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Abstract. 

The centrosome is thought to be the major neuronal microtubule-organizing center 

(MTOC) in early neuronal development, producing microtubules with a radial 

organization. In addition, albeit in vitro, recent work showed that isolated centrosomes 

could serve as an actin-organizing center (Farina et al., 2016), raising the possibility 

that neuronal development may, in addition, require a centrosome-based actin radial 

organization. Here we report, using super-resolution microscopy and live-cell imaging, 

F-actin organization around the centrosome with dynamic F-actin aster-like structures 

with F-actin fibers extending and retracting actively. Photoconversion/photoactivation 

experiments and molecular manipulations of F-actin stability reveal a robust flux of 

somatic F-actin towards the cell periphery. Finally, we show that somatic F-actin 

intermingles with centrosomal PCM-1 satellites. Knockdown of PCM-1 and disruption 

of centrosomal activity not only affect F-actin dynamics near the centrosome but also 

in distal growth cones. Collectively the data show a radial F-actin organization during 

early neuronal development, which might be a cellular mechanism for providing 

peripheral regions with a fast and continuous source of actin polymers; hence 

sustaining initial neuronal development. 
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Introduction 

The centrosome is thought to be the major neuronal microtubule-organizing center 

(MTOC) in early developing neurons (Calderon de Anda et al., 2008; Stiess et al., 

2010; Yau et al., 2014), producing microtubules with a radial organization (Sakakibara 

et al., 2014; Yau et al., 2016). Recently, it has been shown that isolated centrosomes 

can serve as an actin-organizing center in vitro (Farina et al., 2016), suggesting that 

the centrosome might control F-actin organization and dynamics during initial neuronal 

development. However, initial attempts to demonstrate that somatic F-actin can be 

delivered rapidly to distal growth cones were not successful (Bernstein and Bamburg, 

1992; Sanders and Wang, 1991). Moreover, the classical view on the role of actin on 

neuronal development is contrary to this idea. For instance, numerous studies have 

demonstrated that F-actin is assembled locally in growth cones and that impaired local 

assembly is sufficient to block neurite growth (Flynn et al., 2012; Forscher et al., 1992; 

Gallo et al., 2002; Lowery and Van Vactor, 2009; Okabe and Hirokawa, 1991). 

Nevertheless, several other studies have reported that growth cone-like structures, 

comprised of F-actin, have an anterograde wave-like propagation along neurites, 

supporting neurite extension (Flynn et al., 2009; Ruthel and Banker, 1998, 1999; 

Winans et al., 2016). Other studies described anterograde F-actin flow during neuronal 

migration (He et al., 2010; Solecki et al., 2009) and at the base of growth cones 

(Burnette et al., 2008). Thus, adding weight to the possibility that centrifugal actin 

forces starting in the cell body may contribute to the final neuronal phenotype during 

development. To test this possibility, we performed a series of state-of-the-art methods 

to examine somatic F-actin organization and dynamics in living neurons.  

Additionally, we propose PCM-1 as a molecular determinant for somatic F-actin 

organization. PCM-1 has been shown to promote F-actin polymerization in non 

neuronal cells (Farina et al., 2016) and PCM-1-containing pericentriolar satellites are 

important for the recruitment of proteins that regulate centrosome function 

(Dammermann and Merdes, 2002). The depletion of PCM-1 disrupts the radial 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 12, 2018. ; https://doi.org/10.1101/372813doi: bioRxiv preprint 

https://doi.org/10.1101/372813


	 4	

organization of microtubules without affecting microtubule nucleation (Dammermann 

and Merdes, 2002). PCM-1 particles preferentially localize near the centrosome (de 

Anda et al., 2010; Ge et al., 2010). In previous work we found PCM-1 down-regulation 

in the developing cortex to disrupt neuronal polarization and to preclude axon 

formation (de Anda et al., 2010). Furthermore, neuronal migration was impaired with 

piling up of neurons in the intermediate zone (de Anda et al., 2010). Here, we 

demonstrate that PCM-1 determines not only the somatic F-actin organization and 

dynamics but also that lack of PCM-1 has a radial effect, which ultimately disrupts 

growth cone dynamics and neurite length. Overall, our data show a novel somatic F-

actin organization, which regulates early neuronal development in vitro and in vivo.  

 

Results 

F-actin organizes around the centrosome. 

