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Abstract – Visual attention dramatically improves subjects’ ability to see and also modulates the 8 

responses of neurons in every known visual and oculomotor area, but whether those modulations 9 

can account for perceptual improvements remains unclear. We measured the relationship 10 

between populations of visual neurons, oculomotor neurons, and behavior, and found that neither 11 

of the two prominent hypothesized neuronal mechanisms underlying attention (which concern 12 

changes in information coding and the way sensory information is read out) accounted for the 13 

observed behavioral improvements. Instead, our results are more consistent with the novel 14 

hypothesis that attention reshapes the representation of attended stimuli to more effectively 15 

influence behavior. Our results suggest a path toward understanding the neural underpinnings of 16 

perception and cognition in health and disease by analyzing neuronal responses in ways that are 17 

constrained by behavior and interactions between brain areas. 18 

 19 
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Introduction –  21 

Each of the huge number of psychophysical and physiological studies of visual attention show 22 

that attention profoundly affects subjects’ perceptual abilities and also modulates the responses 23 

of populations of neurons at every stage of visual and oculomotor processing1-4, Despite these oft 24 

replicated observations, whether any of the observed neuronal modulations can account for the 25 

improvements in psychophysical performance remains unknown. Two, non-mutually exclusive, 26 

hypotheses have dominated the literature (Figure 1A): that attention 1) improves visual 27 

information coding5-7,  or 2) improves the efficiency with which visual information is read out by 28 

the premotor neurons involved in decision-making 8-11. 29 

 30 

The studies used to support these hypotheses were limited by available data and analysis 31 

methods, which primarily involved the responses of single neurons or pairs of simultaneously 32 

recorded neurons in the same brain area. We evaluated these hypotheses using the responses of 33 

groups of simultaneously recorded neurons in multiple stages of visuomotor processing, 34 

psychophysics, and data analysis methods that leverage that unique combination. We recorded 35 

simultaneously from groups of neurons in area MT, which encodes motion information12,13 and 36 

the superior colliculus (SC), where neuronal responses are either visual, oculomotor, or 37 

intermediate14-16 and have been hypothesized to be involved in computing perceptual decisions17-38 

19. When we analyzed the responses of single neurons or pairs of neurons, we replicated previous 39 

observations. However, constraining our analyses by the animals’ behavior and the simultaneous 40 

recordings from both areas made it clear that neither prior hypothesis constituted a satisfying 41 

account of the observed attention-related improvements in performance.  42 

 43 
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Our results suggest that at least in the context of a change detection task that is often used to 44 

study attention5,9,20-22 and on the long (hundreds of ms) timescale of perceptual decision-making23, 45 

attention does not act primarily by improving information coding or by changing the way visual 46 

information is read out. Instead, the long-observed attention-related changes in the responses of 47 

visual cortical neurons account for perceptual improvements, but they do so by reshaping the 48 

representation of attended stimuli such that they more effectively drive downstream neurons and 49 

guide behavior (Figure 1B). Our study provides a framework for leveraging multi-neuron, multi-50 

area recordings and controlled psychophysics to study how neuronal networks mediate flexible 51 

behavior in many systems, timescales, and tasks.  52 

 53 

Results –  54 

We compared evidence for and against two hypothesized attention mechanisms using neuronal 55 

responses collected while two rhesus monkeys performed the widely studied motion direction 56 

change-detection task in Figure 1C5,9,20-22. The animals’ performance was greatly affected (Figure 57 

1D) by a cue instructing them to shift spatial attention between a stimulus within the same or 58 

opposite hemifield as the joint receptive fields of several dozen neurons that were recorded on 59 

multielectrode probes in MT (Figure 1E, red points) and the SC (blue points). MT and the SC 60 

represent different stages of perceptual decision-making and therefore provide the opportunity to 61 

evaluate each hypothesized attention mechanism. MT contributes to motion perception12,13. The 62 

