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ABSTRACT
The combination of fluorescent probes with time-lapse microscopy
allows for the visualization of the entire neuronal activity of small
animals, such as worms or cnidarians, over a long period of time.
However, large deformations of the animal combined with the natu-
ral intermittency of neuronal activity make robust automated track-
ing of firing fluorescent neurons challenging. Here we present an
hybrid approach where (i) a subset of very bright neurons is used as
moving reference points (fiducials) to estimate the elastic deforma-
tion of the animal; (ii) deformation is frame-by-frame corrected, and
firing neurons are aligned at each time with the initial mask; and (iii)
point-set registration is used to robustly track the intermittent activ-
ity of all the immobilized neurons. We compare different registration
strategies with manual tracking performed over ≈ 620 neurons over
100 time frames in the cnidarian Hydra vulgaris.

Index Terms— Fluorescence imaging, wavelet detection, track-
ing, point-set registration, elastic deformation, Thin Plate Spline
(TPS) transform, Coherent Point Drift (CPD), Hydra.

1. INTRODUCTION

To understand emergent properties of neuronal ensembles and to
decode the neuronal basis of behavior, one would like to record
from many, or all, of the neurons in an animal for extended time pe-
riods while it is freely behaving [1]. A small set of organisms have
been genetically engineered with fluorescent probes and imaged
with time-lapse microscopy [2, 3, 4, 5]. The cnidarian Hydra is an
emerging model system for whole-animal imaging [5], as it is trans-
parent and neurons are sparsely distributed in the body. However,
large body deformations and intermittent fluorescence of individual
neurons make it challenging to robustly detect and track neuronal
activity over a long period of time. Recently, Nguyen et al. devel-
oped a hybrid approach to track neurons in the C. Elegans worm [6],
in which moving neurons are first aligned at each time frame along
the principal axis of the stretched animal, and their activity then
tracked using point set registration via a Gaussian Mixture Model
(GMM) [7]. Here, we adapt this two-step strategy to neuron track-
ing in Hydra, including substantial modifications. Along with large
deformations during movement, Hydra deforms in two dimensions
and cannot easily be transformed into an invariant frame of reference
simply using displacement of the principal axis. To our advantage,
however, while neurons within the worm are densely packed and
imaged in 3D, neurons in Hydra have been imaged in 2D (trans-
parent animal between coverslips) and are relatively sparsely and
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homogeneously distributed throughout the body. Thus, one should
be able to make use of a point-set registration in Hydra that is less
computationally intensive than the GMM.

We thus chose to (i) automatically detect firing (fluorescent) neu-
rons at each time frame; (ii) estimate body deformation between two
time frames with an elastic transformation, the Thin-Plate Spline
(TPS) transform, using a subset of very bright neurons as reference
or fiducial points; (iii) iteratively correct for Hydra deformation and
align firing neurons with reference frames; and (iv) track the activity
of individual neurons with the Coherent Point Drift (CPD) algorithm
[8] (Fig. 1). The CPD algorithm ignores spot shape and accounts
only for positions. It is thus faster than a GMM and well suited to
the distributed (i.e. not densely packed) neural network of Hydra.
Finally, we compare different CPD variants against manual tracking
on ≈ 620 neurons over 100 frames.

2. METHODS

2.1. Motion correction

To estimate the elastic deformation of Hydra we first automatically
detect active, bright neurons using a wavelet-based algorithm [9],
implemented as a plugin Spot Detector in the open-source image
analysis software package Icy [10] (http://icy.bioimageanalysis.org).
Big and bright neurons can be robustly detected and tracked over a
large number of frames. We thus use a subset (typically 30%) of
the brightest detected neurons as references, or fiducials, between
consecutive frames. These fiducial points are homogeneously dis-
tributed over the Hydra body, and can be used to estimate iteratively
the elastic deformation of the whole animal. We use the Thin-Plate
Spline (TPS) interpolation method [11] whose robustness has been
demonstrated in many biological applications, but emphasize that
other spline bases such as B-splines [12] might be considered. To
align the firing neurons at each time frame with reference frames, we
iteratively correct the time-lapse deformation with the estimated TPS
interpolation. However, slight motion of individual neurons per-
sists. This, combined with the neuron density and the infrequency of
their fluorescence activity, impairs robust tracking. To allow track-
ing in this case we thus adapt the point-set registration framework
(NeRVE) of [6].

