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ABSTRACT 

Genetic signal detection in genome-wide association studies (GWAS) is enhanced by 

pooling small signals from multiple Single Nucleotide Polymorphism (SNP), e.g. across 

genes and pathways. Because genes are believed to influence traits via gene expression, 

it is of interest to combine information from expression Quantitative Trait Loci (eQTLs) in 

a gene or genes in the same pathway. Such methods, widely referred as transcriptomic 

wide association analysis (TWAS), already exist for gene analysis. Due to the possibility 
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of eliminating most of the confounding effect of linkage disequilibrium (LD) from TWAS 

gene statistics, pathway TWAS methods would be very useful in uncovering the true 

molecular bases of psychiatric disorders.  However, such methods are not yet available 

for arbitrarily large pathways/gene sets. This is possibly due to it quadratic (in the number 

of SNPs) computational burden for computing LD across large regions. To overcome this 

obstacle, we propose JEPEGMIX2-P, a novel TWAS pathway method that i) has a linear 

computational burden, ii) uses a large and diverse reference panel (33K subjects), iii) is 

competitive (adjusts for background enrichment in gene TWAS statistics) and iv) is 

applicable as-is to ethnically mixed cohorts. To underline its potential for increasing the 

power to uncover genetic signals over the state-of-the-art and commonly used non-

transcriptomics methods, e.g. MAGMA, we applied JEPEGMIX2-P to summary statistics 

of most large meta-analyses from Psychiatric Genetics Consortium (PGC). While our 

work is just the very first step toward clinical translation of psychiatric disorders, PGC 

anorexia results suggest a possible avenue for treatment. 
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1 Introduction 

Genome-wide association studies (GWAS) have been very successful for identifying 

diseases loci using single-marker based association tests (Bush & Moore, 2012). 

Unfortunately, such methods have had limited power to identify causal genes or pathways 

(Wang, Li, & Hakonarson, 2010). For most complex traits, genetic risks are likely the 

result of the joint effect of multiple genes located in causal pathways (Ramanan, Shen, 

Moore, & Saykin, 2012).  Consequently, pooling information across genes in a pathway 

is likely to greatly improve signal detection.  

Given that gene expression (GE), is widely posited to be the critical causal mechanism 

linking variant to phenotype (Emilsson et al., 2008), the pooling of information across 

multiple variants should be mediated by GE. Gene expression based methods, widely 

denoted as transcriptome wide association analysis (TWAS), exist for gene-level 

inference (Chatzinakos et al., 2017; Gamazon et al., 2015; Gusev et al., 2016). They 

combine summary statistics at expression Quantitative Traits Loci (eQTL) known to best 

predict GE to infer the association between trait and GE for the gene under investigation.  

While TWAS pathway methods do not exist, such methods would help tremendously the 

translation of psychiatric disorders by i) eliminating the confounding effect of linkage 

disequilibrium (LD) on TWAS gene statistics and ii) increasing the power by directly 

modelling the LD between TWAS summary statistics. However, such methods are not yet 

available, likely due to the large storage/computational burden associated with computing 

the LD between the numerous SNPs, possibly, involved in computing TWAS statics for 

numerous genes in a large region, e.g. Major Histocompatibility (MHC) region from 

chromosome 6p (~25-35Mbp) or even entire chromosome arms.  The large computational 
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burden is the results of the variance of the linear combinations for TWAS statistics (Jin et 

al., 2014) being assessed using the estimated pairwise LD for all eQTL SNPs which, for 

𝑚 variants, requires a heavy 𝑂(𝑚2) computational burden.  

 

Currently, pathway analysis methods are non-transcriptomic, i.e. at a minimum they do 

not use the LD between TWAS gene statistics. Most of them just search for “agnostic” 

(i.e. not GE mediated) signal enrichment in a pathway/gene set. Among existing pathway 

methods we mention ALIGATOR (Holmans et al., 2009), GSEA (Subramanian et al., 

2005), DAPPPLE (Rossin et al., 2011), as MAGENTA (Segre et al., 2010), INRICH (P. 

