
JOURNAL NAME Vol. 00 no. 00 2018
Pages 1–2

ParGenes: a tool for massively parallel model selection
and phylogenetic tree inference on thousands of genes.
Benoit Morel 1,Alexey M. Kozlov 1,Alexandros Stamatakis 1,2

1Scientific Computing Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
2Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
Received on xx.xx.xxxx; revised on XXXXX; accepted on XXXXX

Associate Editor: xxxx xxx

ABSTRACT
Motivation: Coalescent- and reconciliation-based methods are
now widely used to infer species phylogenies from genomic data.
They typically use per-gene phylogenies as input, which requires
conducting multiple individual tree inferences on a large set of multiple
sequence alignments (MSAs). At present, no easy-to-use parallel
tool for this task exists. Ad hoc scripts for this purpose do not only
induce additional implementation overhead, but can also lead to poor
resource utilization and long times-to-solution. We present ParGenes,
a tool for simultaneously determining the best-fit model and inferring
maximum likelihood (ML) phylogenies on thousands of independent
MSAs using supercomputers.
Results: ParGenes executes common phylogenetic pipeline steps
such as model-testing, ML inference(s), bootstrapping, and
computation of branch support values via a single parallel program
invocation. We evaluated ParGenes by inferring > 20, 000

phylogenetic gene trees with bootstrap support values from Ensembl
Compara and VectorBase alignments in 28 hours on a cluster with
1024 nodes.
Availability: GNU GPL at https://github.com/BenoitMorel/
ParGenes.
Contact: Benoit.Morel@h-its.org
Supplementary information: Supplementary material is available at
Bioinformatics online.

1 INTRODUCTION
The availability of genomic data for an increasing number of
organisms allows to use thousands of genomic loci (henceforth:
genes) to delineate evolutionary relationships between species.
Species tree inference methods can be divided into supermatrix and
supertree approaches. The former infer the species tree directly
from a large concatenated MSA (supermatrix), whereas the latter
infer individual per-gene trees which are then reconciled into a
species phylogeny. Supermatrix methods are widely used due their
simplicity and availability of efficient implementations (Nguyen
et al., 2015; Kozlov et al., 2015). However, supertree inference
methods gain popularity as they can model events such as
incomplete lineage sorting (e.g., Mirarab and Warnow (2015)),
gene duplication and loss (e.g., Arvestad et al. (2003)), as well as
horizontal gene transfer (e.g., Linz et al. (2007)).

As input, supertree methods typically require a set of per-
gene trees (potentially also including bootstrap trees) that shall be

reconciled (e.g., (Boussau et al., 2012)) Inferring this set of per-gene
trees using maximum likelihood (ML) methods is computationally
intensive and requires the use of cluster computing resources.

While popular parallel tools for ML tree inference (e.g., RAxML
(Stamatakis, 2014), IQ-TREE (Nguyen et al., 2015)) can efficiently
process large supermatrices, no dedicated parallel tool exists for
inferring per-MSA trees on a large set of MSAs. In current studies
users deploy ad hoc, and thus potentially error-prone, scripts for
submitting each individual gene tree inference to a cluster as a single
job. As cluster systems typically limit the number of sequential jobs
a single user can execute in parallel, this can substantially increase
the time-to-solution.

To this end, we have developed and made available a novel tool
called ParGenes. It offers a simple command-line interface that
allows to select the best-fit model, infer ML trees, and compute
bootstrap support values on thousands of gene MSAs in a single
MPI run. ParGenes relies on ModelTest-NG (https://github.
com/ddarriba/modeltest) and RAxML-NG (Kozlov, 2018),
to perform model selection and tree inference, respectively.

2 FEATURES
ParGenes encapsulates all per-gene calculations into one single
MPI invocation. To improve load balance and decrease time-to-
solution, ParGenes schedules per-gene inferences and allocates a
variable number of cores to these inferences within its MPI runtime
environment. In the following, we describe some of the key features.