We studied the micro and nano-structural organization of cytosolic F-actin near the 

centrosome via confocal and super-resolution microscopy during early neuronal 

differentiation in vitro (from stage 1 to early stage 3; (Dotti et al., 1988)) and in situ. To 

this end the F-actin cytoskeleton in fixed and live cells was visualized via confocal and 

STED microscopy by labeling cells with Phalloidin-488, Phalloidin Atto647N, SiR-actin 

probe or Lifeact-GFP (Lukinavicius et al., 2014). Confocal microscopy showed a 

preferential localization of cytosolic F-actin puncta near the centrosome in cultured 

neurons labeled with phalloidin and in neurons in the developing cortex labeled with 

Lifeact-GFP (Fig. 1A-C and Fig. S1A-C). STED microscopy images revealed that 

somatic F-actin organized as tightly packed structures constituted by a core of dense 

F-actin attached to F-actin fibers (aster-like structures, Fig. 1D and Fig. S1D). 

Moreover, we used single molecule localization microscopy (SMLM / STORM) of 

Phalloidin-Alexa647 labeled F-actin and corroborated that it organized around the 

centrosome in a pocket-like structure, where several F-actin puncta surrounded the 

centrosome with individual puncta exhibiting an aster-like organization (Fig. S2). 
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In order to determine whether or not somatic F-actin puncta represent true sites 

of actin polymerization, we transfected cells with Lifeact-GFP and performed 

epifluorescence time-lapse imaging (frame rate: 2 sec for 5 min) on DIV1 neurons.  

Cells expressing high levels of Lifeact showed stabilized F-actin in the form of somatic 

F-actin fibers (Fig. S3). Therefore, we exclusively analyzed cells where Lifeact 

expression labeled the F-actin cytoskeleton at similar levels as detected with phalloidin 

staining (Fig. S3). Time-lapse analysis of cells co-transfected with Lifeact-GFP and the 

microtubule plus-end marker EB3-mCherry corroborated that F-actin puncta 

concentrate near the MTOC identified by radial trajectories of EB3-mCherry comets 

(Fig. S4A, B). Moreover, our recordings showed that the F-actin puncta in the soma 

are highly dynamic and intermittent. These puncta exhibit a repetitive appearance and 

disappearance at the same location as shown via kymographs (Fig. S4C, D). Based 

on the duration of appearance, we categorized them as unstable (<15 sec), 

intermediately stable (16-240 sec), and long-lasting (241-300 sec) F-actin puncta. The 

majority of puncta are unstable (Fig. S4E), suggesting that these puncta are places of 

high F-actin turnover. Accordingly, our FRAP analysis of somatic F-actin puncta 

showed fast fluorescence recovery (Fig. S5A, B); thus, confirming that somatic F-actin 

puncta are places of high F-actin turnover. We also found that these F-actin puncta in 

the cell body release F-actin comets (pointed by red arrowheads in Fig. S4B), which 

suggest that they might function as a source of somatic F-actin.  

To gain further insight into the relevance of this F-actin organization, we 

employed STED time-lapse microscopy labeling F-actin with SiR-actin. Since SiR-actin 

is known to stabilize F-actin, we tested different concentrations of SiR-actin (250 nM 

and 500 nM). Cells labeled with 500 nM SiR-actin showed less dynamic F-actin aster-

like structures, with longer F-actin fibers attached to the F-actin core (Fig. S6). 

Whereas, cells labeled with 250 nM SiR-actin showed aster-like F-actin structures that 

are highly dynamic, extending and retracting F-actin fibers constantly in the range of 

seconds (Fig. 1E; Movie S1). Altogether, these results unveil the existence of a 
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complex and dynamic somatic F-actin organization near the centrosome, suggesting 

a role in neuronal development. 

 

Somatic F-actin is radially delivered to the cell periphery. 

We therefore asked whether somatic actin polymerization could serve as a source for 

cell peripheral F-actin. To this end, we used DIV 1 neurons transfected with Lifeact-

mEos3.2, which undergoes an irreversible photoconversion in response to 405 nm 

light from green to red fluorescence with emission peaks at 516 nm to 581 nm 

respectively. We had to irradiate several F-actin puncta (5.2 to 7.1 µm2) at once given 

that single punctum irradiation (2.2 µm2) did not yield enough traceable converted 

signal when spreading further (Fig. S7A). Interestingly, when we photoconverted a 

group of F-actin puncta in the soma, the intensity of the converted F-actin puncta 

decreased with time concomitant with a fast increase of converted signal in the cell 

periphery/growth cones (Fig. 2A, B and Movie S2). Another actin probe (actin-

mEos4b), which labels F-actin and actin monomers, also distributed into growth cones 

after irradiation (Fig. 2B; Fig. S7B; Movie S4). However, irradiated mEos3.2 alone 

resulted in reduced movement of the probe as well as decreased enrichment in growth 

cones compared to Lifeact-mEos3.2 (Fig. 2B; Fig. S7C; Movie S4).  