H. Lee, O'Dushlaine, Thomas, & Purcell, 2012) and MAGMA (de Leeuw, Mooij, Heskes, 

& Posthuma, 2015), as well as online tools: GeneGo/MetaCore (www.genego.com), 

Ingenuity Pathway Analysis (www.ingenuity.com), PANTHER (www.pantherdb.org), 

WebGestalt (bioinfo.vanderbilt.edu/webgestalt), DAVID (david.abcc.ncifcrf.gov) and 

Pathway Painter (pathway.painter.gsa-online.de. While not designed for pathway 

analyses, LDpred (Bulik-Sullivan et al., 2015; Finucane et al., 2015) can also be adapted 

to test whether pathways are enriched above the polygenic background while adjusting 

for genomic covariates. Although all these tools were shown to be very powerful, TWAS 

based pathway analyses can greatly complement the “agnostic” findings of all these tools.   

 

To advance the translation of psychiatric disorders we propose JEPEGMIX2 Pathway 

(JEPEGMIX2-P) that extends the reach of TWAS methods to pathway-level. It promises 

to increase power by directly modeling the LD between TWAS gene statistics. 

JEPEGMIX2-P  i) uses a very large and diverse reference panel consisting of 33K 
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subjects (including  around >10K Han Chinese), ii) automatically estimates ethnic 

composition of cohort, iii) uses these weight to compute LD for gene statistics via a linear 

running time procedure, iv) uses LD and GWAS summary statistics to rapidly test for the 

association between trait and expression of genes even in the largest pathways, v) is 

competitive, i.e. adjusts for the background enrichment of TWAS gene statistics, and vi), 

to avoid the large signal in a gene inducing significant signals in all small pathways that 

include it,  provides the option of a conditional analysis that eliminates the effect of SNPs 

with significant signals. When compared to MAGMA, its analyses of PGC GWAS data 

yield a markedly increased number of significant signals. 

 

 

2 Methods 

Naïve application of many analysis methods comparing the statistic with the default null 

hypothesis (𝐻0), when applied for genes/pathways with numerous SNPs/genes might 

yield large signals merely by accumulating “average” polygenic signals from well-powered 

studies. This comparison to the default null is also known as uncompetitive statistic, as it 

does not take into account the average enrichment of the genome. To avoid such an 

accumulation of average polygenic information in the uncompetitive statistic, we use 

competitive tests that adjust the SNP and gene level 𝜒2 statistics for the background 

enrichment of genome wide SNPs and TWAS gene statistics, respectively. This is 

achieved simply by adjusting gene statistics for average non-centrality (Text S1, S2 of 

Supplementary Information-SI). Subsequently, as detailed in S3 and S4 ] we use the 

GWAS summary statistics i) to estimate the ethnic composition of the study cohort and ii) 
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use the estimated ethnic weights to build a pathway statistic that has a highly desirable 

𝑂(𝑚) computational burden.    

 

GWAS summary data comprise of a large range of effect sizes and it is unclear whether 

the estimated pathway statistics are related to the whole range, including SNPs with very 

small effects, or just SNPs with very large effects. To avoid a very large signal in a gene 

inducing a significant signal in all smaller pathways including the gene, we also offer the 

option to eliminate the effect of SNPs with statistically significant signals, by applying a 

novel conditional analysis procedure (Text S5 in SI) to summary statistics before their use 

in our TWAS pathway tool. 

 

  

 

2.3 Computation of pathway statistic. Generic TWAS methods, including our 

JEPEGMIX2m, output Z-score statistics by gene. Thus, if the correlation between gene 

statistics is available, e.g. by using the 𝑂(𝑚) method described above, these statistics 

can be combined using a Mahalanobis 𝜒2 statistics with the number of degrees of 

freedom (df) equal to the number of genes. Unfortunately, this can become quickly very 

involved if we need to compute the LD between statistics 

of all ~20,000 genes. However, given that the genotypes 

of variants in different chromosome arms are practically 

independent, if follows that Z-scores for genes on different 

chromosome arms are independent. Thus, the 
Fig 1. Computation of pathway 

statistics  
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Mahalanobis type statistic can be computed more easily by i) computing chromosome 

arm 𝜒2 statistics and, subsequently, ii) combining the resulting chromosome arm statistic 

in a 𝜒2 pathway statistic (Fig 1). Similarly, the df for the 𝜒2pathway statistic equals the 

sum of the dfs for chromosome arm statistics. 