SC is thought to play many roles in visually guided tasks14-16, decision-making17-19 and attention4.  63 
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 64 

Figure 1. Hypotheses and methods. (A) Schematics describing predominant hypotheses about 65 
links between attention, visual cortical activity, and behavior. The left plot depicts MT 66 
population responses to two visual stimuli plotted along two dimensions in population response 67 
space (e.g. the first two principal components; see Methods) and a readout dimension which 68 
represents the visual information that is communicated to neuronal populations involved in 69 
planning behavior during the uncued condition. The insets depict projections of the population 70 
responses onto the readout dimension. Hypothesis 1 is that the MT representations of the two 71 
stimuli become more easily distinguishable (e.g. by separating the distributions of responses to 72 
the two stimuli). In this scenario, the distributions of projections along even a suboptimal 73 
readout axis may also be more separable. Hypothesis 2 suggests that attention changes the way 74 
visual information is read out from MT such that projections of MT population responses to the 75 
two stimuli onto the readout dimension are more separable. (B) Our new hypothesis: attention 76 
reshapes population responses so they are better aligned with relatively static readout 77 
dimensions. This alignment could be a direct result of widely observed attention-related changes 78 
in firing rates and response variability. (C) Direction change-detection task with cued attention. 79 
The drifting Gabor stimuli before the change were identical on every trial within an 80 
experimental session and can be thought of as stimulus A, while the changed stimulus can be 81 
thought of as stimulus B in the schematics in (A). (D) Psychometric curves from two example 82 
sessions (monkey ST, top, monkey HO, bottom) with best-fitting Weibull functions. Attention 83 
improved detection of median difficulty trials by 25% on average across all experiments (cued 84 
76.5% detected across sessions, uncued 51.8% detected; Wilcoxon signed-rank test, p<.001). (E) 85 
Receptive field (RF) centers of recorded units from the same example session as in the top plot in 86 
(D). Dots represent the RF center (red, MT; blue, SC). The circle represents the size and 87 
location of the median RF from each area.  88 
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Population recordings replicate previously observed effects of attention  89 

The two predominant attention hypotheses make different predictions about how attention should 90 

affect MT and the SC in our task. The first (information coding) hypothesis predicts that 91 

attention improves the motion direction information encoded in MT. The second (readout) 92 

hypothesis posits that attention changes the way that stimulus information is read out of MT to 93 

influence SC responses and ultimately behavior. Our strategy was to show that our data are 94 

consistent with those in past studies by replicating the past results that have been used as 95 

evidence to support each hypothesis and then to evaluate each hypothesis using analyses that are 96 

constrained by the subjects’ behavior and leverage our simultaneous multi-neuron, multi-area 97 

recordings.  98 

 99 

Past studies have evaluated these hypotheses by analyzing the responses of individual neurons or 100 

pairs of neurons, which typically lack the statistical power to reveal a strong link to behavior. 101 

Using our data set, we replicated the observations that have been used as evidence in favor of 102 

each hypothesis. Consistent with previous studies evaluating the information coding hypothesis 103 

2,3,24, we found that attention increased the trial-averaged responses of neurons in both MT and 104 

the SC (Supplementary Figure 1A and B) and that attention decreased the extent to which the 105 

trial to trial fluctuations in neuronal responses to repeated presentations of the same stimulus are 106 

shared between pairs of MT neurons5,7,21 (quantified as the average spike count or noise 107 

correlation, or rSC
25; Supplementary Figure 1C). Consistent with studies evaluating the readout 108 

hypothesis, attention increases correlated variability between the two areas9,10,26 (Supplementary 109 

Figure 1C). This increase between areas suggests that attention-related effects are not simply due 110 

to global reductions in slow fluctuations, which has recently been hypothesized to explain 111 
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attention-related correlation decreases within a single brain area27 (Supplementary Figure 2 and 112 