2.2. Tracking pipeline in motion-corrected animals

Given the motion corrected detections, the NeRVE registration vec-
tor clustering method [6] is used to reconstruct neuron tracks. The
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Fig. 1. A multi-step algorithm to track individual neuron activity in a deformable animal a - General framework of tracking. Neuronal activity is recorded
with calcium fluorescent probes. Neurons are homogeneously distributed within Hydra’s deformable body. Firing neurons (bright) are detected with wavelet
transformation and statistical thresholding [9]. A fraction of the brightest neurons are used as reference localizations or fiducials for estimating deformation
with Thin-Plate Spline (TPS) interpolation. Inverse, iterative transformation of neuron positions allows their alignment with reference frames. As slight neuron
motion persists after inverse TPS transform, a point-set registration (Coherent-Point-Drift (CPD) [8]) is applied to track the fluorescence activity of individual
neurons.b - We designed a protocol in the open-source bio-image analysis platform Icy [10] (http://bioimageanalysis.org/) to automatically perform the multiple
analysis steps (Hydra body segmentation, neuron detection and motion correction). The point-set registration (CPD algorithm) was performed by adapting the
Python code (https://github.com/siavashk/pycpd) of [8]. c- Multi-step tracking approach was applied to time-lapse recordings of Hydra neuronal activity [5]).

NeRVE method applies a point set registration from every frame of
the video to every frame in a set of reference frames.
After motion correction, a set of spots is extracted from each frame,
numbered 1 through N where N varies from frame to frame. The goal
of the NeRVE method is then to identify each spot in a given frame
with a neuron. For this, one extracts the coordinate of the centroid
of each spot for each motion-corrected frame; and these coordinates
are collected across many times. Thus, each spot’s identity under
each registration to a reference frame is vectorized, and all detected
spots in all frames thus acquire a registration vector. To form tracks,
the method relies on the intuition that the same neuron in different
frames should map in a similar fashion to the set of reference frames.
Thus clustering the registration vectors should identify clusters that
represent individual neurons. Neuron profiles are then defined as the
centers of registration vector clusters, and each spot in each frame is
assigned to the neuron with the least Euclidean distance to its regis-

tration vector to form the neuron tracks.
After the NeRVE method returns the tracks, we use a post-processing
method to fill in gaps by sequentially forming a linear prediction at
each frame in the gap, finding the closest detected spot to the pre-
diction, and assigning to the neuron track either the closest spot or
the linear prediction if the closest spot falls over a distance thresh-
old. This gives a model-free method for interpolation that accounts
for non-linearities in long gaps. Finally, because the accuracy of
any point set registration method diminishes as the time between
the model (moving) frame and reference (fixed) frames increases,
we break long videos into overlapping segments, where the NeRVE
method obtains neuron tracks over each segment. Each segment is
then spliced together with the subsequent segment by pairing tracks
with the least Euclidean error on the overlap.
The point set registration method used in our NeRVE implementa-
tion is Coherent Point Drift (CPD) [8]. CPD represents each model
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point as the centroid of a Gaussian mixture model, and fits the model
frame onto the reference frame by maximizing the likelihood of ob-
serving the reference points, accounting for a smoothing prior. This
posterior is maximized by choosing a set of model points Y that
minimize the energy function

E(Y) = −
N∑

n=1

log
M∑

m=1

e−
1
2 ||

xn−ym
σ

||2 + λ

2φ(Y)

where X is the set of reference points, and the φ function regularizes
smoothness of motion. The registration method used in the original
NeRVE implementation is a similar Gaussian mixture model regis-
tration method [7] which accounts for neuron size and intensity. We
chose to use CPD over the Gaussian mixture method because CPD
performs better across shorter time frames and all videos can be bro-
ken up into short segments using the track splicing method. We also
chose CPD for its relative simplicity; the GMM method requires pa-
rameters to weigh the relative effects of size and intensity in the en-
ergy minimization, and optimal performance with the GMM method
also requires a model for how size and intensity change over time.
The original NeRVE implementation represents each spot’s image
under a registration as a binary vector where an index of 1 repre-
sents the closest match under the mapping, with a cut-off parameter
that determines when a point has no match under the mapping. As
many different representations can be used to capture the global pro-
file of the cell, we chose to use the likelihood vectors (soft) given
by CPD rather than a binary (hard) representation, as it allows us to
capture uncertainty in registration and avoid the threshold parameter
for deciding that a spot doesn’t have a match.