2.4 Annotation and reference panel. As pathway database we used MSigDB 

(Liberzon, 2014; Liberzon et al., 2015; Liberzon et al., 2011), which is well maintained 

and widely used by researchers. To facilitate user-specific input for new pathways along 

with future extensions, the annotation file for JEPEGMIX2-P now includes an R-like 

formula for the expression of each gene as a function of its eQTL genotypes and of the 

content for each pathway as a function of the names its constituting genes. The updated 

annotation file includes cis-eQTL for all tissues available in the v0.7 version of PredictDB 

(http://predictdb.hakyimlab.org/). To avoid making inference about genes poorly predicted 

by SNPs, for the 48 available tissues (Text S6, Table S1 of SI), we retain only genes for 

which the expression is predicted with reasonable accuracy [False Discovery Rate (FDR) 

q-value < 0.05] from its eQTLs. The current version uses the 32,953 subjects (33K) as 

the reference panel. It consists of 20,281 Europeans, 10,800 East Asians (from 

CONVERGE study, Text S5 of SI), 522 South Asians, 817 Africans and 533 Native of 

Americas (Text S6 Table S2 of SI). 

 

3 Simulations 

To estimate the false positive rates of JEPEGMIX2-P, for five different cosmopolitan 

studies scenarios, we simulated (under 𝐻0) 100 cosmopolitan cohorts of 10,000 subjects 

for Ilumina 1M autosomal SNPs using 1KG haplotype patterns (D. Lee et al., 2015) (Text 
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S9, Table 3 of SI). The subject phenotypes were simulated independent of genotypes as 

a random Gaussian sample. SNP phenotype-genotype association summary statistics 

were computed from a correlation test. For each cohort, we obtained JEPEGMIX2-P 

statistics, for the two “null” enrichment scenarios i) under null (𝐻0), of no enrichment, and 

ii) polygenic null (𝐻𝑝), i.e. when enrichment is uniform over the entire genome regardless 

of functionality of individual genomic regions. For the JEPEGMIX2-P analyses of the 

resulting data we used i) prespecified (PRE) and ii) automatically estimated ethnic 

weights (EST). The prespecified (PRE) weights were assigned assuming information from 

the studies about subpopulations involved were available. As PRE-weights, we assigned 

“study-published” weights for the closest subpopulations from our new reference panel. 

Given that i) subjects were re-assigned to subpopulations in the new panel and ii) the 

populations labels in the new panel do not correspond to the ones from 100 Genomes, 

this induced possible mismatches that might result in increased false positive rates.  To 

avoid this, a second version of the PRE-approach provides the published weights to 

continental superpopulations, i.e. EUR, ASN, SAS, AFR and AMR. 

 

During our initial simulations we observed that pathways with name lengths ≤ 8, e.g. 

pathways denoting chromosome bands like: chr3p21, ch6p21 etc., have increased false 

positive rates due to having numerous genes in high LD because of their proximity. For 

that reason, we also estimated the size of the test for all cohort scenarios just for these 

high LD pathways.   
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Recently, due to its strength, MAGMA is one of the most used pathway analysis methods. 

Consequently, we compare the results obtained from our method with those obtained by 

this state-of-the-art method. However, to compare JEPEGMIX2-P with MAGMA, given 

that 1) the simulated cohorts might not reflect real data and 2) these data sets are for 

cosmopolitan cohorts (MAGMA software does not provide reference panel for these 

cohorts), we used real data to create “nullified” data sets. These nullified data sets are 

based on 20-real GWAS (of mostly Caucasian cohorts) like: schizophrenia (SCZ), 

attention deficit hyperactive disorder (ADHD), autism (AUT), major depressive disorder 

MDD (see Table 1) and a further (preponderantly European) 16 data sets that are not yet 

publicly available. This approximation for null data is obtained by substituting the 

expected quantile of the Gaussian distribution for the (ordered) Z-score (see also Text 

S1, nonparametric robust estimation of weights section, of the SI) after eliminating SNPs 

with significant association p-values in the original GWAS. However, one side effect of 

this approach consists of statistics within/near the peak signals in original GWASs might 

be still slightly more concentrated into the tails of the distribution to be a perfect “null data”. 

This can result in a slight increase in false positive rate, especially when applied to the 

nullified version of a highly enriched GWAS (e.g. PGC2 SCZ). However, most of the data 

sets used in “nullification” were not highly enriched in association signals. 

