass	filtered	at	665	nm	during	999ms	with	a	Dalstar	camera	(512x512	pixels	612 

resolution,	frame	rate	of	110	Hz)	driven	by	the	Imager	3001	system	(Optical	Imaging	©).	The	beginning	613 

of	both	online	behavioral	control	and	image	acquisition	were	heartbeat-triggered.	The	surgical	614 

preparation	and	VSD	imaging	protocol	have	been	described	elsewhere	(Reynaud,	Masson,	and	Chavane	615 

2012;	Muller	et	al.	2014).	616 

	617 

Behavioral	task	and	visual	stimulation.	Monkeys	were	trained	for	a	simple	fixation	task.	For	each	618 

experimental	trial,	the	monkeys	were	required	to	fixate	a	central	red	dot	within	a	precision	window	of	619 

1°x1°.	When	correct	fixation	was	achieved,	the	next	heartbeat,	detected	with	a	pulse	oximeter	(Nonin	620 

8600V),	triggered	the	beginning	of	the	acquisition	window.	A	visual	stimulus	appeared	100	ms	after	this	621 

trigger	after	which	a	blank	screen	was	presented,	ending	the	trial.	Each	trial	ran	for	700	ms.	If	the	622 

monkey	had	maintained	fixation	up	to	the	end	of	the	acquisition	period,	a	reward	(fruit	compote	drop)	623 

was	given.	Otherwise,	the	trial	was	canceled,	an	alert	sound	was	delivered	and	the	procedure	was	re-624 
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initiated.	The	visual	stimuli	were	computed	on-line	using	VSG2/5	libraries	and	were	displayed	on	a	22"	625 

CRT	monitor	at	a	resolution	of	1024x768	pixels.	Refresh	rate	was	set	to	100Hz.	Viewing	distance	was	of	626 

57cm.	Luminance	values	were	linearized	by	mean	of	a	look-up	table.	We	used	Gaussian	blobs	with	627 

standard	deviation	(controlling	the	spatial	width)	of	0.5°.	They	were	presented	at	different	positions,	628 

located	at	0.5°	or	2°	on	the	left	of	the	vertical	meridian	respectively	for	monkey	WA	and	monkey	BR,	and	629 

between	1.5°	and	4.5°	below	the	horizontal	meridian.	We	used	different	stimulus	durations,	10	ms(1	630 

frame),	50ms	or	100ms	and	different	interstimulus	intervals	(ISI)	for	the	two-stroke	apparent	motion	631 

stimulations	(from	20	to	100	ms).	All	stimuli	(single	blobs	of	different	durations,	lrAM	sequences	and	632 

two	blank	conditions	i.e.	where	no	visual	stimulus)	were	randomly	interleaved	with	an	inter-trial	interval	633 

of	8	seconds	for	dye	bleaching	prevention.	634 

	635 

Data	analysis.	Stacks	of	images	were	stored	on	hard-drives	for	offline	analysis.	The	analysis	was	carried	636 

on	with	Matlab	R2014a		(The	MathWorks	Inc.	©)	using	the	Optimization,	Statistics	and	Signal	Processing	637 

Toolboxes.	VSD	evoked	responses	to	each	stimulus	were	computed	in	three	successive	basic	steps.	First,	638 

the	recorded	value	at	each	pixel	was	divided	by	the	average	value	before	stimulus	onset	(“frame	0	639 

division”)	to	remove	slow	stimulus-independent	fluctuations	in	illumination	and	background	640 

fluorescence	levels.	Second,	this	value	was	subsequently	subtracted	by	the	value	obtained	for	the	blank	641 

condition	(“blank	subtraction”)	to	eliminate	most	of	the	noise	due	to	heartbeat	and	respiration	.	Third	a	642 

linear	detrending	of	the	time	series	was	applied	to	remove	residual	slow	drifts	induced	by	dye	bleaching.		643 

	644 

Spatio-temporal	representation	(ST	data).	For	each	time	frame,	activity	was	averaged	across	the	x-645 

dimension	within	the	apparent-motion	trajectory	(e.g.	dotted	rectangle	at	frame	216	ms	in	Fig.	1,	C-G)	646 

to	provide	a	unique	spatial	cortical	dimension	as	a	function	of	time.		647 

	648 
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Latency	estimation.	Response	latency	was	defined	as	the	point	in	time	at	which	the	signal	derivative	649 

crossed	a	threshold	set	a	2.57	times	(99%	confidence)	the	SD	of	its	baseline	computed	during	a	100-ms-650 

