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Abstract

Linear mixed effect models are powerful tools used to account for population structure
in genome-wide association studies (GWASs) and estimate the genetic architecture of
complex traits. However, fully-specified models are computationally demanding and
common simplifications often lead to reduced power or biased inference. We describe
Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for
repeatedly fitting complex linear models that account for multiple sources of
heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity,
and genotype-environment interactions. Grid-LMM can compute approximate (yet highly
accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide
scale in a fraction of the time compared to existing general-purpose methods. We apply
Grid-LMM to two types of quantitative genetic analyses. The first is focused on
accounting for spatial variability and non-additive genetic variance while scanning for
QTL; and the second aims to identify gene expression traits affected by non-additive
genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new
discoveries.

Author summary

The goal of quantitative genetics is to characterize the relationship between genetic
variation and variation in quantitative traits such as height, productivity, or disease
susceptibility. A statistical method known as the linear mixed effect model has been
critical to the development of quantitative genetics. First applied to animal breeding,
this model now forms the basis of a wide-range of modern genomic analyses including
genome-wide associations, polygenic modeling, and genomic prediction. The same
model is also widely used in ecology, evolutionary genetics, social sciences, and many
other fields. Mixed models are frequently multi-faceted, which is necessary for
accurately modeling data that is generated from complex experimental designs.
However, most genomic applications use only the simplest form of linear mixed methods
because the computational demands for model fitting can be too great. We develop a
flexible approach for fitting linear mixed models to genome scale data that greatly
reduces their computational burden and provides flexibility for users to choose the best
statistical paradigm for their data analysis. We demonstrate improved accuracy for
genetic association tests, increased power to discover causal genetic variants, and the
ability to provide accurate summaries of model uncertainty using both simulated and
real data examples.
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Introduction 1

Population stratification, genetic relatedness, ascertainment, and other sources of 2

heterogeneity lead to spurious signals and reduced power in genetic association 3

studies [1–5]. When not properly taken into account, non-additive genetic effects and 4

environmental variation can also bias estimates of heritability, polygenic adaptation, 5

and genetic values in breeding programs [5–8]. Both issues are caused by departures 6

from a key assumption underlying linear models that observations are independent. 7

Non-independent samples lead to a form of pseudo-replication, effectively reducing the 8

true sample size. Linear mixed effect models (LMMs) are widely used to account for 9

non-independent samples in quantitative genetics [9]. The flexibility and interpretability 10

of LMMs make them a dominant statistical tool in much of biological research [9–18]. 11

Random effect terms are used in LMMs to account for specific correlations among 12

observations. Fitting an LMM requires estimating the importance of each random effect, 13

called its variance component. General-purpose tools for this are too slow to be 14

practical for genome-scale datasets with thousands of observations and millions of 15

genetic markers [19]. This lack of scalability is caused primarily by two factors: (i) 16

closed-form solutions of maximum-likelihood (ML or REML) or posterior estimates of 17

the variance components are not available and numerical optimization routines require 18

repeatedly evaluating the likelihood function many times, and (ii) each evaluation of the 19

likelihood requires inverting the covariance matrix of random effects, an operation that 20

scales cubically with the number of observations. Repeating this whole process millions 21

of times quickly becomes infeasible. 22

To this end, several specialized approaches have been developed to improve the speed 23

of LMMs, including the use of sparse matrix operations [20, 21], spectral decomposition 24

of the random effect covariance matrix [22–26], and Monte Carlo REML [27]. These 25

algorithms are particularly useful when the same random effect structure is used many 26

times. For example, in genome-wide association studies (GWAS), each marker is tested 27

with the same LMM. Similarly, in population-level transcriptomics, eQTLs or variance 28

components are estimated for each of tens-of-thousands of genes expression traits. Fast 29

and exact algorithms for fitting LMMs are limited to the case of only a single (full-rank) 30

random effect term, besides the residuals [22–24]. Recently, approximate learning 31

algorithms have been developed for the scalable extension to multiple random 32

effects [28, 29], but few of these ensure guarantees in terms of estimation accuracy. One 33

strategy applicable to studies with multiple random effects is to estimate the variance 34

components only once, in a model without additional marker effects, and then test each 35

marker either using a score test [30] (which does not produce an effect size estimate), or 36

with a conditional F-test assuming the variance component estimates are fixed [31–34]. 37

Given the “known” variance components, closed-form solutions of all other parameters 38

of an LMM can be found using a rotated version of the simple linear model. 39

Unfortunately, both approximations suffer from reduced power when marker effects are 40

large, intractable posterior inference in a Bayesian analysis, and the inability to be 41

applied to parallel analyses over many traits (like gene expression). Table 1 summarizes 42

these different methods, details their respective computational complexities, and 43

provides relevant references. 44

Grid-LMM takes a different approach to fitting LMMs: rather than directly 45

optimizing the variance components separately for each test, we define a grid spanning 46

all valid values of the variance components and fit simple linear models at each grid 47

location. Each evaluation involves a single Cholesky decomposition of the random effect 48

covariance matrix, which is then reused to calculate closed-form ML solutions or 49

Bayesian posterior summaries (under a specific conjugate prior; see S1 Supplementary 50

Methods) for all separate tests. This results in dramatic time-savings in typical GWAS 51

settings (see S1 Fig). After repeating these calculations across the whole grid, we select 52
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Table 1. Performance and limitations of reference models for linear mixed model GWAS. The time
complexity of each algorithm is approximate, assuming a model with only a single marker effect and no other fixed effects.
Here, l is used to index full-rank random effects; σ2

l are variance component parameters; n is the number of observations; and
p is number of markers to test. Denote t1 . . . t7 to represent the number of iterations needed for convergence, which is
expected to vary among methods (particularly for the iterations of grid search in Grid-LMM-fast), and may vary across
markers. The terms g and gi are grid sizes for the Grid-LMM methods (i.e. the number of grid vertices that must be
evaluated). Lastly, pi is the number of markers that need to be tested in iteration of i ∈ {1 . . . t7} of the Grid-LMM-fast

method. The rate limiting terms in common GWAS applications (where p� n) are in bold. “Method Type” describes the
estimation of σ2

l . “Exact” means effectively exact, up to machine precision and subject to possible convergence of algorithms
to local maxima. “Null” means estimation of parameters under the null model with no marker effects. References list
additional methods that are approximately equivalent to the given model classes.

Tool Max σ2
l Method Type Approx. Time Complexity References

BOLT-LMM 1 exact O(t1pn) [27]
GEMMA 1 exact O(n3 + pn2 + pt2n) [23,24]
EMMAX 1 null O(n3 + t3n+ pn2) [31,32]

LDAK >1 exact O(pt4n
3) [7, 21,35,36]

pylmm >1 null O(t5n
3 + pn2) [7, 34,36,37]

Grid-LMM ∼ 1-8 grid O(g(n3 + pn2)) Present Work

Grid-LMM-fast ∼ 1-8 grid-sampling O(t6n
3 + pn2 +

∑t7
i=1 gi(n

3 + pin
2)) Present Work

the highest ML (or REML) score for each marker to compute approximate likelihood 53

ratio and Wald tests [32,38], or analogously derive posterior distributions and Bayes 54

factors by summing appropriate statistics across the grid. The Grid-LMM approach 55

relies on a re-parameterization of the typical LMM framework from individual variance 56

components σ2
l to variance component proportions h2l = σ2

l /σ
2, where σ2 without the 57

subscript denotes the total sum of all variance components (including the residual). 58

Since the variance components must be non-negative, their proportions are restricted to 59

the unit interval [0, 1] and sum to 1, forming a simplex. Therefore, a finite grid can span 60

all valid parameter values. While the size of the grid increases rapidly with the number 61

of random effects, for a small number of random effects (∼1-8) and a moderate grid 62

resolution, the size of the grid remains tiny relative to the number of models in a typical 63