Supplementary Text). Further, this attention-related increase was weakly dependent on the visual 113 

responsivity of SC neurons (Supplementary Figure 3).  114 

 115 

Neuronal population decoding methods fail to support the information coding or readout 116 

hypotheses 117 

We reasoned that analyzing the relationship between populations of simultaneously recorded 118 

neurons in multiple brain areas with the animals’ behavior would provide insight into the relative 119 

importance of each hypothesized mechanism. To this end, we determined whether attention 120 

affects the amount of stimulus information that can be decoded from the population of MT 121 

neurons using linear decoders that are optimized to a) dissociate between the original and 122 

changed stimuli (Stimulus decoder in Figure 2), b) predict the animals’ choices (whether or not 123 

they made an eye movement; Choice decoder), or c) predict the activity of the population of SC 124 

neurons we recorded (SC decoder). These decoders were always constructed using data from 125 

trials with the intermediate change amount (see Figure 1D). 126 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2019. ; https://doi.org/10.1101/372888doi: bioRxiv preprint 

https://doi.org/10.1101/372888


	 8	

127 
Figure 2 – Schematic of our decoding procedure. We used linear regression to find the weights 128 
(second column) that best relate the first ten principal components of the MT population’s 129 
response (left) to the visual stimulus (Stimulus decoder; top row), the animal’s choice (Choice 130 
decoder; middle row), or the projections of the responses of the population of simultaneously 131 
recorded SC neurons (SC decoder; bottom row). We assessed the performance of each decoder 132 
by decoding stimulus information from MT responses on a separate set of trials using each set of 133 
weights (right column). See methods for detailed decoding and cross validation procedures. 134 
 135 

The information coding hypothesis posits that attention improves the stimulus information that 136 

could be gleaned by an optimal Stimulus decoder, but our data provided only weak support for 137 

this idea. Attention did not significantly affect the performance of an optimal decoder in our data 138 

set, even when we used a decoder optimized separately for each attention condition (Figure 3A, 139 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 24, 2019. ; https://doi.org/10.1101/372888doi: bioRxiv preprint 

https://doi.org/10.1101/372888


	 9	

left bars). We repeated this analysis on a large dataset recorded from visual area V4 during an 140 

identical attention task and found a small, but significant, effect of attention (Supplementary 141 

Figure 4A5). Recent theoretical work suggests that the effects of attention on the stimulus 142 

information that can be decoded from small neuronal populations like the ones we recorded are 143 

likely to be even more minimal for larger populations28-30, making it seem unlikely that attention-144 

related improvements in information coding account for the robust improvements in behavioral 145 

performance that we observed. 146 

 147 

The readout hypothesis posits that attention changes the importance of the attended stimulus in 148 

guiding behavior by changing the way its representation is read out by the neurons involved in 149 

computing decisions. Therefore, this hypothesis posits that attention should change the weights 150 

relating MT responses to either behavior or SC responses. We found that attention had larger 151 

effects on the stimulus information that is related to the animals’ choices on individual trials 152 

(Figure 3A, middle bars) or that is shared with the SC (Figure 3A, right bars) than it did on the 153 

Stimulus decoder (p<.05). This was also true for the Choice decoder in the V4 dataset 154 

(Supplementary Figure 4A; p<.05). However, this difference could arise from either a weight 155 

change (Figure 1A) or a change within MT that results in more visual information being 156 

projected onto a static readout dimension (Figure 1B).  157 

 158 
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Figure 3.  Effects of attention on the stimulus information 159 
that can be decoded from small populations of MT 160 
neurons. (A) Ability of a cross-validated linear decoder 161 
to distinguish the original from changed stimuli 162 
(intermediate change amount) for each decoder. Error 163 
bars represent SEM. The effect of attention was 164 
significant for the Choice and SC decoders (paired t-165 
tests, p<.05) but not for the Stimulus decoder (p=0.28). 166 
The effects of attention on the Choice and SC decoders 167 
were greater than for the Stimulus decoder (paired t-168 
tests, p<.05), but not significantly different from each 169 
other (p=0.21). (B) Weight swapping analysis 170 
demonstrates that decoding performance was typically 171 
better using the MT responses from the cued condition 172 
and the Choice decoder weights from the uncued 173 
condition (y-axis) than using the MT responses from the 174 
uncued condition and the Choice decoder weights from 175 
the cued condition (x-axis; paired t-test, p<.05). (C) 176 
Same, using the weights from the SC decoder (paired t-177 
test, p<.05).  178 
 179 