To confirm that the radial translocation of Lifeact signal is due to the movement 

of F-actin but not actin monomers bound to Lifeact, we treated the cells with 

Cytochalasin D, which disrupts the F-actin cytoskeleton. It has been shown that 

Cytochalasin D treatment induces F-actin clusters around the centrosome in non-

neuronal cells (Farina et al., 2016). Similarly, we observed that Cytochalasin D 

treatment in neurons also induced the formation of F-actin aggregates near the 

centrosome from pre-existing intermittent F-actin puncta (Fig. S8A, B). These clusters 

do not depend on membrane organization since brefeldin A, which disrupts Golgi and 

endoplasmic reticulum, did not affect the localization of F-actin clusters near the 

centrosome (Fig. S8C). Photoconversion of the somatic F-actin clusters of 
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cytochalasin D treated cells did not induce Lifeact translocation towards the cell 

periphery (Fig. S8D, E and Movie S5), indicating that the translocation of 

photoconverted signal is not due to the movement of the Lifeact bound to actin 

monomers but indeed labeled F-actin. Although Lifeact binds in vitro with higher affinity 

to actin monomers than to F-actin (Riedl et al., 2008), it is still possible that in cells the 

amount of Lifeact bound to actin monomers is not the predominant species. This is 

also suggested by the pattern of Lifeact expression, which resembles the Phalloidin 

staining (Fig. S3). 

Notably, we also found that the somatic photoactivation of Photoactivatable 

GFP-Utrophin (PaGFP-UtrCH), which specifically labels F-actin (Burkel et al., 2007; 

Melak et al., 2017), leads to the distribution of photoactivated PaGFP-UtrCH in the cell 

periphery (Fig. 2C, D and Movie S3) similarly as Lifeact-GFP. Therefore, our results 

demonstrate that filamentous actin translocates from the soma to the cell periphery. 

Further characterization of photoconverted Lifeact-mEos3.2 (red signal) or 

photoactivatable PaGFP-UtrCH in the cell periphery showed that translocation does 

not occur preferentially to the growth cone of the longest neurite (Fig. 3A, B) but to the 

growth cone containing more F-actin (green arrow in Fig. 3C, D). 

Next, we tested whether or not F-actin translocation is exclusively radially 

oriented. Consequently, we decided to irradiate growth cones labeled with Lifeact-

mEos3.2, PaGFP-UtrCH, Actin-mEos4b, or mEos3.2. When mEos3.2 or Actin-

mEos4b transfected neurons were irradiated at growth cones, the converted signal 

translocated towards the cell body (Fig. 4B; Fig. S9B, C; Movie S6). In contrast, 

irradiation of growth cones labeled with Lifeact-mEos3.2 or PaGFP-UtrCH did not 

induce retrograde movement of photoconverted Lifeact-mEos3.2 or photoactivated 

PaGFP-UtrCH signal to the cell body (Fig. 4, Fig. S9A; Movie S6); thus, showing that 

F-actin translocation is unidirectional.  

In order to decrease F-actin dynamics to better resolve the somatic F-actin 

translocation to the cell periphery, we treated our cultured neurons with Jasplakinolide, 
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an agent which stabilizes polymerized actin filaments and stimulates actin filament 

nucleation, (Bubb et al., 2000). However, our treatment (0.3, 0.5 and 1 microM / hr) 

precluded the existence of peripheral F-actin and induced the formation of a somatic 

F-actin ring-structure, detected both with Lifeact and Phalloidin staining (Fig. S10A, B). 

This structure appeared in the area with the highest density of plus-end microtubules 

labeled via EB3-mCherry (Fig. S10B).  These results suggest that Jasplakinolide 

prevents F-actin dynamics, thus, “locking” the F-actin in the soma and blocking its 

movement. Photoconversion experiments further confirm these findings showing no 

radial movement of photoconverted signal to the periphery in Jasplakinolide-treated 

cells (Fig. S10C, D). 