Simultaneous processing of MSAs. Unlike standard tools for ML
inference, ParGenes analyzes multiple MSAs. Thus, the user needs
to provide a directory containing all MSAs in PHYLIP or FASTA
format. One can either specify global or MSA-specific options for
both, RAxML-NG and ModelTest-NG. We pre-process each MSA,
to check that the file is valid, compress it, save it in a binary file, and
read its number of taxa and unique patterns.

Model selection. ParGenes employs ModelTest-NG, a re-designed,
substantially more efficient version of the widely used Modeltest
tool (Posada and Crandall, 1998), to select the best-fit model of
evolution for a given MSA. If model testing is enabled in ParGenes,
it will first execute ModelTest-NG on each MSA, and then use the
best-fit model for subsequent ML inferences.

c© anonymous copyright 2018. 1

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 23, 2018. ; https://doi.org/10.1101/373449doi: bioRxiv preprint 

https://doi.org/10.1101/373449
http://creativecommons.org/licenses/by-nd/4.0/


Benoit Morel, Alexey M. Kozlov, Alexandros Stamatakis

ML searches and bootstrapping. ParGenes schedules the per-MSA
inference jobs that are executed using RAxML-NG (Kozlov, 2018).
ParGenes allows to run multiple RAxML-NG tree searches per
MSA from independent starting trees, which is recommended to
better explore the tree search space. Then, it identifies the best-
scoring ML tree for each gene. To increase job granularity and
thereby improve load balance, each independent tree search is
separately scheduled. ParGenes can also conduct a user-specified
number of bootstrap (BS) inferences. It schedules independent
tree inferences of BS replicates (10 BS replicates per job), and
subsequently concatenates the resulting trees into one per-MSA BS
tree file. Then, it runs RAxML-NG again to compute support values.

Checkpointing. Since ParGenes runs are massively parallel and
compute-intensive, it offers a checkpointing feature that allows for
resuming ParGenes calculations (e.g., if program execution was
interrupted due to typical cluster run-time limitations of 24 or 48
hrs).

Estimating the optimal number of cores. Given the input MSAs,
ParGenes can calculate an a priori estimate of the number of overall
cores that will yield ’good’ parallel efficiency. This is important, as
it is difficult for users to set this value prior to running the analysis.

3 JOB SCHEDULING
ParGenes implements a scheduler that simultaneously executes
independent jobs with a varying number of cores per job. A job
is either a per-MSA RAxML-NG or ModelTest-NG run. We first
outline the parallelization scheme, and then the scheduling strategy.

Parallelization scheme. For the typical use case, the input data will
contain thousands of independent (per-gene) MSAs with hundreds
to a few thousand sites each. While standard tools like RAxML
parallelize likelihood computations over MSA sites, ParGenes
parallelizes the computations over the MSAs. Note that, the
parallel efficiency of the RAxML parallelization is limited by MSA
length (rule-of-thumb: 1,000 MSA sites per core). While most
of input MSAs are small, their size exhibits substantial variance
with respect to both, the number of taxa, and sites (Supp. Mat.,
Fig. 1). Therefore, inferring trees on large per-gene MSAs on a
single core has two drawbacks. First, the MSA size might exceed
the available main memory per core. Second, this can decrease
parallel efficiency as a large job might take longer to complete
than all other jobs (Supp. Mat., Fig. 2a). To this end, ParGenes
allocates several cores for the largest jobs (MSAs) by invoking the
respective multi-threaded RAxML-NG executable. For each MSA,
ParGenes first calls RAxML-NG in parsing mode to obtain the
recommended number of cores for optimal parallel efficiency via the
fine-grained parallelization of the likelihood function in RAxML-
NG (Stamatakis, 2015). The actual number of cores assigned to
a job is then rounded down to the next power of two to simplify
scheduling. We also assign twice the number of cores to the 5%
MSAs with the largest number of taxa (Supp. Mat., Sect. 2).