long	window	right	before	stimulus	onset.	651 

	652 

Speed	estimation.	Within	the	ST	representation,	the	speed	of	activity	propagation	was	estimated	by	653 

computing		the	slope	of	the	linear	regression	between	each	latency	estimate	as	a	function	of	the	cortical	654 

distance	in	the	ST	representation	655 

	656 

Data	Fitting.	For	extracting	the	space	and	time	constants	of	the	VSD	responses,	we	fitted	the	ST	data	in	657 

space	(for	each	time	frame)	to	a	Gaussian	function	of	the	form:		658 

	 	  𝐹(𝑥)  = 𝑘 𝑒!
(!!!)2

2!2 	 																																																				659 

where	𝜎,	𝑘	and	𝜇	respectively	denote	the	width	(as	the	standard	deviation),		the	amplitude	and	the	660 

spatial	position	of	the	Gaussian.	We	use	the	slope	of	the	linear	regression	of𝜇(𝑡)for	quantifying	the	661 

displacement	of	the	response	peak	(see	Fig.	4E).	662 

In	time	(for	each	spatial	point),	the	data	was	fitted	to	the	combination	of	two	halve	Gaussian	functions:	663 

   𝐹(𝑡)  =  𝐹11(𝑡)  +  𝐹12(𝑡)																																													664 

𝐹11(𝑡)  =  𝑘!𝑒
!(!!!!)

2!on2
2

 . (𝑡 ≤ 𝑡!)	and	𝐹12(𝑡)  =  𝑘2 𝑒
! (!!!!)
2!!""2

2

 . (𝑡 > 𝑡!)	 	665 

where	𝜏!"	and	𝜏!""	denote	the	time-constants	of	each	half	Gaussian,	while	𝑘1,	𝑘2and	𝑡! 	are	respectively	666 

their	peak	to	peak	amplitudes	and	the	time	of	their	common	center.		667 

	668 

Statistical	Procedure.	We	used	a	two-sample	t-test	procedure	to	test	whether	or	not	the	distributions	of	669 

the	VSD	response	properties	(i.e.	space-constant,	time-constants,	latencies	and	cortical	speed)	were	670 

independent	of	stimulus	duration	or	lrAM	speed.	p<0.01	is	considered	significant.	671 
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	672 

Mean-field	computational	model.	We	consider	a	spatially	extended	ring	model	where	every	node	of	the	673 

ring	represents	the	network	activity	of	a	large	population	of	excitatory	regular	spiking	(RS)	and	inhibitory	674 

fast	spiking	(FS)	cells	(see		Fig.	5A).	We	consider	Adaptive	Exponential	integrate	and	fire	(AdExp)	neurons	675 

evolving	according	to	the	following	differential	equations	:	676 

𝑐!
𝑑𝑣
𝑑𝑡

= 𝑔!(𝐸! − 𝑣) + 𝛥𝑒
(!!!!!! ) − 𝑤 + 𝐼!"#	

𝜏!
𝑑𝑤
𝑑𝑡

=  −𝑤 + 𝑏 𝜏! δ
!

(𝑡 − 𝑡!) + 𝑎 (𝑣 − 𝐸!)	

where	𝑐! = 100pF	is	the	membrane	capacity,	v	is	the	voltage	of	the	neuron	and,	whenever	𝑣 > 𝑣!! =677 

−50mV	at	times	𝑡!,	v	is	reset	to	its	resting	value	𝑣!"#$ = −50mV.	The	leak	term	has	a	conductance	678 

𝑔! = 10nS	and	a	reversal	potential	𝐸! = −65mV.	The	exponential	term	has	a	different	strength	for	RS	679 

and	FS	cells,	i.e.	𝛥 = 2mV	(𝛥 = 0.5mV)	for	excitatory	(inhibitory)	cells.	Inhibitory	neurons	do	not	have	680 

adaptation	(a=b=0)	while	excitatory	neurons	have	an	adaptive	dynamics	with	𝑎 = 4nS,		b=40	nS	and	681 

𝜏! = 500ms	.	The	synaptic	current	can	be	expressed	as:	682 

𝐼!"# = 𝑄!(𝐸! − 𝑣)𝑆! + 𝑄!(𝐸! − 𝑣)𝑆! 	

	683 

where	𝑆!/! = 𝜃!"# (𝑡 − 𝑡!"#,!/!)𝑒
!!!!"#,!/!