A new hypothesis: attention reshapes sensory activity so 180 

that it more effectively guides decisions 181 

Our data do not support the hypothesis that attention 182 

changes weights relating MT responses to SC responses 183 

or behavior. Both the Choice and SC decoders gleaned 184 

more stimulus information from MT responses in the 185 

attended than unattended condition, even when we used 186 

the weights computed in the opposite attention condition 187 

for which they were calculated (Figures 3B and 3C). 188 

Together, these neuronal population analyses that use the 189 

animals’ behavior and the activity of downstream 190 

neurons to assess the hypothesized attention mechanisms reveal that neither the information 191 
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coding nor readout hypothesis provide a satisfactory account of the large observed attention-192 

related behavioral improvement.  193 

 194 

Our data support the hypothesis that attention reshapes the representation of attended stimuli to 195 

more effectively guide behavior (Figure 1B). In this scenario, the critical changes are in visual 196 

cortex. However, this does not result in a large improvement in the stimulus information that can 197 

be gleaned by an optimal Stimulus decoder. Instead, the modulated neuronal activity in MT 198 

better aligns with the readout dimensions using relatively static weights.   199 

 200 

How could a reshaping of the representation of an attended stimulus be implemented? The 201 

simplest mechanism would make use of the signatures of attention that have been observed for 202 

many years such as changes in firing rate gain2,3,24 or noise correlations5-7,9,20-22,31-37. We 203 

investigated the possibility that these simple response changes can account for the attention-204 

related improvement in the stimulus information decoded using the Choice decoder in two 205 

stages. First, to verify the prediction of the weight-swapping analyses (Figures 3B and 3C), we 206 

constructed a single Choice decoder for both attention conditions (Figure 4A) and determined 207 

that it captured the attention-related improvement in decoded stimulus information (compare the 208 

blue and yellow bars in Figure 4B). Second, we used those same weights to decode stimulus 209 

information from population responses constructed using the mean rates from the uncued 210 

condition and the residuals from the cued condition. We found that simply using residuals 211 

(which incorporate both response variability that is private to each neuron and that which is 212 

shared between neurons) from the cued condition was enough to completely account for the 213 

attention-related improvement in decoded stimulus information (Figure 4B).  214 
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215 
Figure 4. Effects of attention on the stimulus information that can be decoded from small 216 
populations of MT neurons is explained by changes in response variability.  (A) Schematic of our 217 
procedure to understand which attention-related changes could account for the improvement in 218 
the amount of stimulus information that could be gleaned using the Choice decoder. We 219 
separated the first ten principal components of the MT population response (left) to the original 220 
and changed stimulus in both attention conditions into mean responses (scale adjusted to 221 
account for smaller value range) and residuals. We assessed the extent to which decoder 222 
performance was affected by attention-related changes in means and residuals by decoding 223 
stimulus information from MT responses on a separate set of trials in each attention condition 224 
and also using the residuals from the cued condition and the mean responses from the uncued 225 
condition (green double-sided arrow). See methods for detailed decoding and cross validation 226 
procedures. (B) Using the procedure described in (A), we found that the reshaping of the MT 227 
representation of the attended stimulus can be accomplished as a result of attention-related 228 
changes in response variability (e.g. noise correlations). The amount of stimulus information 229 
that can be decoded using a single Choice decoder whose weights are determined from data 230 
from both attention conditions is indistinguishable for the cued data and data constructed using 231 
the mean responses from the uncued condition and the residuals from the cued condition (paired 232 
t-test, p=0.84). 233 
 234 