GWAS. As we show below, highly accurate test statistics are achieved even with a 64

coarse grid in most reasonable situations, and further improvements to efficiency are 65

possible by using heuristics to adaptively sample the grid or reduce the number of grid 66

locations computed for the majority of tests. This strategy of conditioning on variance 67

components over a grid and then combining solutions can be applied to many other 68

tools in quantitative genetics including set tests for rare variants [39, 40], whole-genome 69

regression models such as LASSO and elastic net [41,42], and QTL mapping in 70

controlled crosses [43]. 71

In the following sections, we demonstrate the accuracy and advantages of the 72

Grid-LMM approach using a simulation study and two real genome-wide quantitative 73

genetics examples. The first is for GWAS, where tens-to-hundreds of thousands of 74

markers are individually tested for associations with a single phenotype. The second is 75

for gene expression, where thousands of traits are each tested for non-additive genetic 76

variance. In both cases, the same random effect structure is used for each model. While 77

approximate, the test-statistics and posterior quantities calculated by Grid-LMM are 78

accurate and improve power relative to other approximation methods — all while 79

maintaining dramatically reduced computational burdens than the direct approach. Full 80

derivations of the model and useful heuristics are described in detail in the Methods. 81
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Results 82

As a first case-study, we used Grid-LMM to perform two types of genome-wide 83

association studies (GWAS) that benefit from modeling multiple random effects: (1) the 84

study of gene-environment interactions, and (2) detecting associations for phenotypes 85

driven by non-additive genetic variation or spatial variation. In both cases, there are 86

multiple sources of covariation among observations that can inflate test statistics and 87

bias estimates of heritability if not appropriately accounted for by using mixed models. 88

As an example of a GWAS with gene-environment interactions, we analyzed data on 89

flowering times for Arabidopsis thaliana [44]. First, we benchmarked results from 90

standard LMM methodologies to confirm that Grid-LMM association tests are accurate. 91

We ran Grid-LMM on both a fine-grained grid with a small step size of 0.01 h2-units, 92

and a larger step size of 0.1 h2-units, to test for associations between 216,130 single 93

nucleotide polymorphisms (SNPs) and flowering times of 194 accessions measured at 94

10C (i.e. in a constant environment). We compared the Wald-test p-values computed by 95

both Grid-LMM models to p-values computed using the exact method GEMMA [24], and 96

the approximate method EMMAX [32]. Each method was applied as an LMM with only 97

the additive relationship matrix as its single random effect. Grid-LMM p-values 98

computed using the finer grid size (i.e. 0.01 h2-units) were almost identical to those of 99

GEMMA, and even p-values computed with the larger step size (i.e. 0.1 h2-units) were 100

more accurate than those resulting from EMMAX. There were particularly noticeable 101

differences in performance for markers with larger scores, which were strongly 102

underestimated by EMMAX since its approximations of h2 are made strictly under the null 103

model (Fig 1a). This pattern held true across all of the available 107 Arabidopsis 104

thaliana phenotypes (see S2 Fig). However, despite these results, we do not advocate 105

Grid-LMM in this setting; GEMMA (and similar methods) provides an exact test and is 106

more computationally efficient. The real advantage of Grid-LMM is its ability to 107

effectively model two (or more) random effects. 108

To demonstrate this advantage, we tested for gene-environment (G×E) interaction 109

effects on flowering time. Here, we combined flowering time data from two conditions: 110

constant 10C (as described above) and in the field. We limited our analysis to the 175 111

accessions that were grown under both conditions, yielding a total of n = 350 112

observations. When observations come from different environments, we might expect 113

phenotypes to cluster for at least two reasons: (i) the sharing of alleles with constant 114

effects across environments due to relatedness and population structure, commonly 115

modeled with the additive genomic relationship matrix (A) as a random effect, and (ii) 116

the sharing of alleles with effects that differ among environments (or are specific to one 117

environment). Previous work has shown that, when testing for G×E effects with GWAS, 118

modeling the second source of covariance by using a second random effect can prevent 119

spurious signals and increase power [34]. The same result is replicated in this setting 120

using simulations (see S3 Fig and S4 Fig). 121

Here, we calculated G×E p-values for each genetic marker using Grid-LMM (grid step 122

size = 0.01 h2 units) on the full dataset using both the A and the G×E relationship 123

matrices as two random effects. These are compared to p-values from (i) an LMM 124

which ignores the G×E covariance and only considers genetic similarity, and (ii) a 125

model similar to pylmm [34] which does consider both random effects but estimates 126

variances components from the null model (this is referred to as null-LMM-G×E below). 127

For each model, we included an additional random effect to account for the repetition of 128

accessions which could induce additional covariance among observations. In this dataset, 129

a simpler approach to testing for G×E was also available: test for associations between 130

markers and the plasticity (i.e. the difference in flowering time between the field and 131

10C) of each accession, which requires only a single random effect and can be fit with 132

GEMMA. This simple approach is only possible because every genotype was measured in 133
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both environments. Nonetheless, it is expected to produce identical tests to the full 134

three-random-effect model and, therefore, serves as a viable benchmark for the 135

Grid-LMM results. We used the plasticity GWAS approach as a baseline to compare the 136

three models that use the raw data directly (Fig 1b). As expected, ignoring the G×E 137

covariance leads to greatly inflated tests for the majority of markers. Grid-LMM 138

replicated GEMMA’s plasticity p-values almost exactly when run with three random 139

effects; alternatively, a portion of the null-LMM-G×E’s tests were deflated, implying 140

lower power. The full analysis using Grid-LMM with three random effects took 26 141

minutes. Fitting the same model for all 216,130 markers directly using an exact method 142

(e.g. LDAK [7]) would take approximately 6 hours (about 14× longer). Note that LDAK is 143

not designed for re-estimating variance components for each SNP in 144

multiple-random-effect models and so, to conduct time comparisons, we simply ran the 145

program multiple times. This requires LDAK to re-load the covariance matrices for each 146

marker. However, by controlling the maximum number of iterations in the LDAK 147

optimization engine, we estimate that a maximum ≈ 33% of the running time for these 148

models is due to data import, with the remainder being due to the numerical 149

calculations. 150

Fig 1. Comparisons of GWAS results for Arabidopsis flowering time. (a)
Results for days-to-flower (DTF) at 10C. Compared are EMMAX and Grid-LMM with grid
sizes 0.1 and 0.01, respectively. The exact method GEMMA is treated as a baseline. Each
method was applied to the same LMM with only the additive relationship matrix as a
random effect, and p-values were computed using the Wald test. (b) GWAS for the
gene-environment (G×E) interactions effects on DTF between the constant 10C and
field conditions. GEMMA results are given for the plasticity of each accession (i.e. the
difference DTFField - DTF10C), and fit with a single random effect of the additive
relationship matrix. The other three methods consider the full data with two
observations per accession. Namely, Grid-LMM-A fit a “standard” GWAS with a grid
step size 0.01, but with two random effects — the additive relationship matrix and an
iid line effect. The other two models, null-LMM-G×E and Grid-LMM-G×E, fit three
random effects — the additive relationship matrix, an iid line effect, and a
G×E-additive relationship matrix representing the background covariation in
gene-environment interactions among accessions.