Importantly, with Drebrin or Cofilin constructs, as F-actin stabilizing tools, we 

could decrease the overall dynamics of F-actin without completely stabilizing/freezing 

the actin filaments. Drebrin inhibits Cofilin-induced severing of F-actin and stabilizes 

F-actin (Grintsevich and Reisler, 2014; Mikati et al., 2013); Drebrin phosphorylation at 

S142 promotes F-actin bundling (Worth et al., 2013). Therefore, the Drebrin 

phosphomimetic mutant (S142D) is a suitable candidate to decrease overall F-actin 

dynamics. Similarly, phosphomimetic Cofilin (S3E) is not able to sever F-actin, thus it 

decreases F-actin turnover (Chai et al., 2009). Previously, it was shown that Drebrin 

co-localizes with F-actin in growth cones (Geraldo et al., 2008). Time-lapse microscopy 

analysis of Drebrin transfected cells revealed Drebrin to co-localize with F-actin puncta 

in the cell body (Fig. 5A; Movie S7). Moreover, transfection with the phospho-mimetic 

mutant Drebrin-S142D reduced F-actin treadmilling compared to cells expressing only 

Lifeact-GFP (Fig. S11A and (Zhao et al., 2017)). Importantly, the total number of 

somatic F-actin puncta decreased after Drebrin-S142D expression (Fig. 5D) with an 

increase in the relative number of long-lasting F-actin puncta (Fig. 5E). Interestingly, 

the stable F-actin puncta released noticeable F-actin comet-like structures towards the 

cell periphery (Fig. 5B, Movie S7).  
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Likewise, expression of Cofilin-S3E decreased total number of somatic F-actin 

puncta with an increment of long-lasting F-actin puncta, compared to cells expressing 

only Lifeact-RFP (Fig. 5D, E), and reduced the F-actin treadmilling in growth cones 

(Fig. S11A). Furthermore, somatic F-actin puncta acquired an aster-like appearance 

releasing F-actin towards the cell cortex (Fig. 5C). Additionally, somatic F-actin fibers 

formed projections towards the cell periphery (Fig. S11B) Interestingly, F-actin travels 

along those F-actin fibers to reach the cell periphery concomitant with lamellipodia 

formation (Fig. S11B; Movie S8). Altogether, these results demonstrate that somatic 

F-actin puncta release F-actin towards the cell periphery.  

 

Centrosomal activities affect F-actin in the cell periphery. 

Given that somatic F-actin puncta concentrate near the centrosome (Fig. 1B), we 

asked whether centrosomal integrity is required for F-actin dynamics in developing 

neurons. We used chromophore-assisted light inactivation (CALI) based on the 

genetically encoded photosensitizer KillerRed, which upon green light illumination 

(540-580 nm), will specifically inactivate the target protein via the generation of light-

activated reactive oxygen species (Bulina et al., 2006). We fused Centrin2, a protein 

confined to the distal lumen of centrioles and present in the pericentriolar material, to 

KillerRed (Centrin2-KR) to specifically inactivate the centrosome with laser irradiation 

(561 nm). Cells expressing Centrin2-KR and either EB3-GFP or Lifeact-GFP were 

imaged before laser irradiation. We then locally irradiated the centrosome with the 

561nm laser for 1.5 sec to inactivate Centrin2 specifically at the centrosomal region 

without affecting somatic Centrin2 (Fig. 6A, B and Fig. S12A, B; Movie S9 and Movie 

S10). Two to three hours after laser irradiation, cells were reimaged. Centrosome 

inactivation via CALI reduced the number of somatic microtubules (Fig. S12A, B; Movie 

S9). Most importantly, F-actin speed treadmilling as well as the F-actin intensity at the 

cell periphery were significantly reduced after centrosomal disruption (Fig. 6A, B; 

Movie S10). As a control we irradiated a similar sized area at the soma away from the 
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centrosome with the same settings. The cells irradiated outside the centrosomal area 

did neither show reduced F-actin treadmilling speed nor decreased F-actin intensity in 

growth cones (Fig. S12C, D; Movie S11). 

Microtubule organization in early developing neurons is centrosome-

dependent (Calderon de Anda et al., 2008; Stiess et al., 2010; Yau et al., 2014). 

Therefore, we decided to disrupt microtubule polymerization with nocodazole to test 

whether the F-actin translocation towards the cell periphery is affected. We found that 

nocodazole drastically reduced the motility of somatic photoconverted Lifeact-

mEos3.2  (Fig. 6C, D; Movie S12). Accordingly, microtubules disruption in developing 

neurons leads to a less dynamic F-actin cytoskeleton (Zhao et al., 2017). Altogether, 

these results show that the centrosome and microtubules are necessary for somatic 

F-actin translocation towards the cell periphery. 

 

PCM-1 determines somatic F-actin organization. 