Discussion – 235 

We used multi-neuron, multi-area recordings and psychophysics to test two previous hypotheses 236 

and one novel hypothesis about the relationship between attention-related changes in perception 237 

and in neuronal responses on the timescale of perceptual decisions. In contrast with the 238 

hypotheses motivating most of the extensive literature concerning the neuronal basis of attention, 239 

our data are most consistent with the novel hypothesis that attention reshapes population activity 240 
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so that information about the attended stimulus is read out to guide behavior. Our conclusions are 241 

based on comparing the visual information that can be gleaned from decoders optimized for the 242 

stimulus, the animals’ choices, and the activity of groups of neurons in the superior colliculus. 243 

These results support the idea that behavioral flexibility may be mediated by reshaping the 244 

representation of visual stimuli rather than improvements in information coding (which may be 245 

impossible given the immense amount of sensory information encoded in the brains of even 246 

anesthetized animals30 or in the responses of single neurons13) or by changing read out, which 247 

may involve synaptic plasticity that takes longer than the ~150 ms timescale on which subjects 248 

can shift attention38-40.  249 

 250 

The idea of realigning sensory information to align with static read out mechanisms seems like it 251 

would require much more exotic mechanisms than the other hypothesized attentional 252 

mechanisms. However, we showed that commonly observed effects of attention on neuronal 253 

response variability were sufficient to reshape the representation of attended stimuli so that they 254 

more effectively influence behavior (Figure 4B). Changing covariability may require a simpler 255 

mechanism than changing information coding or synaptic weights: we showed recently in a 256 

model that the covariability of a population of neurons can be readily changed by altering the 257 

balance of inhibition to excitation41.   258 

 259 

The idea that changing correlated variability better aligns sensory responses to a fixed readout is 260 

also consistent with our recent observation that in this task, monkeys’ choices are well-aligned 261 

with the axis in population space that explains the most correlated noise21. One exciting 262 

possibility is that the correlated variability axis represents the fixed readout dimension, perhaps 263 
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because it is well-positioned to decode the motion direction of the broad set of stimuli that 264 

animals encounter outside the limited environment of most laboratory tasks24. If so, reducing 265 

noise correlations and increasing firing rate gains would improve the stimulus information 266 

projected along that readout axis (following the intuitions in42).  267 

 268 

Our conclusions rest on data using one psychophysical task and recordings from two visual 269 

cortical areas. It is possible that the mechanisms underlying change detection, which is an 270 

important component of natural vision, are different than other tasks or that the mechanisms 271 

differ by brain areas. Even if we happened upon a special, albeit common, scenario, it is 272 

remarkable to observe a situation in which the large attention-related change in behavioral 273 

performance can be accomplished without changing information coding or weights between 274 

areas. In contrast, theoretical models and machine learning techniques accomplish flexibility in 275 

computation almost solely by changing weights 43-46. Our results constitute an existence proof: an 276 

example of a situation in which flexibility can be mediated by simple changes within sensory 277 

cortex.  278 

 279 

In the future, it will be interesting to use the same approach to determine whether similar 280 

mechanisms can account for behavioral changes associated with other cognitive processes (e.g. 281 

task switching) that might seem more likely to change the weights relating stimulus information 282 

to downstream neurons or behavior. Further, many neuropsychiatric disorders (including 283 

disorders of attention, Autism, and schizophrenia) are thought to involve changes in the same 284 

computations thought to underlie attention47. An exciting possibility is that these changes might 285 
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be identified and potential therapies evaluated in animal models using the combination of 286 

behavioral evaluation and multi-neuron, multi-area recordings that we described here. 287 

 288 

Online Methods 289 
Methods Summary 290 

The subjects were two adult male rhesus monkeys (Macaca mulatta, 8 and 9 kg). All animal 291 

procedures were approved by the Institutional Animal Care and Use Committees of the 292 