Even when all individuals are measured in the same environment, the typical 151

additive relationship matrix may not account for all sources of covariation. In particular, 152

spatial variation and the sharing of non-additive alleles may also induce covariance, lead 153

to reduced power, and/or result in inflated tests in GWAS [45]. As an illustrative 154

example, we tested for genetic association between 10,075 bi-allelic autosomal markers 155

and body mass among 1,814 heterogenous stock mice from the Wellcome Trust Centre 156

January 13, 2019 5/26

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 14, 2019. ; https://doi.org/10.1101/373902doi: bioRxiv preprint 

https://doi.org/10.1101/373902
http://creativecommons.org/licenses/by/4.0/


for Human Genetics (WTCHG) [46]. We first computed additive and pairwise-epistatic 157

relationship matrices, as well as a spatial-environmental covariance matrix based on the 158

523 different cages used in the experiment. Next, we compared p-values derived from an 159

LMM considering only the additive relationship matrix (as in a typical GWAS) to those 160

calculated by Grid-LMM using all three relationship matrices (Fig 2a-d). Using the 161

three-random effect model, we identified associations on two chromosomes (numbers 4 162

and 11) that were not apparent when just using the additive relationship matrix as a 163

random effect. Both loci have been previously identified as size-associated QTL (see 164

Table S1 Table) [47,48]. Genomic control values for the two models were both close to 165

one (A-only = 0.975, A+E+Cage = 0.974) (Fig 2b,d). The three-random effect model 166

took 8.5 minutes to fit using Grid-LMM, while a full analysis on all 10,346 markers 167

would have taken approximately 10 hours with LDAK (more than 100× longer, of which 168

we estimate a maximum of ≈ 10% is spent on reading in data). Extrapolating to a 169

consortium sized genome-wide analysis with 1 million markers would take ≈ 14 hours 170

using Grid-LMM, as opposed to 40 days using LDAK. We see larger performance gains in 171

the mouse dataset compared to the Arabidopsis dataset because of the larger sample 172

size (n =1,814 vs. 350). LDAK (and other exact general-purpose REML methods) is 173

dominated by matrix inversions which scale with n3, while Grid-LMM is dominated by 174

matrix-vector multiplications which scale with n2 (again see Table 1). The performance 175

advantage of Grid-LMM will increase even more for datasets with more individuals. 176
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Fig 2. GWAS results for the body weight trait of the Wellcome Trust
heterogenous stock mice. Grid-LMM was run using a grid size of 0.01 h2-units for
each model. (a-b) Wald test p-values from a model with only the additive relationship
matrix (A) as a random effect, organized by chromosome and compared to a uniform
distribution via a QQ-plot. (c-d) Wald test p-values from a model with three random
effects: the additive, epistatic (E), and spatial (Cage) relationship matrices. (e)
Approximate Bayes factors calculated from the three random effect model, assuming a
standard normal N(0, 1) prior for the marker effects and a uniform prior on the grid of
variance component proportions.

To demonstrate the flexibility of Grid-LMM for GWAS, we also ran an analysis on 177

the mice body weight trait using Bayesian inference and calculated Bayes Factors by 178

comparing the models for each marker to the null model assuming no genetic effects. 179

Here, we used a uniform prior over the grid of variance component proportions and 180

assumed a standard normal prior for the marker effect sizes. In this setting, the Bayes 181

Factors were highly correlated with the frequentist p-values — they also highlight the 182
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same associations on chromosomes 4 and 11 (Fig 2e). In general, Bayes Factors provide 183

additional flexibility for incorporating prior information on individual markers or even 184

combining results among multiple studies [49,50]. The full Bayesian analysis for 185

Grid-LMM took 15.5 minutes, just 7 minutes longer than the frequentist analysis, 186

making it practical for genome-wide studies. 187

As a third case-study, we used Grid-LMM to estimate the additive and 188

pairwise-epistatic variance components for 20,178 gene expression traits measured on 189

681 Arabidopsis accessions from the 1001 Genomes Project [51]. Using a grid-size of 190

0.05 h2 units, we estimated the magnitude of each variance component by REML 191

(Fig 3a). The whole analysis took ≈ 6 minutes. Finding REML solutions for the same 192

two-random effect model, on each of the traits separately, using the exact method LDAK 193

took ≈ 90 minutes (of which ≈ 20% was due to data import). Grid-LMM variance 194

component estimates replicated those of LDAK accurately, but with less precision due to 195

the coarse grid size (see S5 Fig). Notably, for many genes, the proportion of variance in 196

expression attributed to additive variance dropped considerably when the epistatic 197

variance was also modeled (see S6 Fig). Therefore, including multiple random effects 198

can have significant impact on downstream conclusions for many traits. 199

Even with this relatively large sample size for a population-level gene expression 200

dataset, considerable uncertainty remains in the estimated variance components. The 201

point-estimates calculated by REML do not capture this uncertainty and estimating 202

confidence intervals for the variance components using REML is difficult. The full 203

Grid-LMM approach can be used to calculate posterior distributions for each variance 204

component with little additional cost — note that MCMC sampling is not needed 205

because a reasonably-sized grid can span all valid values of each variance component 206

proportion (see Methods). Using this approach, we identify 8,585 genes with a posterior 207

probability of non-zero epistatic variance greater than 90%, and 28 more genes with a 208

posterior mean epistatic variance component greater than 80%. For two example genes, 209

we show that the fitted posterior distributions are similar to those estimated via MCMC 210

using rstan [52, 53] (see Fig 3b-c). The rstan analyses took ≈ 20 hours per gene to 211

generate an effective sample size of ≈ 200− 400 for the variance component parameters. 212

Therefore, posterior inference by MCMC for all 20,178 genes would take about 50 years 213

of computational time. 214

Now that we have demonstrated in real data examples that Grid-LMM is accurate, 215

fast, and expands the range of genetic analyses that are computationally feasible, we 216

turn to the question of scalability. Specifically, we assess whether Grid-LMM is 217

sufficiently accurate for the much larger sample sizes commonly used in modern human 218

GWAS’s. There are no conceptual hurdles to implementing Grid-LMM for studies with 219

tens-to-hundreds of thousands of samples and the improvement in time, relative to a 220

direct mixed modeling approach, should increase dramatically (see S1 Figa). 221

Unfortunately, total computational time and memory requirements will grow 222

significantly as well (see S1 Figb). For example, storing a single Cholesky decomposition 223

of the random effect covariance matrix for 100,000 samples would require approximately 224

80 Gb RAM and would take approximately two days to compute. This contrasts with 225

BOLT-LMM which can run a GWAS analysis of this size in less than an hour, while using 226

less than 10 Gb RAM [27]. However, BOLT-LMM is restricted to a single random effect 227

and uses a “null-LMM” approach for estimating variance component parameters as part 228

of a two-step analysis. 229

To test if Grid-LMM’s accuracy changes with larger sample sizes, we artificially 230

increased and decreased the sample size of the WTCHG mouse dataset by a factor of 5, 231

simulated phenotypic data based on a randomly selected marker and the same three 232

random effects used in the WTCHG analysis above. We then compared the marker’s 233

p-values calculated with the exact mixed model (Exact-LMM) to those calculated using 234
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Fig 3. Variance component estimates for Arabidopsis gene exprssion traits.
Grid-LMM was fit using a grid size of 0.05 h2-units for each of 20,178 genes. (a) REML
estimates of the variance components proportions for the additive (KA) and
pairwise-epistatic (KE) genetic variances. Estimates are jittered for clarity. (b-c)
Posterior distributions of variance component proportions for two example genes,
highlighted with red dots in (a). The area of each point is proportional to the posterior
mass at that combination of the two variance components. A uniform prior over the
grid was assumed, and the intercept was assigned a Gaussian prior with infinite
variance. The grey contours show the posterior density as estimated by rstan using
half-Student-t(3,0,10) priors on each standard deviation parameter. In each plot, the
red dot shows the REML estimates. The red cross is the posterior mean as estimated by
Grid-LMM. The blue cross shows the posterior mean as estimated by rstan.