!!,! 	is	the	postsynaptic		current	due	to	all	presynaptic	684 

excitatory/	Inhibitory	neurons	spiking	at	time	𝜏!"#,!/! 	and	𝜃	is	the	Heaviside	function.	The	reversal	685 

potentials	are	𝐸! = 0mV	and	𝐸! = −80mV,	the	synaptic	decays	are	equal	for	excitatory	and	inhibitory	686 

cells,	𝜏!,! = 5ms.	The	quantal	conductances	are	𝑄! = 1nS	and	𝑄! = 5nS.	We	then	consider	a	random	687 

network	with	p=5%	of	connectivity	and	80%	of	excitatory	neurons.		688 

The	activity	of	the	network	is	simulated	using	a	mean	field	model,	shown	capable	of	quantitatively	689 

predicting	the	stationary	activity	of	the	network	and	its	response	to	an	external	stimuli	(Zerlaut	et	al.	690 

2018).	All	together,	the	dynamical	equations	for	the	spatially	extended	ring	model	read	:	691 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted September 14, 2018. ; https://doi.org/10.1101/372763doi: bioRxiv preprint 

https://doi.org/10.1101/372763


.	 	 	 	 	

 
35.  

𝑇
𝜕𝑟!(𝑥, 𝑡)

𝜕𝑡
= −𝑟!(𝑥, 𝑡) +  𝐹!(𝑟!"#$% + 𝑟!""(𝑥, 𝑡) + 𝑑𝑦

!
𝐺!(𝑥 − 𝑦)𝑟!(𝑦, 𝑡 −

𝑥 − 𝑦
𝑣!

), 𝑟!)	

𝑇
𝜕𝑟!(𝑥, 𝑡)
𝜕𝑡

= −𝑟!(𝑥, 𝑡) +  𝐹!(𝑟!"#$% + 𝑟!""(𝑥, 𝑡) + 𝑑𝑦
!

𝐺!(𝑥 − 𝑦)𝑟!(𝑦, 𝑡 −
𝑥 − 𝑦
𝑣!

), 𝑟!)	

where	𝑟!/!(𝑥, 𝑡)	is	the	population	rate	of	excitatory/Inhibitory	cells	at	the	space-time	position	(x,t),	692 

𝑟!""(𝑥, 𝑡)is	the	excitatory	afferent	input	targeting	both	excitatory	and	inhibitory	populations	and		𝐺!/! 	is	693 

the	spatial	connectivity	in	between	subpopulations	that	we	chose	as	Gaussian	of	width	𝐼!"# = 5mm	694 

(excitation)	and	𝐼!"! = 2.5mm	(inhibition).	Moreover,		𝑣! = 300mm/s	is	the	axonal	conduction	speed,	695 

𝑟!"#$% 	an	external	time/space	constant	external	drive	and	T=5ms	is	the	decay	time	of	population	rate.	696 

The	functions	𝐹!,! 	are	the	transfer	functions	of	excitatory/inhibitory	neurons	and	are	calculated	697 

according	to	a	semi-analytical	tool	as	in	Zerlaut	et	al.	(Zerlaut	et	al.	2018)	through	an	expansion	in	698 

function	of	the	three	statistics	of	neurons	voltage,	i.e.	its	average	𝜇!,	its	standard	deviation	𝜎! 	and	its	699 

autocorrelation	time	𝜏!:	700 

𝐹 =
1
𝜏!
𝐸𝑟𝑓𝑐(

𝑣!!!
!"" − 𝜇!
𝜎!

)	

where	Erfc		is	the	error	function	and	the	effective	threshold	𝑣!!!
!""is	expressed	as	a	first	order	expansion	701 

with	some	fitting	coefficients	in	function	of		(𝜇!,𝜎! , 𝜏!).	More	details	on	this	procedure	can	be	found	in	702 

Zerlaut	et	al.	(Zerlaut	et	al.	2018).	The	values		(𝜇!,𝜎! , 𝜏!)	are	calculated	from	shot-noise	theory	(Daley	703 

and	Vere-Jones	2007).	Introducing	the	following	quantities:	704 

𝜇!! = 𝑟!𝐾!𝜏!𝑄! 	

𝜎!! = 𝑄!
𝑟!𝐾!𝜏!

2
	

𝜇!! = 𝑟!𝐾!𝜏!𝑄! 	

𝜎!! = 𝑄!
𝑟!𝐾!𝜏!
2
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𝜇! = 𝜇!! + 𝜇!! + 𝑔!	

𝜏! =
𝑐!
𝜇!