Next, we tested PCM-1 as a molecular determinant of F-actin dynamics near the 

centrosome. PCM-1 promotes F-actin polymerization in non neuronal cells (Farina et 

al., 2016). We found that PCM-1 particles intermingled with F-actin puncta in the soma 

of fixed neurons and concentrated in proximity of F-actin puncta (Average distance 

between F-actin puncta-PCM-1 = 0.584 ± 0.019 µm; Fig. 5A, B). Accordingly, neurons 

transfected with PCM-1-GFP showed PCM-1-GFP granules surrounding and 

“touching” somatic F-actin puncta (Fig. S13A; Movie S13).  

To further test whether PCM-1 and somatic F-actin organization are 

interrelated, we treated neurons (24 hrs after plating) with Cytochalasin D or 

Jasplakinolide. We found that polarized F-actin structures induced by Cytochalasin D 

or Jasplakinolide treatment (Fig. S8 A, B and Fig. S10 A, B) are accompanied by PCM-

1 particles (Fig. S13B, C). Interestingly, when cells were co-treated with Cytochalasin 

D and Nocodazole, disperse F-actin clusters (96.97%, 66 cells from at least three 

different cultures) associated with PCM-1 particles formed (Fig. S13D). These data 
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indicate that somatic F-actin organization is linked to PCM-1 and microtubules 

integrity.  

To probe the involvement of PCM-1 more specifically we took advantage of in 

utero electroporation to introduce a PCM-1 shRNA construct to silence PCM-1 

expression in cortical neurons and neuronal progenitors ((de Anda et al., 2010; Ge et 

al., 2010); Fig. S14A, C). We tested the role of PCM-1 in F-actin dynamics and neurite 

outgrowth of cultured developing neurons and neurons differentiating in the developing 

cortex. PCM-1 down-regulation in cultured neurons led to the formation of long and 

thin neurites (Fig. 7C; Fig. S14A, B, C and D), similar to the well-known effect induced 

by pharmacological F-actin disruption using cytochalasin D (Bradke and Dotti, 1999). 

This suggests that PCM-1 down-regulation impaired F-actin dynamics and thus 

boosted neurite outgrowth. 

In extension of these findings, we observed a direct effect of PCM-1 down-

regulation on F-actin dynamics with a reduced total number of F-actin puncta in the 

cell body detected with Lifeact-GFP (Fig. 7C, D) or Phalloidin (Fig. 7G, H). Moreover, 

using specific actin nucleator inhibitors (SMIFH2 and CK666), we were able to show 

that the somatic F-actin puncta are Formin- but not Arp2/3- dependent (Fig. S15). 

Furthermore, PCM-1 down-regulation significantly decreased the F-actin treadmilling 

speed (Fig. 7C, E) as well as the relative F-actin levels in neurite tips (Fig. 7C; F). Of 

note, the effects of PCM-1 knockdown were reversed when an RNAi resistant plasmid, 

Chicken-PCM-1-GFP, was transfected along with Lifeact-RFP and PCM-1-shRNA 

(Fig. S16). 

Finally, we tested whether PCM-1 down-regulation or F-actin disruption 

similarly affect neuronal differentiation in the developing cortex. We electroporated in 

utero control shRNA or PCM-1 shRNA, together with Venus as well as DeAct plasmid, 

which impairs F-actin dynamics (Harterink et al., 2017), at E15 to analyze the neuronal 

morphology at E18 in situ. Importantly, we found that down-regulating PCM-1 in the 

developing cortex and disrupting F-actin in newly born neurons promotes neurite 
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elongation in a similar manner (Fig. 7I, J). Thus, suggesting that PCM-1 down-

regulation affects the amount of somatic F-actin, which is produced to modulate neurite 

outgrowth. Altogether our results show that PCM-1 regulates somatic F-actin dynamics 

and that somatic actin polymerization has an effect on growth cone dynamics.  

 

Discussion 

Collectively, our results indicate that i) F-actin in the cell body organizes around the 

centrosome and ii) somatic F-actin is released towards the cell periphery, thus 

affecting growth cone behavior. To our knowledge, the neuronal F-actin organization 

described here is a novel cellular mechanism to sustain neuronal development. 

Although our data do not clarify the molecular mechanism by which somatic F-actin is 

delivered towards the cell periphery, our results suggest that microtubule organization 

is relevant for somatic F-actin delivery to growth cones.  

Mechanistically, we show that this somatic F-actin organization in neurons 

relies on the presence of PCM-1. PCM-1 intermingles with somatic F-actin aster-like 

structures, which concentrate near the centrosome. Our time-lapse analysis further 

corroborates this PCM-1/somatic F-actin organization. Finally, and most importantly, 

our data show that PCM-1 down-regulation affects F-actin dynamics in neurite tips of 

developing neurons and hence neuronal differentiation in vitro and in vivo. To our 

knowledge, this is the first time PCM-1 has been associated with F-actin dynamics in 

neurons and we are the first to show that PCM-1-dependent somatic F-actin 

organization has a direct effect on distal growth cones behavior.  