Grid-LMM with two resolutions: 0.1 and 0.01 h2 units. As a baseline, we also calculated 235

p-values with the two-step method that estimates variance components under the null 236

(null-LMM). See Methods for details on the simulations. For the Grid-LMM tests, we 237

assumed that the nearest grid vertices were exactly centered around the variance 238

component estimate from the exact mixed model. This represented a “worse-case 239

scenario” for Grid-LMM. 240

As a function of the variance contributed by the tested marker, the mean relative 241

difference in p-values among the four methods was approximately constant across the 242

three sample sizes (Fig 4a). There were large differences when the marker effect was 243

large, diminishing to no difference for small effects. Grid-LMM(0.01) was barely 244

distinguishable from the Exact-LMM across all sample sizes and marker effect sizes. 245

Mean (-log10) p-values from Grid-LMM(0.1) and null-LMM were similar to Exact-LMM 246

for small effect sizes, but Grid-LMM(0.1) was closer to Exact-LMM for large effect sizes. 247

This is expected because most randomly selected markers are correlated with the 248

dominant eigenvectors of the additive relationship matrix; hence, large effect markers 249

will affect the variance attributed to the random effect, but small effect markers will not. 250

While the relative change in (-log10) p-values is approximately constant, the range of 251

effect sizes where the approximate methods have a negative impact on power changes 252

across sample sizes. Assuming a genome-wide significance threshold of -log10(p) = 8 in 253

this dataset, even the null-LMM method will consistently declare any marker with an 254

effect size >≈ 0.02% of the total variance as significant for sample sizes ≈ 10, 000. If we 255

focus specifically on the range of effect sizes where the difference among methods may 256

have an impact on power, the relative performance of the approximate methods do 257

change. At the smallest sample size (i.e. n = 362), mean -log10(p)-values of 258

Grid-LMM(0.1) were closer to those of Exact-LMM than those of null-LMM. At the 259

medium and large sample sizes (n = 1814 and n = 9070), the mean -log10(p)-values 260

from null-LMM were more accurate than those from Grid-LMM(0.1). However, the 261

results of the finer Grid-LMM(0.01) model remained nearly indistinguishable from 262
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Fig 4. Grid-LMM is accurate but less important at larger sample sizes. We
used a simulation study to assess the accuracy of the GridLMM approximations for
GWAS at larger sample sizes. Data were simulated for three sample sizes (n = 362,
1,814 and 9,070), based on the WTCHG mice genotype data. Each simulation was
parameterized such that a single randomly chosen marker explained a defined
percentage of the total variance (i.e. 0 - 0.15%), while the remainder of variance was
simulated based on the additive, epistatic, and cage variance components estimated
from the body weight trait. Each simulation was repeated 300 times with different
causal markers. The -log10 (p)-values were calculated with 4 methods: (i) Exact-LMM,
an exact LMM implementation; (ii) null-LMM, a two-step method with the variance
component percentage estimated under the null model; and (iii)-(iv) Grid-LMM with
grid sizes of 0.1 and 0.01 h2 units, respectively. For the Grid-LMM tests, we assumed
that the grid was exactly centered around the variance component estimate from the
exact mixed model — a “worse-case scenario” for Grid-LMM. (a) curves were fit using
the geom smooth function from the ggplot2 package [54]. The horizontal line is at
-log10(p) = 8 and represents a typical genome-wide significance level. (b) The same
curves as in the previous row, but zoomed in to the approximate range of marker effects
with power � 1 for each sample size. Note that the y-axes are different for each sample
size in (a), and the x-axes are different for each sample size in (b). The Exact-LMM

curve is hidden by the Grid-LMM(0.01) curve in each panel. (c) Estimated running
times for a GWAS using each method, plotted as a function of the number of markers.
The Exact-LMM time is computed based on running LDAK separately for each marker.
The time for null-LMM includes a single run of LDAK under the null model, and also
incorporates the separate tests for each marker conditioning on “known” variance
components. The time for Grid-LMM(0.1) includes tests for each marker at each of 220
grid vertices constituting a full grid over three variance components. Lastly,
Grid-LMM(0.01) uses the “fast” heuristic, assuming only one marker has a non-zero
effect with an effect size approximately at the power threshold given the sample size
(≈ 0.1 for n = 362, ≈ 0.035 for n = 1814, ≈ 0.006 for n = 9070). Lines depict the mean
run times based on 10 replications for each calculation.
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those of Exact-LMM, irregardless of the number of samples. Note that when using the 263

Grid-LMM-fast heuristic, Grid-LMM will never perform worse than null-LMM because 264

we peg the grid to the variance component estimate under the null model. 265

Fig 4c compares the estimated running times of GWAS analyses with different 266

numbers of markers for each of the three sample sizes. With > 100 markers, results for 267

the Grid-LMM methods were intermediate between Exact-LMM and null-LMM, with the 268

advantage over Exact-LMM increasing for large sample sizes. At all sample sizes, 269

Grid-LMM(0.1) is linearly slower than null-LMM since it effectively requires running 270

null-LMM at each grid vertex. At small and intermediate sample sizes this speed 271

penalty is justified by increased power. At large sample sizes null-LMM is just as 272

accurate for effect sizes relevant to power, so Grid-LMM is not needed (Fig 4b). 273

Discussion 274

Grid-LMM addresses a central obstacle to the practical use of linear mixed models: the 275

computational time needed to find optimal solutions for variance components. Our key 276

observation is that for many common quantitative genetics analyses, optimizing 277

variance component parameters to high precision is not necessary. When sample sizes 278

are large, statistical power will be sufficient to detect associations even under the 279

approximate null-LMM methods such as EMMAX [32], pylmm [34], or BOLT-LMM [27]. 280

However, when sample sizes are more limited, as in the examples we have shown here, 281

the closer approximations achieved by Grid-LMM can increase power without greatly 282

increasing computational requirements. Such sample sizes are common in model 283

systems genetics, evolutionary biology, agricultural biology, as well as in eQTL studies. 284

From a Bayesian perspective, the posterior distribution of variance components tends to 285

be broad even with large sample sizes, and coarse approximations can be sufficient given 286

the uncertainty in their true values [55]. In GWAS applications, magnitudes of variance 287

components are of less interest than the accuracy of test statistics for the (fixed) SNP 288

effects, and we show that these are sufficiently accurate even with approximate variance 289

component proportions. 290

The advantage to relaxing the need for perfect variance component solutions is a 291

vast reduction in both computational time and algorithmic complexity. This reduces the 292

time required for a typical GWAS sized dataset with two-or-more random effects from 293

days to hours, and provides a framework for applying LMMs to even more powerful 294

statistical tools [56–58]. We optimize variance component estimation with a grid search, 295

the simplest type of optimization algorithms. At each grid vertex, after conditioning on 296

(relative) variance component values, the LMM simplifies to a simple linear model; 297

therefore, general purpose solutions to normal linear models are available. This means 298

that the simple LMMs we explored in this paper can easily be generalized to more 299

complex methods used in other GWAS-type applications that currently cannot easily be 300

extended to experiments with heterogeneous samples (e.g. set-tests and multi-marker 301

regressions). 302

We demonstrated Grid-LMM using three examples that are broadly representative of 303

many experimental settings in quantitative genetics. The first was a study of 304

gene-environment interactions, while the second and third focused on the partitioning of 305

genetic variance among additive and non-additive components. Recent studies have 306

shown how neglecting gene-environment covariance when estimating heritability [8] or 307

testing genetic associations [34] can lead to biased estimates. There is little reason to 308

expect these results to be limited to controlled environmental settings, as we have 309

studied here. Previous work has found that incorporating spatial covariance through a 310