	

𝑈! =
𝑄!
𝜇!
(𝐸! − 𝜇!)	

where	𝐾!/! 	is	the	amount	synapses	related	to	pre-synaptic	excitatory/inhibitory	neurons	(we	consider	a	705 

network	of	N=10000	neurons	inside	each	node	of	the	ring),	we	obtain	the	following	equations	for	the	706 

voltage	moments:	707 

𝜇! =
𝜇!!𝐸! + 𝜇!!𝐸! + 𝑔!𝐸!

𝜇!
	

𝜎! = 𝐾!𝑟!
!

(𝑈!𝜏!)2

2(𝜏! + 𝜏!)
	

𝜏! =
𝐾!𝑟!! (𝑈!𝜏!)2

𝐾!𝑟!! (𝑈!𝜏!)2/(𝜏! + 𝜏!)
	

The	afferent	input	has	the	following	form:		708 

𝑟!""(𝑥, 𝑡) = 𝐴 ∙
1

2 𝜎!"#
𝑒
!( !!!0

2!!"#
)2
∙ (𝐻(𝑡 − 𝑡0)𝑒

!( !!!!
!!!

)!

+ 𝐻(𝑡0 − 𝑡)𝑒
!( !!!0

2!2
)2

)	

where	A	is	the	input	amplitude,	(𝑥0, 𝑡0)	the	stimulus	location.	And	H	the	heaviside	function.	The	spatial	709 

extension	of	the	stimuli	is	𝜎0 = 3.5mm,	the	time	rise	𝜏1 = 15ms	and	the	decay	time		𝜏2 = 90ms.	710 

The	time	delay	in	between	stimulus	1	and	stimulus	2	is	𝛥! = 100ms	(if	not	stated	differently)	and	the	711 

spatial	distance	𝛥! = 7mm.	The	VSDI	signal	is	calculated	as	follows	:	712 

𝛿!
𝑉
=
𝜇! − 𝜇!0

𝜇!0
	

where	𝜇!! 	is	the	average	voltage	pre-stimuli.		713 

	714 

CUBA	model	:	715 

The	current	based	model	is	obtained	by	considering	the	following	synaptic	coupling	:	716 
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𝐼!"# = 𝑄!!"𝑆! + 𝑄!!"𝑆! 	

where	𝑄!!" = 0.03𝑝𝐴	and	𝑄!!" = −0.15𝑝𝐴	are	the	coupling	with	excitatory	and	inhibitory	neurons	.	The	717 

rest	of	the	parameters	are	the	same.	The	voltage	of	the	neurons	is	calculated	accordingly,	i.e.	718 

𝜇! =
𝑟!𝐾!𝜏!𝑄!!" + 𝑟!𝐾!𝜏!𝑄!!" + 𝐸!

𝐺!
	

Also	in	this	case	we	use	the	same	methodology	to	estimate	the	neurons	transfer	function	as	done	for	719 

the	COBA	model.	720 

	721 

Different	FS	gain	:	722 

In	order	to	modify	the	gain	of	FS	cells	we	manually	change	the	transfer	function	𝐹!(𝑟! , 𝑟!).In	practice,	for	723 

any	𝑟!  we	calculate	the	value	𝑟!∗	for	which	TF	changes	convexity.	This	gives	us	the	slope	724 

𝜎! =
!"(!!,!!)
!!!

(𝑟!∗, 𝑟!) and	the	maximal	value	𝐹!"#	that	we	estimate	calculating	F	for	very	high	rates	725 

(typically	𝑟! = 200𝐻𝑧).			We	then	use	the	following	function	:	726 

𝐹!(𝑟! , 𝑟!) = 2max ∙
1

1 + 𝑒!(
!!!!!

∗

!!
)
	

where	we	recall	that	𝑟!∗and	𝜈! 	change	in	function	of	𝑟!.	This	permits	us	to	have	a	sigmoidal	form	of	the	727 

transfer	function	𝐹.	In	order	to	change	its	slope	we	use	a	factor	𝛾	that	scales	the	slope	which	becomes	728 

then	𝛾𝜎!.	In	Fig.	4	we	use	𝛾	equal	to	1.2	or	0.8.	729 

	730 

Decoding	Model.	The	algorithm	for	the	decoding	model	used	in	Figures	6	and	7	is	detailed	here.	First,	731 

the	ST	data	(i.e.	space-time	matrix)	were	whitened	(i.e.	spatially	decorrelated	and	scaled)	by	applying	a	732 