 

3.1 Practical Applications. We applied JEPEGMIX2-P and MAGMA to summary 

statistics coming from Psychiatric Genetics Consortium (PGC- 

http://www.med.unc.edu/pgc/) datasets, i.e. Schizophrenia (SCZ), Attention Deficit 

Hyperactivity Disorder (ADHD), Autism (AUT), Bipolar (BIP), Eating Disorders (Anorexia) 
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(ED), Major depression disorder (MDD) and Post traumatic  stress disorder (PTSD) (see 

Table 1). To limit the increase in Type I error rates of JEPEGMIX2-P, we deem as 

significantly associated only those pathways that yield an FDR-adjusted p-value (q-

value)< 0.05. Due to C4 explaining most of Major Histocompatibility (MHC) (chr6:25-33 

Mb (McCarthy et al., 2016), gene/signals for SCZ, for this trait, we omit non-C4 genes in 

this region. Moreover, due to the high correlation between SNPs in MHC (chr6:25-33 Mb), 

we also omit genes in this region for MDD, which also showed MHC signals (Wray et al., 

2018).   

 

4 Results 

JEPEGMIX2-P using our proposed automatic weight detection procedure (see Methods), 

controlled the false positive rates at or below the nominal threshold, even when this 

threshold was 10−6 , under both null (𝐻0) and “polygenic null” scenario (𝐻𝑝 - enrichment 

in association signals is uniform over the entire genome, in keeping with the polygenicity 

of most traits) .  When the method used narrowly prespecified subpopulation weights (e.g. 

using the closest subpopulations from the reference sample, i.e. as derived from the study 

description), the false positives rates were increased, especially for lower nominal rates, 

by up to ~220-450 (Text S9, Figs S1-S5 in SI). However, JEPEGMIX2-P with pre-

estimated weights based on super populations (i.e. European, East Asian, African etc.) 

had a much lower inflation of false positive rates; only for 10−6 threshold the false positive 

rate was increased by ~2-4 times, under both 𝐻0 and 𝐻𝑝 scenarios (Text S9, Fig S6 in 

SI).  
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For high-LD pathways, e.g. those defined by single chromosome bands in MSigDB 

(Liberzon, 2014; Liberzon et al., 2015; Liberzon et al., 2011), the behavior of 

JEPEGMIX2-P with automatically estimated weights is similar to the one for the whole 

set of MSigDB pathways. However, false positive rates increase by ~300-1,200 for the 

narrowly prespecified subpopulation weights (Text S9, Figs S7-S11 in SI), while when 

using super population-based weights, it remained practically unchanged from the 2-4X 

increase derived for all pathways (Text S9, Fig S12 in SI).  

 

Using the FDR p-value adjustment, for both unconditional and the very conservative 

conditional JEPEG2-P analyses, we uncovered numerous significant pathway signals for 

Psychiatric Genetics Consortium (PGC) traits (Table 1).  For the most significant we 

present heatmaps (Fig. 2-5, Text S10, Fig. S13-S19 in SI) while extended tables 

(Supplementary Excel file) include all significant signals. On the other hand, most likely 

due to not modelling the LD between gene statistics, MAGMA found fewer signals when 

it was applied to the TWAS gene statistics from JEPEGMIX2 (Table 2). (The number of 

MAGMA signals was even lower when inputting SNP GWAS instead of gene TWAS 

summary statistics.) JEPEGMIX2-P running time for a TWAS gene and pathway analysis 

of PGC data was less than 5 days on a single core of a cluster node with 4x Intel Xeon 6 

core 2.67 GHz.  

 

Table 1. Description of GWAS studies and traits that were analyses. 

Trait Trait Abbreviation Dataset Description 

Schizophrenia SCZ PGC2 SCZ (Ripke et al., 2013) 

Attention Deficit Hyperactivity Disorder ADHD PGC ADHD (Demontis et al., 2017) 
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Autism AUT PGC AUT (Buxbaum et al., 2012) 

Bipolar BIP PGC BIP (Stahl et al., 2019) 

Eating Disorders (Anorexia) ED PGC EAT (Duncan et al., 2017) 

Major depression disorder MDD PGC MDD (Wray et al., 2018) 

Post-traumatic stress disorder PTSD PGC PTSD (Nievergelt et al., 2019) 

 

Table 2. Numbers of signals found by JEPEGMIX2-P and MAGMA. 

Trait JEPEGMIX2-P without conditional 

analysis 

JEPEGMIX2-P conditional 

analysis 

MAGMA 

ADHD 1 1 - 

AUT 2 2 - 

ED 268 - - 

MDD 607 7 - 

SCZ 825 27 42 

PTSD  - - - 
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Fig 2. Top 50 pathways for psychiatric traits (without conditioning out significant SNP signals).  