Gaussian radial basis function improved estimates of trait heritability within a sample 311

of individuals from Uganda [8]. Spatial variability also exists in agricultural field trials, 312
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and two-step approaches are frequently used where spatial variation is removed first and 313

then genetic associations are tested on the residuals. This two-step procedure may be 314

underpowered when true effect sizes are large. Similarly, epistatic and other non-linear 315

genetic variation are known to be large for many traits [59–61] and accounting for this 316

variation may improve our ability to detect both the main effects of markers (as we 317

demonstrated above), as well as possibly interacting loci [17]. 318

The slight differences in posterior means between the Grid-LMM and MCMC-based 319

posterior estimates in Fig 3b-c are due to differences in the priors. MCMC-based LMM 320

implementations classically use inverse-Gamma priors for variance components because 321

of conjugacy [20]. However, others have recommended uniform or half-t-family priors for 322

the standard-deviation parameters of hierarchical models [62], which are easily 323

implemented in Stan [52]. We used a half-Student-t(3,0,10) distribution for each 324

variance component in our rstan model to produce Fig 3b-c. This is easy to 325

approximate in Grid-LMM; relative prior weights can simply be applied to each 326

grid-vertex, resulting in much closer agreement of posterior summaries between the two 327

methods (see S7 Fig). As we show in S8 Fig, supposedly “uniformative” versions of 328

both the inverse-Gamma and half-Cauchy-type priors are actually highly informative for 329

variance component proportions. In our experience, it is more natural to elicit priors on 330

variance component proportions than variance components themselves, particularly 331

when the phenotypes are on very different scales, because these can be interpreted as 332

the relative importance of the various factors. This is an additional advantage of the 333

LMM parameterization that we utilize in Grid-LMM. 334

The Grid-LMM approach does have limitations. First, the size of the grid spanning 335

the variance components increases nearly exponentially with the number of random 336

effects. Since each grid vertex requires a separate Cholesky decomposition of the 337

observation-level covariance matrix, a grid search quickly becomes prohibitively 338

expensive with more than ∼6-8 variance components. This is a general problem for 339

mixed model algorithms, and it may be possible to adapt efficient derivative-based 340

algorithms to the grid space. Our fast-heuristic search method converges on the correct 341

answer in most cases we have examined; however, likelihood surfaces of linear mixed 342

models are not always convex and this algorithm may converge onto a local maximum 343

in such cases. We note that most general-purpose algorithms for LMMs with multiple 344

random effects are also sensitive to this issue. Second, for REML or posterior inference 345

of variance component proportions, Grid-LMM estimates are accurate but not precise; 346

specifically, they are limited by the resolution of the grid. We show that this has little 347

impact on hypothesis testing for fixed effects, for example in GWAS settings. However, 348

boundaries of posterior intervals in particular may not be reliable. Nevertheless, 349

summaries like the posterior mean or estimates of the joint posterior density are highly 350

accurate (e.g. Fig 3). Third, the Grid-LMM approach is limited to Gaussian linear mixed 351

models. Generalized linear mixed model algorithms rely on iteratively re-weighting the 352

observations, a function that changes the covariance matrix in a way that cannot be 353

discretized. Finally, we have not explored LMMs with correlated random effects, 354

although these are commonly used in quantitative genetics. Since correlation 355

parameters are restricted to the interval (−1, 1), discretizing correlations in parallel 356

with the variance component proportions may be feasible and is an avenue that is worth 357

future study. 358
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Methods 359

Linear Mixed Models 360

We consider the following parameterization of the standard linear mixed model:

y = Wα+ Xβ +
L∑

l=1

Zlul + e,

ul ∼ N(0, σ2h2l Kl),

e ∼ N(0, σ2h2eI),

(1)

where n is the number of observations, L is the number of random effect terms (not 361

including the residuals), y is an n× 1 vector of quantitative traits, and W and X are 362

n× c and n× p design matrices for covariates and marker effects, respectively, with α 363

and β corresponding c× 1 and p× 1 vectors of coefficients. Similarly, Zl are n× rl 364

design matrices with corresponding random effects ul, which are normally distributed 365

around zero and have covariance matrices proportional to the known positive 366

semi-definite rl × rl matrices Kl. Lastly, e is a n× 1 vector of uncorrelated normally 367

distributed errors, and N(•, •) denotes the multivariate normal distribution. The 368

common variance of all random effects are denoted by σ2, and the vector 369

h2 = (h21, . . . , h
2
L, h

2
e) represents the proportion of variance attributed to each random 370

effect term or the residual error. Elements of h2 are all non-negative and sum to one, 371

forming an L-dimensional simplex. 372

In GWAS applications, we assume that W is constant across markers and the value
of α is not of central interest; meanwhile, X varies for each test and we aim to perform
statistical inference on a subset of β. In heritability estimation applications, we focus
on inferring the vector h2. In both cases, the vectors ul and e are nuisance parameters
and we can integrate them out resulting in the following equivalent model:

y ∼ N(Wα+ Xβ, σ2V),

V =

L∑
l=1

h2l ZlKlZ
ᵀ
l + h2eI.

(2)

If the matrix V is full-rank (which is guaranteed if h2e > 0), we can use the inverse of
the Cholesky decomposition V = LLᵀ to transform Equation 2 to the following:

y∗ ∼ N(W∗α+ X∗β, σ2I) (3)

where y∗ = L−1y, W∗ = L−1W and X∗ = L−1X. Equation 3 is a simple linear model
for y∗, with the likelihood function:

lF (y∗;α,β, σ2 |h2) =

1

2

[
−n log(2πσ2)− 1

σ2
(y∗ −W∗α−X∗β)ᵀ(y∗ −W∗α−X∗β)

]
,

where efficient methods for inference of [α,β] and σ2 are well known. We derive
maximum-likelihood and restricted-maximum likelihood solutions for these parameters
here, as well as posterior distributions under the conditional normal-inverse-gamma
prior below. The log-likelihood and restricted-likelihood functions (respectively) for
Equation 2 are:

lF (y;α,β, σ2,h2) = lF (y∗;α,β, σ2 |h2)− log |L| (4)
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and

lR(y;α,β, σ2,h2) =

lF (y;α,β, σ2,h2) +
1

2

[
(c+ p)log(2πσ2) + log | X̃ᵀX̃| − log|X̃∗ᵀX̃∗|

] (5)

which are simple (and computationally inexpensive) updates to the likelihood function

of Equation 3. Here, we denote | • | as the matrix determinant and let X̃ = [W; X] and

X̃∗ = [W∗; X∗], respectively. For ML and REML applications, we can calculate the
profile likelihoods lF (y; h2) and lR(y; h2) as functions of the profile likelihood of the
rotated data, which is formed by maximizing lF (y∗;α,β, σ2 |h2) with respect to α, β,
and σ2. Namely:

lF (y; h2) =
n

2

[
log
( n

2π

)
− 1− log(RSSy∗)

]
− log |L| (6)

where RSSy∗ = y∗ᵀ[I− P̃]y∗ is the residual sum of squares, and 373

P̃ = X̃∗(X̃∗ᵀX̃∗)−1X̃∗ᵀ is a projection (hat) matrix. 374

Statistical inference by parallel grid search 375

We now outline the Grid-LMM approach for calculating approximate Wald-test statistics, 376

and then show extensions for computing Bayesian posterior distributions of variance 377

components and marker specific Bayes Factors. 378

A Wald test for the null hypothesis Mθ = 0 for θ = [αᵀ,βᵀ]ᵀ and an arbitrary
q × (c+ p) matrix M uses the general F-statistic:

FWald =
θ̂ᵀMᵀ(M(X̃ᵀV−1X̃)−1Mᵀ)−1Mθ̂

q
(7)

with q and (n− c− p) degrees of freedom, where θ̂ is the estimate of θ using the REML 379

estimate of V [63]. 380

To calculate genome-wide Wald statistics, we must estimate ĥ2 for each of the p 381

markers tested. There are no closed-form ML (or REML) solutions for h2; therefore, 382

iterative algorithms are required. A naive approach involves repeatedly inverting V, 383

which scales cubically in the number of observations. Since the estimates for ĥ2 differ 384

for each test, the total computational complexity of in a GWAS setting is O(tpn3) 385

assuming an average of ≈ t inversions per run of the optimization algorithm (generally 386

≈ 3− 100, increasing with the number of random effect parameters). The fast algorithm 387

used in GEMMA [24] and FaST-LMM [23] reduces this to O(n3 + pn2 + ptc2n) by utilizing 388

the eigenvalue decomposition of the similarity matrix K. However, this only works for a 389

single random effect. We are unaware of any exact algorithm with lower computational 390

complexity for models with multiple random effects (and full-rank covariance matrices). 391

With Grid-LMM, rather than optimizing h2 separately for each marker, we instead 392

define a grid of candidate values for h2 and calculate the restricted profile-likelihood 393

lR(h2 |y∗) at every grid vertex for each marker. At each grid vertex, we must invert V 394

once, but we can re-use this calculation for every marker. This has a computational 395

complexity of approximately O(g(n3 + pn2)) for a grid with g vertices. For all analyses 396

reported in the main text, we use a rectangular grid with a resolution of 0.1 or 0.01 397

h2-units, with the restriction that all h2l ≥ 0 and
L∑

l=1

h2l < 1. As described below, we 398

either peg this grid to the origin (i.e. h2l = 0, ∀l), or to the REML estimate ĥ2
0 derived 399

from the null model with no marker effects. This grid search generates a vector of g 400

profiled Restricted Likelihood scores for each marker. We select the values of ĥ2 that 401
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correspond to the highest such score for each marker and use Equation 7 to calculate 402

the approximate Wald statistics. 403

To calculate approximate likelihood ratio test statistics, we use the Grid-LMM 404

approach to calculate the full profile-likelihoods for models under both the null and 405

alternative hypothesis. 406

For Bayesian inference, rather than working with the profile likelihoods, we instead
use a conditional normal-inverse-gamma prior ([αᵀ,βᵀ]ᵀ, σ2) ∼ NIG(0,Ψ, a0, b0), and
then integrate over the prior to calculate the marginal likelihood of the data given h2.
This results in the following:

p(y |h2) =
ba0
0

(2π)n/2+(c+p)/2|V|1/2|Ψ|1/2Γ(a)
× (2π)(p+c)/2|Ψ∗|1/2Γ(a∗)

(b∗)a∗ , (8)

where Γ(•) is the gamma function, Ψ∗ = (Ψ−1 + X̃ᵀV−1X̃)−1, a∗ = a0 + n/2, and
b∗ = b0 + RSSy∗,Ψ/2 with RSSy∗,Ψ having the same form as RSSy∗ in Equation 6 —

except with P̃ = X̃∗Ψ∗X̃∗ᵀX̃∗Ψ∗X̃∗ᵀ. See S1 Supplementary Methods for more detail
on the specific derivations. We calculate the marginal likelihood p(y |h2) at each vertex
of the grid as described above. Assuming a discrete-valued prior p(h2), we can then
compute the posterior distribution of h2 as:

p(h2 |y) =
|Vh2 |−1/2|Ψ∗

h2 |1/2(b∗h2)−a∗
p(h2)∑

h2 |Vh2 |−1/2|Ψ∗
h2 |1/2(b∗h2)−a∗p(h2)

(9)

where, for clarity, parameters that are a function of h2 are denoted with a subscript. 407

Continuous target densities π(h2) can be approximated as p(h2) by assigning each grid 408

vertex a probability equal to the integral of π(h2) over the L-dimensional rectangle 409

centered at the corresponding value h2. We assume a uniform prior over our grid for all 410

analyses presented in the main text. Bayes factors are computed by comparing models 411

under the alternative and null hypotheses as the ratios in Equation 9. All analytical 412

calculations — including the summation in Equation 9 — can be performed on the 413

log-scale to prevent numerical underflows. Terms common to both models drop out of 414

the ratio; therefore, limiting improper priors on α and σ2 can be used, which results in 415

scale-independence [49]. 416

Accelerated grid searches 417

The full grid search described above is dramatically faster than the naive algorithm for
mixed-model GWAS analyses, as long as the vertices of the grid is less than the number
of genetic markers (i.e. g < p) and can easily be parallelized across multiple computers.
However, g grows rapidly as the grid resolution and number of random effects increases:

g =
L∑

k=1

(
m

k

)(
L− 1

k − 1

)
, (10)

for a grid with m divisions per h2l and, therefore, can still be slow. If we make two 418

assumptions which are commonly true, we can develop heuristics for both the 419

ML/REML and Bayesian algorithms that prevent the need to evaluate every grid vertex: 420

• The vast majority of markers have little association with the phenotype. This is a 421

common hypothesis in GWAS settings [64–67], and for our purposes, we merely 422

require that the percentage of variance explained individually by most markers is 423

smaller than the difference between grid vertices ≈ 1/m. 424
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• The likelihood and/or posterior function is convex. This is not always true, since 425

both the likelihood and posterior functions can have > 1 maximum. However, the 426

conditions that cause these events are rare [68], and most exact LMM algorithms 427

are also susceptible to converging to local maxima. 428

To search for the ML or REML solutions, we first find ĥ2
0 under the null model with no 429

marker effects. We calculate the profile (restricted)-likelihood scores for each test at ĥ2
0, 430

and then form a grid centered at this value by adding or subtracting 1/m to each h2l in 431

all combinations. For two random effects, this grid will be a ring around ĥ2
0 with g1 ≤ 8 432

vertices (depending on if ĥ2
0 is within 1/m of a boundary of the simplex). We calculate 433

the scores for each test at each vertex of the grid, and then compare the maximum 434

scores to the scores at ĥ2
0. For every test, when no greater value is found, we choose ĥ2

0 435

as the maximum and skip the corresponding marker in all future calculations. For the 436

remaining p2 markers, we select the set {ĥ2
0,h

2
1, . . . ,h

2
j} of grid vertices that maximized 437

the scores for 1+ tests, and form a new grid of size g2 around all of them, dropping 438

vertices already tested. This procedure is repeated t7 times until the new grid no-longer 439

increases scores for any test and we are confident that all (approximate) maximums 440

have been found. This accelerated search has total complexity 441

O(t6n
3 + pn2 +

∑t7
i=1 gi(n

3 + pin
2)), with t6 the number of iterations needed to 442

optimize variance components under the null model, and p1 = p (see Table 1). 443

Analogously, to accelerate evaluations of posterior distributions, we evaluate p(y |h2) 444

over an initial grid of resolution 1/m1 with discrete prior pm1
(h2) and estimate the 445

posterior distribution as in Equation 9. Summary statistics, such as the posterior mean 446

and variance, will be more accurate if the posterior mass is distributed across multiple 447

vertices of the grid. Therefore, we identify the set H = {h2
l } of vertices that together 448

explain 99% of the posterior mass. If the size of this set is below a threshold (say 449

|H| = 10), we then form a new grid with double the resolution m2 = 2m1 and a new 450

prior pm2
(h2). Vertices that overlap between the grids can be filled in directly. We then 451

begin filling in the new grid by evaluating vertices within 1/m2 distance from any h2l 452

corresponding to the vertices in H. After each iteration, we re-calculate the set H, and 453

continue evaluating the neighboring vertices as long as H continues to grow. If the size 454

of H remains smaller than the threshold after whole grid is evaluated, or no new vertices 455

are added to H at the end of an iteration, we double the resolution again: mi+1 = 2mi 456

and repeat the grid-filling steps again. We note that this procedure is only appropriate 457

if the posterior is convex and, therefore, is limited to the case of uniform priors on h2. 458