University of Pittsburgh and Carnegie Mellon University. Using linear 24 channel moveable 293 

probes (Plexon), we simultaneously recorded extracellular activity from direction-selective 294 

neurons in area MT and neurons in the superior colliculus that responded either visually, prior to 295 

a saccade, or both. Before beginning the experiment, we searched for neurons in both areas that 296 

had overlapping spatial receptive fields (Figure 1E) as determined by mapping with both drifting 297 

gratings and a delayed saccade task. The monkeys performed a direction change-detection task 298 

that commenced upon fixation of a central spot (Figure 1C). Two drifting Gabor stimuli, whose 299 

direction was selected to drive the recorded population of MT neurons well, flashed on and off 300 

until the direction of one stimulus changed at a random, unsignaled time. The monkeys signaled 301 

detection of the change by making a saccade to the changed stimulus within 450 ms of its onset.  302 

The location of the stimulus change was cued using instruction trials prior to each block of trials 303 

and the cue was valid 80% of the time. On the other 20% of trials, the change happened at the 304 

uncued location. In order to encourage fixation on longer trials, catch trials, where no stimulus 305 

changed direction and monkeys were rewarded for maintaining fixation, were intermixed. We 306 

analyzed spiking activity in response to all visual stimuli except the first stimulus in each trial.  307 

Materials and Methods 308 
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The subjects were two adult male rhesus monkeys (Macaca mulatta, 8 and 9 kg). All animal 309 

procedures were approved by the Institutional Animal Care and Use Committees of the 310 

University of Pittsburgh and Carnegie Mellon University. 311 

We presented visual stimuli using custom software (written in MATLAB using the 312 

Psychophysics Toolbox 48,49 on a CRT monitor (calibrated to linearize intensity; 1024x768 313 

pixels; 120 Hz refresh rate) placed 54 cm from the animal. We monitored eye position using an 314 

infrared eye tracker (Eyelink 1000; SR Research) and recorded eye position and pupil diameter 315 

(1000 samples/s), neuronal responses (30,000 samples/s), and the signal from a photodiode to 316 

align neuronal responses to stimulus presentation times (30,000 samples/s) using hardware from 317 

Ripple. 318 

 319 

Behavioral Task 320 

As previously described5, a trial began when the monkey fixated a small, central spot within a 321 

1.25° per side square fixation window in the center of a video display while two peripheral full 322 

contrast, drifting Gabor stimuli (one overlapping the receptive fields of the recorded neurons, the 323 

other in the opposite visual hemifield) synchronously flashed on (for 200 ms) and off (for a 324 

randomized period between 200-400 ms) until, at a random, unsignaled time, the direction of one 325 

of the stimuli changed from that of the preceding stimuli (Figure 1C). The monkey received a 326 

liquid reward for making a saccade to the stimulus that changed. Attention was cued in blocks of 327 

50-100 trials, and alternated between blocks where attention was cued to either the left or the 328 

right stimulus. In each block, the direction change occurred at the cued stimulus on 80% of trials, 329 

and at the uncued stimulus in 20% of trials (all uncued changes used either the middle or largest 330 
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direction change, Figure 1D). Catch trials, where no stimulus changed direction and the monkey 331 

was rewarded for maintaining fixation, were randomly intermixed throughout each block and 332 

made up approximately 12% of total trials. Psychometric data were fit with Weibull functions. 333 

Before recording commenced, the monkeys were extensively trained to have stable thresholds 334 

across a range of spatial locations (3-6 months). Because we recorded from several dozen 335 

neurons simultaneously, we could not optimize the stimuli for all neurons. We made sure to 336 

position one Gabor stimulus in the joint receptive field of the recorded neurons in both areas and 337 

we made an effort to set the properties of the size (approximately 3-6 degrees of visual angle), 338 

speed (approximately 3-12 degrees of visual angle per second) and direction of the stimuli so 339 

that they drove as many MT units as possible. The direction of all of the stimuli prior to the 340 

direction change was constant throughout a recording session and this direction was typically 341 

either the median or mode of the distribution of MT preferred directions from that session. The 342 

range of direction changes differed from session to session, was selected based on the animals’ 343 

training history and depended on stimulus properties such as eccentricity and size. A typical 344 

range of change amounts for both animals was 1-35 degrees in log-spaced steps. 345 