Where red color denotes 𝒒 < 𝟎. 𝟎𝟎𝟏, orange 𝟎. 𝟎𝟎𝟏 < 𝒒 < 𝟎. 𝟎𝟏, green 𝟎. 𝟎𝟏 < 𝒒 < 𝟎. 𝟎𝟓, light blue 

𝟎. 𝟎𝟓 < 𝒒 < 𝟎. 𝟏𝟔 and blue 𝟎. 𝟏𝟔 < 𝒒 < 𝟏. 
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Fig 3. Top 51-100 for psychiatric traits (without conditioning out significant SNP signals). See Fig 

S2 for background. 
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Fig 4. Top 101-150 for psychiatric traits (without conditioning out significant SNP signals). See Fig 

S2 for background. 
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Fig 5. Top pathways for psychiatric traits when conditioning out significant signals. See Fig S2 for 

background. 
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5 Discussion 

The discovery of biological pathways implicated in diseases is the target for any genetic 

analysis. Despite the numerous methods available for pathway analyses, none of these 

methods relies solely on eQTLs to infer the association between expression of genes in 

pathway and trait, which is widely posited to be the critical causal mechanism. To 

overcome these two main factors, we propose JEPEGMIX2-P for testing the association 

between pathway expression and trait. Even for enriched GWAS and high LD pathways, 

JEPEGMIX2-P with the automatic weights fully controls the false positive rates at or below 

nominal levels. 

 

Narrowly assigning the ethnic weights to the subpopulations perceived as the “closest” to 

the ones in the studies is not advisable due to the possibility of great mismatch between 

the cohort and the “re-arranged” subpopulations from our reference panel, which can 

result in greatly increased false positive rates (see Methods).  Consequetly, users should 

use the automatic detection of cohort composition, regardless whether cohort allele 

frequencies are available or not.   

 

While the method is a welcome addition to our pathway tools, it still has major limitations 

when attempting to use it for assigning “causal” tissues/cell. First, due to the rather small 

sample sizes of existing GE experiments ~80% of genes do not have good GE prediction 

from eQTL SNPs. Second, there is a large difference between the sample sizes available 

for different tissues; generally, tissues that are more accessible have larger sample sizes.  
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However, we want to stress that, both at present and in the future, from all practical TWAS 

analyses the most important findings are the pathways and genes that are associated 

with the trait, not the tissue/single cell where they are (the most) significant. This argument 

is strongly supported by a very recent review in Nature Reviews Genetics  

(Hekselman & Yeger-Lotem, 2020); it shows that while mis-regulation of gene is causal 

in one/few tissues, these genes are mis-regulated in numerous more tissues. 

Consequently, even if we do not assay the gene/pathway in the causal cell types directly, 

we can find the mis-regulated genes by detecting signals in many other tissues and cell 

types. 

 

Applying JEPEGMIX2-P to psychiatric phenotypes, we discovered numerous pathways 

that were deemed significant for SCZ, ADHD, AUT, EAT and MDD. We mention that while 

the original SCZ paper did not report any genome-wide significant pathways and MAGMA 

reports only five (and, in our analysis 42, after inputting TWAS gene statistics), 

JEPEGMIX2 detected hundreds of them. Even more, these signals are not very likely to 

be false discoveries due to our method i) being competitive, i.e. adjusting both SNP and 

gene statistics for polygenic/gene enrichment background, ii) accurately estimating of 

ethnic weights and iii) excellent control of Type I error rates.  

 

Interpreting and validating all pathway signals require substantially more work. It is always 

“the last mile” that is the most laborious part of the translation process. However, 

JEPEGMIX2-P provides carefully vetted targets for wet-lab validation (see 

Supplementary Excel Spreadsheet). Nonetheless, our findings sometimes allow for some 
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reasonably informed inferences. For instance, in anorexia results, the most significant 

signal in a tissue correspond to GEISS_RESPONSE_TO_DSRNA_UP pathway 

(Supplementary Excel file), which is a pathway that is involved in response to virus 

infections. This finding suggests a possible avenue of treatment that is easily available 

and inexpensive to try: anorexia patients with active virus infections might benefit from 

being treated with suitable anti-viral medication. However, the responders to such 

treatment are likely to form only a minority of the anorexia patients, i.e. a fraction of those 

with active viral infections that are treatable by drugs. 
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