However, our data do not show how PCM-1 regulates the somatic F-actin 

polymerization. Farina et al., (2016) described that centrosomal F-actin polymerization 

is Arp2/3 dependent.  In contrast, we found that formins but not Arp2/3 contribute to 

the somatic F-actin organization in neurons, as shown for axonal F-actin organization 

of mature neurons (Chakrabarty et al., 2018; Ganguly et al., 2015). Thus, the 

mechanism described by Farina et al. (2016) may not be the same in neurons. Further 
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experiments need to be performed in neurons to ensure a deep understanding of the 

somatic F-actin nature described here. In summary, we believe our data will pave the 

way to future important contributions oriented to understand F-actin organization and 

dynamics in developing neurons. 
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Fig. 1. Super-resolution microscopy reveals cytosolic F-actin puncta releasing 

F-actin fibers in developing neurons. (A) Stage 2 hippocampal neuron labelled with 

phalloidin and Pericentrin antibody, confocal z-stacks from the inset show F-actin 

puncta around the centrosome. (B) Rose plots depict distribution of F-actin puncta 

(cortical and cytosolic or only cytosolic) in the cell body with respect to the position of 

the centrosome. 10% and 20% distance range from the total area is indicated in 

different shades of blue; n=12 cells from at least three different cultures. (C) Multipolar 

cell located in the IZ of the developing cortex expresses Lifeact-GFP and Centrin2-

RFP and shows F-actin puncta surrounding the centrosome in the developing cortex. 

(D) Confocal (CLSM) and STED microscopic images of stage 2 hippocampal neuron. 

Inset: STED Z-stack images with 160 nm Z-spacing showing F-actin puncta localizing 

near the centrosome. Insets from arrowheads in Z-stack images show F-actin puncta 

with F-actin fibers attached. (E) Confocal image of stage 2 neuron labeled with SiR-

actin (250nM). Inset 1: snap shot of STED time-lapse. Time-lapse montages from 

insets 2 and 3 depict individual F-actin puncta releasing F-actin fibers (arrowheads). 

Time (t) interval = 1.7 sec (Movie S1). Scale bar: 10 µm (A, C and D); 2 µm (E); 0.5 

µm (inset E). 

 

Fig. 2. Somatic F-actin puncta act as rapid supply sources of F-actin to the 

periphery in developing neurons. (A) Lifeact-mEos3.2-expressing stage 2 neuron 

photoconverted in the soma with 405 nm laser (red circle). Cell before (green signal) 

and after photoconversion (red signal); red arrowheads point reach of the 

photoconverted signal over time. (B) Left panel: normalized intensities in the 

photoconverted area of Lifeact-mEos3.2, Actin-mEos4b or mEos3.2 expressing cells. 

Inset graph: Half-time (t ½) values for Lifeact-mEos3.2 = 21.66 ± 1.937, Actin-mEos4b 

= 17.40 ± 1.275 and mEos3.2 = 64.65 ± 9.205. p<0.0001 by one-way ANOVA, post 

hoc Dunnett’s test, ***p<0.001, Mean ± SEM. Middle panel: photoconverted signal in 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted December 12, 2018. ; https://doi.org/10.1101/372813doi: bioRxiv preprint 

https://doi.org/10.1101/372813


	 17	

growth cones over time relative to the average initial signal from irradiated area for 

Lifeact-mEos3.2, Actin-mEos4b or mEos3.2 expressing cells. Right panel: Ratio of 

signal in Growth cone compared to soma upon photoconversion over time; All panels: 

n=12 cells for Lifeact-mEos3.2, n=11 cells for mEos3.2 and n=9 cells for Actin-

mEos4b. (C) Neuron before (red; tDimer) and after photoactivation (green; PaGFP-

UtrCH) in the soma with 405 nm laser (red circle). Red arrowheads point the reach of 

the photoactivated signal over time. (D) Left panel: normalized intensity values in the 

photoactivated area of PaGFP-UtrCH expressing cells. Inset: half-time (t ½) values for 

PaGFP-UtrCH = 15.71 ± 0.712, Mean ± SEM, n=9 cells. Middle panel: photoconverted 

signal in growth cones over time relative to the average initial signal from irradiated 

area for PaGFP-UtrCH expressing cells.  Right panel: Growth cone to soma 

photoactivated signal intensity ratio of PaGFP-UtrCH expressing cells. Scale bar: 10 

µm (A, C). 