A similar procedure was proposed for Bayesian inference in Gaussian process models in 459

the GPstuff toolbox, although it is not optimized for parallel inference in GWAS [55]. 460

To accelerate evaluations of GWAS Bayes Factors, we combine the two previously 461

described algorithms. In particular, we define a grid centered on ĥ2
0 with a resolution 462

1/m that is sufficiently fine such that we expect each posterior to be distributed across 463

multiple vertices. We then calculate p(y |h2) for each test, starting from ĥ2
0 and moving 464

out in concentric rings on the grid. After each iteration, if the new ring contributes 465

< 0.01% to the total posterior mass (among evaluated vertices) for that test, we assume 466

the posterior is well characterized and stop evaluating p(y |h2) for that marker. As for 467

the ML and REML solutions above, markers with little to no association with the 468

phenotype will lead to posteriors of h2 that are concentrated close to ĥ2
0; hence, only 469

markers with large effects will shift p(h2 |y) strongly to new regions of the grid. 470

Unless otherwise specified, we used accelerated grid searches for all Grid-LMM 471

analyses presented here with grid step sizes of 0.01 h2l units. 472
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GWAS datasets 473

Genotype and phenotype data on 107 Arabidopsis thaliana traits and 216,130 genetic 474

markers were downloaded from 475

https://github.com/Gregor-Mendel-Institute/atpolydb/wiki. We follow 476

practices suggested by the original authors of these data and log-transformed a subset of 477

the phenotypes prior to analyses (except for traits that had values less-than or equal to 478

zero) [44]. For the analysis of gene-environment interactions in flowering time, we (1) 479

extracted the trait identifiers “7 FT10” (i.e. growth chamber at 10C) and “57 FT Field” 480

(i.e. field setting), (2) selected data from the 175 accessions that were measured in both 481

environments, and (3) concatenated the two datasets into a single vector of 350 482

observations. The two traits were individually standardized to have mean zero and 483

standard deviation one prior to analysis. We used the sommer package in R to calculate 484

an additive relationship matrix from all 216,130 markers [69], and then created a G×E 485

kinship matrix as DZKZᵀD where K is the 175× 175 additive genomic relationship 486

matrix, Z is a 350× 175 incidence matrix linking observations to accessions, and D is a 487

350× 350 diagonal matrix with elements equal to −1 or 1 corresponding to observations 488

measured under “7 FT10” and “57 FT Field”, respectively. Plasticities for each 489

accession were calculated as the difference between “57 FT Field” and “7 FT10”. We 490

ran GEMMA (version 0.97) with the “-lmm1” option for Wald tests using the K matrix 491

described above. We emulated EMMAX and pylmm functionality by estimating variance 492

components using a null model with no marker effects, and either a single K matrix (for 493

single-trait analyses) or 3 random effects (for G×E analysis). Wald test statistics were 494

computed for each marker using our GridLMM R function with a grid consisting of only 495

a single vertex. For G×E analyses, we fit a model with a main effect of the environment, 496

a main effect for each marker of interest, and an interaction between the marker and the 497

environment — and then calculated the Wald-F statistic only for the interaction effect. 498

The heterogeneous stock of mice data from the Wellcome Trust Centre for Human 499

Genetics (http://mtweb.cs.ucl.ac.uk/mus/www/mouse/index.shtml) consists of 500

1,814 individuals from 85 families, all descending from eight inbred progenitor 501

strains [46]. We used the marker and phenotype data provided in the BGLR R 502

package [70] from which we extracted the “EndNormalBW” trait and information on 503

the gender and cage of each mouse. Gender was used as a covariate in all analyses, and 504

cage assignment was treated as a random effect in the three-random-effect models. 505

Additive and epistatic kinship matrices were calculated using sommer. Wald test 506

statistics and Bayes Factors were calculated using the heuristic (accelerated) grid search 507

of Grid-LMM. Bayes Factors were calculated assuming flat priors on the intercept and 508

residual variance term, a standard normal prior N(0, 1) on the marker effects — similar 509

to the previously proposed D2 prior [49] — as well as a uniform prior over the grid of 510

variance component proportions. 511

Computational timings for GWAS analyses are reported for a MacBookPro14,3 with 512

a 2.9Ghz Intel Core i7 processor and using only a single CPU core. Further speedups are 513

possible by parallelizing the grid search. For accelerated grid searches, REML estimates 514

of variance components under the null model (i.e. the starting points of the grid search) 515

were calculated with LDAK and are included in the computational time estimates. 516

Gene expression dataset 517

Gene expression data on 24,175 genes from 728 Arabidopsis accessions was downloaded 518

from http://signal.salk.edu/1001.php and subsetted to genes with average counts 519

≥ 10. A genomic relationship matrix (KA) for 1,135 accessions was downloaded from 520

http: 521

//1001genomes.org/data/GMI-MPI/releases/v3.1/SNP_matrix_imputed_hdf5/. 522
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Both sets of data were subsetted to an overlapping set of 665 accessions. KA was then 523

centered by projecting out the intercept and normalized to have mean diagonal elements 524

equal to one. The pairwise-epistasis genomic relationship matrix KE was calculated 525

with element-wise multiplication as KA �KA, and then also normalized to have mean 526

diagonal elements equal to one. The gene expression matrix was normalized and 527

variance-stabilized using the varianceStabilizingTransformation function of the 528

DEseq2 package [71]. Grid-LMM REML estimates were compared to exact REML 529

estimates from the LDAK program with variance components constrained to be 530

non-negative. Grid-LMM posterior distributions estimates were compared to those 531

estimated using Stan [52] with the rstan R package [53]. To speed computation, we 532

diagonalized the KA covariance matrix by calculating the singular value decomposition 533

KA = USUᵀ, and pre-multiplying both sides of the LMM by Uᵀ. We used a 534

half-Student-t prior distribution with 3 degrees of freedom and a scale of 10 for the 535

three standard deviation parameters. We ran four MCMC chains each of length 10,000, 536

with the first 5,000 as warmup and a thinning rate of 20. Because of poor mixing, this 537

resulted in an “neff” of approximately 200-400 per variance component parameter for 538

each trait. 539

Power simulations 540

We compared the power of one and two-random effect models for detecting G×E 541

markers based on the Arabidopsis flowering time data. We calculated additive genetic 542

and G×E relationship matrices as described above using the actual genotypes. We then 543

simulated phenotypes by summing together a G×E effect of a particular marker, 544

(co)variance from the two random effects, and normally distributed error. For each 545

combination of marker effect sizes ({0, 0.025, 0.05, 0.1, 0.15, 0.2}% of the total 546

phenotypic variance), and random effect proportions (h2l ∈ {0, 0.4, 0.8} for each random 547

effect), we ran 10,000 simulations with different randomly selected markers from the 548

Arabidopsis genotype data. We then fit five models to each dataset and calculated 549

Wald-tests for marker G×E effects using each. The five methods consisted of three 550

two-random effect approaches including: (1) an exact two-random effect model fit with 551

LDAK, (2) the approximate two-random effect model fit with Grid-LMM with a grid size 552

of 0.1 h2-units, and (3) the approximate two-random effect model pylmm that conditions 553

on variance components estimated under the null model [34]. We also consider two 554

one-random effect models that could be fit with GEMMA: (4) a model that only included 555

the additive genetic relationships and ignored the G×E covariance, and (5) a model 556

that only included the G×E covariance and ignored the additive genetic relationships. 557