Scheduling strategy. ParGenes first sorts all jobs by (i) decreasing
number of required cores and (ii) decreasing overall number of
characters per MSA. As the number of cores per job (see Section 3)
is always a power of two, ParGenes can always keep all cores busy,
as long as there are jobs left to process. This works because the
MSAs requiring the largest number of cores are scheduled first.

4 RESULTS
We evaluated ParGenes on two large empirical datasets obtained
from Ensembl (Zerbino et al., 2018) and VectorBase (Emrich
et al., 2015). They comprise 8, 880 and 12, 000 gene families,
respectively. Executing the entire ParGenes pipeline on 1024 cores
(model testing, ML tree search from 20 starting trees, bootstrapping
analysis with 100 replicates) took 25 hours for the Ensembl dataset,
and 3 hours for the VectorBase dataset. The VectorBase dataset
required less time as its MSAs are smaller. In the supplement
material, we show scalability results for different core counts.

5 CONCLUSIONS AND FUTURE WORK
We have presented an efficient parallel tool for comprehensive
phylogenetic inference of gene trees on thousands of MSAs via a
single MPI invocation. Apart from being flexible with respect to the
inference options, ParGenes also yields ’good’ parallel efficiency
via appropriate scheduling mechanisms. We expect that ParGenes
will contribute to increasing throughput times and productivity in
gene-tree/species-tree reconciliation studies. Future directions entail
the improvement of fault-tolerance mechanisms (e.g., core failures
or single jobs failing for other reasons) and more accurate RAxML-
NG runtime prediction approaches (e.g., machine learning).

ACKNOWLEDGEMENT
This work was financially supported by the Klaus Tschira
Foundation and by DFG grant STA 860/4-2. We are grateful to B.
Bousseau and E. Tannier for providing the datasets.

REFERENCES
Arvestad, L. et al. (2003). Bayesian gene/species tree reconciliation and orthology

analysis using MCMC. Bioinformatics, 19(SUPPL. 1), 1–10.
Boussau, B. et al. (2012). Genome-scale coestimation of species and gene trees. Life

Sciences, pages 1–27.
Emrich, S. J. et al. (2015). VectorBase: an updated bioinformatics resource for

invertebrate vectors and other organisms related with human diseases. 43(December
2014), 707–713.

Kozlov, A. M., Aberer, A. J., and Stamatakis, A. (2015). Examl version 3: a tool for
phylogenomic analyses on supercomputers. Bioinformatics, 31(15), 2577–2579.

Kozlov, O. (2018). Models, Optimizations, and Tools for Large-Scale Phylogenetic
Inference, Handling Sequence Uncertainty, and Taxonomic Validation.

Linz, S. et al. (2007). A likelihood framework to measure horizontal gene transfer.
Molecular Biology and Evolution, 24(6), 1312–1319.

Mirarab, S. and Warnow, T. (2015). Astral-ii: coalescent-based species tree estimation
with many hundreds of taxa and thousands of genes. Bioinformatics, 31(12), i44–
i52.

Nguyen, L.-T. et al. (2015). Iq-tree: A fast and effective stochastic algorithm for
estimating maximum-likelihood phylogenies. Molecular Biology and Evolution,
32(1), 268–274.

Posada, D. and Crandall, K. A. (1998). MODELTEST: Testing the model of DNA
substitution. Bioinformatics, 14(9), 817–818.

Stamatakis, A. (2014). Raxml version 8: a tool for phylogenetic analysis and post-
analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.

Stamatakis, A. (2015). Using RAxML to Infer Phylogenies. Current protocols in
bioinformatics, 51, 6.14.1–6.14.14.

Zerbino, D. R. et al. (2018). Ensembl 2018. NAR, 46(D1), D754–D761.

2

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 23, 2018. ; https://doi.org/10.1101/373449doi: bioRxiv preprint 

https://doi.org/10.1101/373449
http://creativecommons.org/licenses/by-nd/4.0/