 

Fig. 3. Somatic F-actin translocation occurs preferentially to the growth cone 

with higher F-actin content.  (A, B) Normalized intensity values from the growth 

cones plotted against their neurite lengths of (A) PaGFP-UtrCH or (B) Lifeact-mEos3.2 

expressing cells 120 sec after photoactivation (PaGFP-UtrCH) or photoconversion 

(Lifeact-mEos3.2). (C) Cell from figure 2 showing the preferential translocation of 

photoconverted Lifeact-mEos3.2 to the growth cone with higher content of Lifeact-

mEos3.2 before photoconversion (green arrowhead). (D) Pearson correlation of 

growth cone to soma intensity ratio before and after photoconversion in Lifeact-

mEos3.2 expressing cells (n=57 neurites; Pearson r = 0.731, p<0.0001). Scale bar: 10 

µm (A). 

 

Fig. 4. F-actin translocation is exclusively radially oriented. (A) Lifeact-mEos3.2 

expressing cell before (green) and after photoconversion (red) at the growth cone with 
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405 nm laser (red circle). Red arrowheads point the reach of the photoconverted signal 

over time. (B) Left panel: normalized intensity values in the photoconverted area 

(growth cones) of Lifeact-mEos3.2, Actin-mEos4b or mEos3.2 expressing cells. Middle 

panel: photoconverted signal in the soma over time relative to the average initial signal 

from irradiated area for Lifeact-mEos3.2, Actin-mEos4b and mEos3.2 expressing cells. 

Right panel: growth cone to soma photoconverted signal intensity ratio of Lifeact-

mEos3.2, Actin-mEos4b and mEos3.2 expressing cells. Mean ± SEM, n=3 cells for 

Lifeact-mEos3.2, n=3 cells for Actin-mEos4b, and n=7 cells for mEos3.2 from two 

different cultures. (C) Neuron before (red; tDimer) and after photoactivation (green; 

PaGFP-UtrCH) at the growth cone with 405 nm laser (red circle). Red arrowheads 

point the reach of the photoactivated signal over time. (D) Left panel: normalized 

intensity values in the photoactivated area (growth cones) of PaGFP-UtrCH expressing 

cells. Middle panel: photoconverted signal in the soma over time relative to the average 

initial signal from irradiated area for PaGFP-UtrCH expressing cells. Right panel: 

Growth cone to soma intensity ratio of photoactivated UtrCH signal. Mean ± SEM, n=8.  

Scale bar: 10 µm (A, D). 

 

Fig. 5. Stabilization of F-actin, by overexpressing Drebrin or Cofilin phospho-

mimetic mutant, unveils F-actin release from the puncta to the periphery. (A) 

Stage 2 cell transfected with Lifeact-RFP and Drebrin-YFP shows similar distribution 

of F-actin and Drebrin, highlighted via Kymograph. (B, C) Cells co-transfected with 

Lifeact-RFP and (B) Drebrin-S142D-YFP or (C) Cofilin-S3E-GFP is. Kymograph (in B) 

and time-lapse montages (in B and C), from insets, show F-actin asters releasing fibers 

to the cell periphery (arrow heads). (D) Density of somatic F-actin puncta of stage 2 

cells in control group = 1.000 ± 0.07143, Cofilin-S3E group = 0.6277 ± 0.07836 and 

Drebrin-S142D group = 0.3856 ± 0.04340; p<0.0001 by one-way ANOVA, post hoc 

Dunnet test, **p<0.01, ****p<0.0001. (E) Comparison of long-lasting F-actin puncta in 

the soma of stage 2 cells. control group = 1.000 ± 0.3787, Cofilin-S3E group = 12.20 
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± 2.746, Drebrin-S142D group = 10.95 ± 2.346; p=0.0009 by one-way ANOVA, post 

hoc Dunnet test, **p<0.01. Mean ± SEM; n=7 cells for control, n=5 cells each for 

Cofilin-S3E and Drebrin-S142D groups from at least two different cultures (for data 

shown in D and E). Scale bar: 5 µm (A) and 10 µm (B, C).  

 

Fig. 6. Centrosome inactivation affects F-actin intensity and treadmilling in 

growth cones. (A) Neuron transfected with Centrin2-KillerRed and Lifeact-GFP 

subjected to localized CALI treatment. Upper panel: Centrin2-KR signal before and 

after treatment; Middle and lower panels: Kymograph of actin treadmilling in growth 

cone before and after CALI treatment (B) Influence of CALI on F-actin treadmilling 

speed and F-actin intensity in growth cones. Mean ± SEM; n=10 cells from at least 

three different cultures. (C) Nocodazole (7uM) treated Lifeact-mEos3.2 expressing 

neuron photoconverted in the soma with 405 nm laser (red circle). Cell before (green) 

and after (red) photoconversion. Arrowheads point photoconverted signal movement. 