 346 

Electrophysiological Recordings 347 

We simultaneously recorded extracellularly from single units and sorted multiunit clusters (the 348 

term “unit” refers to either). The dataset consisted of a total of 306 responsive MT units and 345 349 

responsive SC units total (36-58 units per session, mean 20 in MT, 24 in the SC for Monkey HO; 350 

36-53 units per session, mean 21 in MT, 22 in SC for Monkey ST) in both MT and the SC in the 351 

right hemisphere using moveable, linear 24-channel V-probes (Plexon; inter-electrode spacing in 352 

MT = 50µm, SC = 100µm). We presented visual stimuli and tracked eye position as previously 353 
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described9. The data presented are from 6 days of recording for Monkey HO and 9 days of 354 

recording for Monkey ST. Each day consisted of multiple blocks of the attention task (Figure 1C; 355 

mean 1015 of trials for Monkey HO, 745 for Monkey ST) preceded by receptive field mapping 356 

using a delayed saccade task and direction tuning during passive fixation. 357 

Data Analysis 358 

All spike sorting was done offline manually using Offline Sorter (version 3.3.5; Plexon). We 359 

based our analyses on both single units and multiunit clusters and use the term “unit” to refer to 360 

either. All neuronal analyses prior to Figure 3 used spike count responses between 50-250 ms 361 

after stimulus onset to account for visual latencies in the two areas. To remove response 362 

contamination from eye movements during change stimuli, data presented in the decoding 363 

analyses in Figure 3 and 4 used shorter response windows. Responses to both unchanged and 364 

changed stimuli were measured from 50-185 ms after stimulus onset for monkey HO and 50-220 365 

ms for monkey ST. These times were selected based on the distribution of each animal’s reaction 366 

times with the goal of maximizing the number of trials that could be included in the analyses. 367 

Trials with reaction times that began during those windows were excluded. To minimize the 368 

impact of adaptation on our results, we did not analyze the first stimulus presentation in each 369 

trial. We only analyzed a recorded MT unit if its stimulus-driven firing rate was 10% higher than 370 

its firing rate as measured in the 100 ms prior to the onset of the first stimulus. We only analyzed 371 

a recorded SC unit if its stimulus-driven firing rate was 10% higher than its firing rate as 372 

measured in the 100 ms prior to the onset of the first stimulus or if its response during a 100 ms 373 

epoch prior to a saccade on correct trials to the contralateral side was 10% larger than that same 374 

baseline. Stimulus presentations during which a microsaccade was detected were excluded from 375 

analyses9,50). 376 
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 377 

For firing rate analyses in Supplementary Figure 1A and B, attention indices were calculated 378 

using average spike counts on the stimulus presentation prior to correct detections of the 379 

intermediate change amount depending on whether attention was directed into or out of the 380 

receptive fields of the recorded neurons using the formula (attendin – attendout)/(attendin + 381 

attendout). Significance of individual units was determined by a paired t-test (p<0.05). 382 

 383 

Noise correlations 384 

 385 

We defined the correlated variability of each pair of simultaneously recorded units (quantified as 386 

spike count correlation or rSC
25) as the Pearson correlation coefficient between the responses of 387 

the two units to repeated presentations of the same stimulus. This measure of rSC represents noise 388 

correlations rather than signal correlations because the responses used in this analysis were 389 

always to an identical visual stimulus. For Supplementary Figure 1C, we included responses 390 

from stimulus presentations 2 though 10 from trials that ended with either a hit, miss or correct 391 

catch trial and that were immediately followed by the maintenance of fixation and continuation 392 

of the trial (i.e., stimulus presentations where the behavioral response on the subsequent stimulus 393 

presentation was not a saccade). We z-scored responses as a function of the stimulus presentation 394 

number in each trial and then pooled data across stimulus presentations before calculating noise 395 

correlations. Results did not qualitatively change if we did not perform this z-score procedure. 396 