3. COMPARISON WITH MANUAL TRACKING

In order to measure the performance of the tracking method, a
ground truth set of tracks was generated in semi-automated fash-
ion. On a 100 frame evaluation video, TrackMate [13] was used to
create an initial set of tracks. These were then curated by hand to
remove errors and add additional tracks as necessary. The tracks to
be evaluated are then associated to the ground truth tracks, allowing
for performance statistics to be computed. In order to associate two
sets of tracks, we require a way of measuring how close they are.
We employ the metric used in [14]. Briefly, the metric measures the
sum of the Euclidean difference between points, each measured up
to a threshold distance ε, over all frames. Each frame in which one
track is defined but the other is not acquires a penalty of ε. Each
frame in which neither track is defined acquires no penalty. Thus,
for two tracks θ1 and θ2,

d(θ1, θ2) =
∑
t

|θ1(t)− θ2(t)|2,ε. (1)

A threshold distance of ε = 10 was used. Once a pairwise measure
of track distance was defined, the Munkres algorithm [15] was used
to find the optimal association between estimated and ground truth
tracks. The following per track statistics were computed: (i) Life-
time: length of each associated track, (ii) RMSE: root mean square
error over times when both tracks are defined (iii) Proportion less
than: proportion of times at which tracks are less than 10 pixels,
over times when both tracks are defined. Over all tracks, we also
compute the proportion of ground truth tracks that are associated
with an estimated track, and the proportion of estimated tracks that
are associated with a ground truth track (Fig. 2).

The best results (≈ 350 over 620 with > 80% detection match)
were obtained with motion correction, soft representation of neu-
ron vectors and sequence splicing. We observe that elastic motion
correction drastically improves tracking performance. Tracking per-
formances might appear low but, while the ground truth set of tracks
are defined at each frame even when neurons are not firing, the au-
tomatic tracking depends on bright neuron detections. This leads
to incomplete tracks, thus measured statistics should be viewed as
comparative rather than absolute performance metrics.

Fig. 2. Comparing different tracking strategies with manual tracks (≈ 620)
defined over 100 frames. The different compared tracking strategies are,
from left to right, (1) hard binary vector representation, without motion cor-
rection and sequence splicing, (2) soft probabilistic representation, without
motion correction and sequence splicing, (3) hard binary vector representa-
tion, with motion correction and without sequence splicing, (4) soft proba-
bilistic vector representation, with motion correction and without sequence
splicing, (5) hard binary vector representation, with motion correction and
sequence splicing, (6) soft probabilistic vector representation, with motion
correction and sequence splicing. Green tracks are the tracks whose length is
> 40 frames (blue), and more than 80% of the detections match the detec-
tions of a ground-truth, manual track. Other short tracks are represented in
red.

4. CONCLUSION

We proposed a general framework to track neuron activity in the
(highly) deformable Hydra. Our strategy consists of (i) identifying
very bright neurons that can be unambiguously tracked between
consecutive frames, and used as fiducials for estimating the sub-
strate elastic deformation, (ii) iteratively correcting the deformation
and aligning firing neurons with reference frames and (iii) using
a point-set registration algorithm to robustly track the activity of
individual neurons. We compared different tracking strategies with
manual tracking (ground truth).

The main contribution of this paper is to propose a general track-
ing strategy in deformable animals consisting of correcting for defor-
mation with a subset of detected bright neurons (fiducials), before
tracking the activity of the entire neuronal population with point-set
registration. Each of these steps can be adapted and improved de-
pending on the experimental data-set and the tradeoff with computa-
tion load. In the specific example of Hydra, we anticipate additional
benefit to come from performing motion correction not just on de-
tected spots but using the entire image frames, a problem that can
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be solved using a combination of image registration and multi-frame
optic flow methods [16, 17]. This allows additional Hydra pose in-
formation to be incorporated in motion correction, particularly in
cases where the set of active neurons varies in time, and further per-
mits the reliable identification of time points when the Hydra is in
a similar position; these identifications should facilitate longer term
tracking. This extension is the subject of ongoing work. ————
——————————————————
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