(D) Growth cone to soma photoconverted signal intensity ratios of untreated and 

Nocodazole treated Lifeact-mEos3.2 expressing cells. Experiments shown in Figure 6 

C, D, Supplementary figure 8 D, E and Supplementary figure 10 C, D were done at the 

same time, therefore the same Control data is used for comparison. Mean ± SEM; 

n=12 cells for untreated and n=8 cells for nocodazole groups from at least two different 

cultures. Scale bar: 10 µm (A, C). 

 

 

Fig. 7. PCM-1 intermingles with F-actin puncta and is essential for the 

maintenance of F-actin in the soma and growth cones. (A) Confocal Max projection 

of a stage 2 neuron stained with PCM-1 antibody and phalloidin showing polarized and 

intermingled PCM-1 and F-actin puncta. (B) Nearest neighbor analysis showing 

frequency distribution of distance between F-actin: F-actin puncta (black bars), PCM-
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1: PCM-1 puncta (green bars) and PCM-1: F-actin puncta (red bars). Inset: paired 

mean nearest neighbor distance values of F-actin:F-actin (0.827 ± 0.058), PCM-

1:PCM-1 (0.811 ± 0.057), PCM-1:F-actin (0.584 ± 0.026) and simulated:F-actin (0.683 

± 0.036) puncta in the soma  from n = 5 cells, Mean ± SEM. (C) DIV I cortical neurons 

transfected with either control or PCM-1 shRNA together with Lifeact-GFP. 

Kymographs are obtained from lines marked as 1 and 3 for soma of control and PCM-

1 shRNA, respectively. Lines 2 and 4 for growth cones of control and PCM-1 shRNA, 

respectively. (D) Density of somatic F-actin puncta of stage 2 cells from control 

condition = 1.000 ± 0.0690, PCM-1 shRNA condition = 0.7122 ± 0.05809; **p= 0.0078 

by unpaired Student’s t-test. Mean ± SEM; n=7 cells each for control and PCM-1 

shRNA from at least three different cultures. (E) F-actin treadmilling speed (µm/min) in 

growth cones (or neurite tips from PCM-1 shRNA-expressing cells) of stage 2 cells 

from control condition = 5.2452 ± 0.2064; PCM-1 shRNA condition = 2.4402 ± 0.1543; 

****p<0.0001 by unpaired Student’s t-test. Mean ± SEM; n=10 cells for control and 

PCM-1 shRNA from at least three different cultures. (F) F-actin intensity ratio in growth 

cones of control condition = 0.9979 ± 0.0526, neurite tips of PCM-1 shRNA condition 

= 0.6513 ± 0.0401. ****p<0.0001 by unpaired Student’s t-test. Mean ± SEM; n=10 cells 

for control, n = 8 cells for PCM-1 shRNA groups from at least two different cultures. 

(G, H) PCM-1 down-regulation decreased the density of somatic F-actin puncta 

detected with phalloidin staining of stage 2 cells from control condition = 1.000 ± 

0.0500, PCM-1 shRNA condition = 0.7212 ± 0.0485; p= 0.0008 by unpaired Student’s 

t test. Mean ± SEM; n = 10 cells each for control and PCM-1 shRNA groups from at 

least three different cultures. (I) PCM-1 downregulation or actin depolymerization (via 

DeAct expression) result in neurite elongation and increase in number of neurite 

terminals in vivo. Inset: Multipolar cells in the intermediate zone (IZ) expressing control 

shRNA, PCM-1 shRNA or DeAct plasmids together with Venus or mCherry. (J) Left 

panel: Total length of neurites per cell in control condition = 160 ± 19.37, PCM-1 

shRNA = 228.5 ± 16.82, and DeAct expressing cells = 227 ± 16.71. p=0.0123 by one-
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way ANOVA, post hoc Dunnett’s test. *p<0.05. Right panel: Number of neurite 

terminals per cell in control condition = 8.133 ± 0.88, PCM-1 shRNA = 11 ± 0.66, and 

DeAct expressing cells = 10.87 ± 0.93. p=0.0321 by one-way ANOVA, post hoc 

Dunnett’s test. *p<0.05. Mean ± SEM; n = 15 cells from three brains in each group. 

Scale bar: 10 µm (A, C, G and I). 
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Supp. Figure 16
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