For Supplementary Figure 1D, we included data from all stimulus presentations prior to the 397 

change stimulus (except the first) and sorted them depending on what the behavioral outcome 398 

was on the subsequent stimulus presentation. Pairs of units that were recorded on the same 399 
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electrode were not included in correlation analyses. The data presented in Supplementary Figures 400 

1C consisted of 3,285 MT pairs, 3,948 SC pairs and 6,934 between area pairs.  401 

 402 

Decoding 403 

We focused our decoding analyses on trials in which the third largest (middle) direction change 404 

occurred, because changes of that magnitude occurred in both attention conditions. We used the 405 

decoding strategy schematized in Figure 2. We began by constructing four matrices in each 406 

attention condition: ‘MT responses’ (a # MT neurons by 2*# trials matrix of MT responses to the 407 

stimuli before the direction change and the changed stimulus on the relevant trials), ‘motion 408 

direction’ (a 1 by 2*# trials vector of zeros for the stimulus before the change, referred to as 409 

‘original’,  and ones for the changed stimulus, referred to as ‘change’), ‘choice’ (a 1 by 2*# trials 410 

vector of zeros for stimulus presentations on which the animal did not make an eye movement, 411 

referred to as ‘no saccade’, and ones when the animal made an eye movement, referred to as 412 

‘saccade’), and ‘SC responses’ (a # SC neurons by 2*# trials matrix of SC responses to the 413 

stimuli before the direction change and the changed stimulus on the relevant trials).  414 

 415 

We cross validated by holding out the two stimulus presentations (for the original and changed 416 

stimuli) from one trial at a time to perform the rest of our analyses. To reduce the number of 417 

weights we needed to fit and therefore improve our confidence in the weights we did fit, we 418 

performed PCA on the MT and SC responses to find the first 10 PCs in each area. We then 419 

performed linear regression to find the weight vectors (for the Stimulus and Choice decoders) or 420 

weight matrices (for the SC decoder) that related projections along the first ten MT PCs plus a 421 
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vector of ones to ‘motion direction’, ‘choice’, or projections along the first 10 SC PCs in each 422 

attention condition.  423 

 424 

We assessed the stimulus information in each decoder (Figure 3) by multiplying projections of 425 

MT responses to the original and changed stimuli from the held-out trial by the fitted weights 426 

and either determining whether those weighted sums correctly classified the stimuli as original or 427 

changed (Stimulus and Choice decoders) or whether a linear classifier correctly classified those 428 

stimulus presentations on the basis of the predicted SC responses (SC decoder). For the decoding 429 

analysis in Figure 4B, we took a similar approach to the previously described Choice decoder, 430 

except that we combined data from both the cued and uncued conditions to calculate decoding 431 

weights. We then decomposed the responses of the population responses to each stimulus in each 432 

attention conditions into mean responses and residuals (R=M+S, where R is the number of 433 

neurons by number of trials matrix of spike count responses to one stimulus in one attention 434 

condition, M is a matrix of mean responses for each neuron, and S is the matrix of residuals). We 435 

tested the hypothesis that attention-related changes in the residuals account for the improvement 436 

in stimulus information used to guide behavior by decoding stimulus information from responses 437 

created by using the mean responses from the uncued condition and residuals from the cued 438 

condition.  439 

 440 

The stimulus and choice decoder using the V4 data were set up in an identical manner to the MT 441 

data described above (Supplementary Figure 4). This dataset consisted of multineuron recordings 442 

from both hemispheres of V4 during 37 experimental sessions in two animals, the details of 443 

which are described in 5. 444 
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Code availability 445 

Custom Matlab code is available upon reasonable request to the authors. 446 
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