ZCA	transformation.	The	whitening	matrix	was	computed	from	the	eigen-decomposition	of	the	733 

covariance	matrix	of	the	blank	data.	Next,	the	four	spatial	profiles	(blank,	stimulus	1,	stimulus	2	and	joint	734 

stimulus	1	and	2)	were	computed	by	averaging	the	corresponding	ST	response	in	a	50	ms-window	735 
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around	the	time	of	maximum	response	and	then	normalized.	The	decoding	of	any	ST	data	(e.g.	the	736 

observed	activity	evoked	by	a	6.6	°/s	two	stroke	apparent	motion	stimulus	“obs”	or	its	linearly	predicted	737 

pattern	“pred”)	thus	consisted	in	evaluating	the	likelihood	that	the	spatial	profile	observed	at	one	point	738 

in	time	of	the	data	𝐴(𝑥, 𝑡)was	best	correlated	with	one	of	the	four	spatial	profiles	𝑆!with	𝑗 ∈ {1: 4}).	This	739 

comes	down	to	calculating	the	four	probability	𝑃!(𝑡)of	the	form:		740 

𝑃!(𝑡)  = 𝑒
! !
!!!

 ( !(!,!)
||!(!,!)||!

!!(!)
||!!(!)||

)!!  	

		where	𝜎! 	is	the	averaged	standard	deviation	of	the	residual	activity	between	𝐴(𝑥, 𝑡)	and	𝑆!(𝑥).	741 

Then,	we	defined	the	explaining	away	index	as	the	probability	of	detecting	joint	S1&S2	in	the	observed	742 

𝑃4!"# 𝑜𝑟 𝑃!1&!2!"#  minus	the	probability	of	detecting	joint	S1&S2	in	the	linear	prediction	𝑃4
!"#$  𝑜𝑟 𝑃!1&!2

!"#$ 		as	743 

follows:	744 

			𝐼!.!. = 𝑃!!&!!!"# − 𝑃!!&!!
!"#$ 	745 

	746 

Opponent	motion	energy	model.	.	To	extract	motion	information	from	the	population	responses,	we	747 

used	the	opponent	motion	energy	model	developed	by	(Adelson	and	Bergen	1985).	Briefly,	this	model	748 

consists	of	combining	quadrature	pairs	of	spatial	and	temporal	filters	to	obtain	oriented	spatio-temporal	749 

filters	(i.e.	Gabors)	tuned	in	spatial	frequency.	The	ranges	of	spatial	and	temporal	frequencies	were	750 

chosen	so	that	the	speed	(i.e.	FT/FS)	of	the	resulting	ST	filters	varies	from	2	to	70	°/s	and	the	scale	(i.e.	751 

1/FS)	from	0.2	to	6	mm.	It	resulted	in	64	(FS,FT)	couples	representing	8	different	speeds	and	scales.	For	752 

each	couple,	we	obtained	two	filters	tuned	for	upward	motion	and	two	filters	tuned	for	downward	753 

motion.	The	outputs	of	quadrature	pairs	of	such	filters	are	then	squared	and	summed	to	give	a	phase-754 

independent	measure	of	local	motion	energy	for	both	directions	(i.e	MEu	and	MEd	values).	Lastly,	the	755 

opponent	motion	stage	computes	the	difference	between	the	oriented	opposite	energies	(i.e.	OME	756 

values).	Note	that	before	applying	the	OME	model,	the	ST	data	were	first	normalized	and	passed	757 
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through	a	non-linearity	to	account	for	the	VSD	to	spike	rate	transformation	as	proposed	by	(Chen,	758 

Palmer,	and	Seidemann	2012):		759 

RSU	=	k(RVSDI)N	760 

where	RSU	and	RVSDI		are	respectively	the	average	firing	rate	and	the	average	normalized	VSDI	response,	k	761 

is	a	constant	and	N	is	an	exponent.	Here	we	took	k	=	10	and	N	=	3.8.		762 

Finally,	for	each	ST	position	on	the	map,	we	could	extract	the	velocity	of	the	filter	that	generated	the	763 

strongest	OME	and	provide	a	ST	velocity	map	representation	(Fig.	8C-D)	with	velocity	and	amplitude	as	764 

color	hue	and	color	intensity	respectively.	We	then	averaged	the	optimal	velocity	within	a	ST	region	of	765 

interest,	spatially	between	S1	and	S2’s	center	positions	and	in	time	from	10	to	200	ms	after	stimulus	2	766 

onset,	to	report	a	single	value	of	filter	speed	for	each	AM	speed	condition	(Fig.	8D-E).	The	direction-767 

selectivity	index	is	given	by:	768 

	𝐷𝐼 =  !!"#!!"# !!"#
!"# !!"#

	769 

where		𝑉!"# 	is	to	the	amplitude	of	the	OME.	770 

	771 
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