For each method and for each simulation scenario, we first calculated a genomic 558

control inflation factor [1] for the GxE marker tests as the ratio between the median 559

value of the the F -statistics returned by each model and the median value of a F1,312 560

distribution since n = 316 and each model included p = 4 predictors (overall intercept, 561

environmental effect, the main effect of the marker, and the G× E interaction between 562

the environment and the marker). We then “corrected” all F -statistics by dividing by 563

the appropriate inflation factor, and calculated statistical power for each GWAS method 564

as the proportion of corrected Wald test p-values exceeding the genome-wide significance 565

level at the conventional Bonferroni corrected threshold P = 2× 10−7 (see S4 Fig). 566

The results show that Grid-LMM maintains nearly identical power to the exact 567

method in each simulation, all while also maintaining well-calibrated p-values under the 568

null-distribution. The approximate method based on pylmm has uniformly lower power, 569

but maintains an accurate null-distribution. The one-random effect methods show 570

opposite results: when including only the additive relationship matrix, the 571

null-distribution of −log10(p)-values is greatly inflated when G×E-variation is large. On 572

the other hand, when only G×E variance is modeled and yet the additive genetic 573
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variance is large, −log10(p)-values are greatly deflated. These results all confirm our 574

expectations that modeling covariance accurately, but not necessarily precisely, is 575

important for accurate association mapping in GWAS. 576

Sample size simulations 577

We developed a simulation strategy to evaluate the effect of sample size on the accuracy 578

of Grid-LMM in a reasonable amount of time without the confounding issue of changes 579

in population structure across different populations. These simulations are based on the 580

WTCHG body weight data described above, creating simulations with similar levels of 581

structure and random effect covariance as in the real analysis, and comparing the 582

accuracy of marker tests using the Grid-LMM and null-LMM methods to the Exact-LMM 583

method. 584

We began with our largest dataset (i.e. the n = 1814 WTCHG heterogeneous stock 585

mice), randomly selected 300 markers, and calculated the three covariance matrices for 586

additive, addtive-additive epistasis, and cage random effects. Next, we created a larger 587

dataset of 5× the original size by repeating the original marker data five times and 588

similarly created three block-diagonal covariance matrices by repeating each original 589

covariance matrix five times. While not completely realistic, this created a population 590

similar to what we would expect if the heterogeneous stock population was created five 591

separate times from five independent sets of progenitors; therefore, it has a similar level 592

of structure relative to its size as the original n = 1, 814 population. Finally, we created 593

a smaller dataset of 1/5× the size by subsampling the first 362 individuals from this 594

dataset, their corresponding marker data, and the corresponding partitioned subsets of 595

the three covariance matrices. 596

For each simulation, we selected a single marker and assigned it an effect size 597

between 0 and 0.15 in 16 steps. We then added four random vectors corresponding to 598

the three random effects and “iid” error. To be realistic, we used the variance 599

component proportions 0.23, 0.29, and 0.25, respectively, as weights for the random 600

vectors (with the sum scaled so that the total phenotypic variance equaled one). This 601

choice was based on the observed variance components in the real bodyweight data. We 602

repeated this simulation strategy for each of the 300 markers in the three populations 603

and each of the 16 effect sizes. Within each simulation, we calculated marker p-values 604

using the Exact-LMM and null-LMM methods. We then simulated Grid-LMM results by 605

perturbing each of the three variance component proportions from Exact-LMM: ±0.05 606

for Grid-LMM(0.1) and ±0.005 Grid-LMM(0.01), respectively. Lastly, we selected the 607

p-value from the model with the highest REML score. This represented a “worst-case 608

scenario” for Grid-LMM where the optimal variance components were maximally far 609

from the grid vertices. 610

To estimate the time for a GWAS under each population size, we measured the 611

length of time to fit Exact-LMM for a single marker using LDAK (T1), the time to 612

perform a single Cholesky decomposition (T2), and the time to calculate p-values for a 613

set of p markers given a pre-calculated Cholesky decomposition pT3. We then calculated 614

the total time for a GWAS with p markers as: 615

1. Exact-LMM: pT1 616

2. null-LMM: T1 + T2 + pT3 617

3. Grid-LMM(0.1): g1(T2 + pT3) 618

4. Grid-LMM-Fast(0.01): T1 + g2(T2 + pT3) + g3(T2 + T3) 619

where g1 = 220 is the size of a complete grid for three random effects with resolution 620

h2 = 0.1, g2 = 27 is the size of a ball around the null-LMM variance component 621
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estimates in the Grid-LMM-fast heuristic, and g3 is the number of additional grid 622

vertices that must be traversed by the Grid-LMM-fast algorithm. For the 623

Grid-LMM-fast calculations, we assumed that only a single marker had a non-zero 624

effect (and so only this marker would need to be taken through multiple iterations of 625

the heuristic search), and that the effect size of this marker was approximately at the 626

power threshold given the sample size (≈ 0.1 for n = 362, ≈ 0.035 for n = 1814, ≈ 0.006 627

for n = 9070; see Fig 4b). 628

Software Availability 629

Software for computing the Grid-LMM is carried out in R code, which is freely available 630

at https://github.com/deruncie/GridLMM. Scripts for running the analyses reported 631

in the manuscript are available at https://github.com/deruncie/GridLMM_scripts. 632
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Supporting information 636

S1 Fig. Approximate time and memory requirements of Grid-LMM as a 637

function of sample size. (a) Computational times for the most costly steps of typical 638

mixed model fitting algorithms: inverting an n× n covariance matrix (generally using a 639

Cholesky decomposition), and multiplying the inverse matrix by an n-vector (i.e. a 640

vector of marker genotypes). The red curve shows the time required for a Cholesky 641

decomposition using the base R function chol as a function of n. The green curve shows 642

the time required for a Cholesky matrix-by-marker matrix multiplication with 1× 105 643

markers, as a function of n. The blue curve is the sum of the Cholesky decomposition 644

and matrix-vector multiplication operations for a single grid-cell in Grid-LMM with 645

1× 105 markers. The green and blue curves are barely distinguishable across most of 646

the range because the Cholesky decomposition is generally not limiting. The purple 647

curve would be the expected time for a separate Cholesky decomposition and 648

matrix-vector multiplication for each marker in a GWAS with 1× 105 markers (i.e. the 649

cost of a typical exact-LMM method such as LDAK for a single iteration). Both the 650

Grid-LMM and LDAK times are per-iteration. Grid-LMM requires this time at each grid 651

cell. LDAK requires multiple iterations for the REML optimization separately for each 652

marker. Generally, Grid-LMM will evaluate more grid cells than LDAK requires iterations 653

per test. However this will not cause a reversal in the relative time requirements unless 654

a very large grid is used. (b) Memory requirements for storing an n× n Cholesky 655

matrix as a function of sample size. In both panels, the curves were extrapolated based 656

on tests with n between 256 and 4096 (actual times shown with points). All timings 657

were estimated using base R functions. 658

S2 Fig. Accuracy of the log-transformed p-values across the 107 659

Arabidopsis phenotypes [44]. GWASs were run for each phenotype using 216,130 660

markers and up to 199 accessions, with a single random effect controlling for additive 661

genetic relationships among lines. For each phenotype (represented as a single point in 662

the plots), we compared the exact Wald-test -log10(p) calculated by GEMMA to p-values 663

calculated by the approximate methods EMMAX, and Grid-LMM using either the naive 664

approach with a complete grid of size 0.1 h2-units, or the fast heuristic algorithm 665
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Grid-LMM-fast with a fine grid size of 0.01-h2 units. Grid-LMM p-values were always at 666

least as accurate (as measured by root mean-squared-error, RMSE) as those calculated 667

by EMMAX. Specifically, p-values calculated with a fine grid-size of 0.01 (using the fast 668

algorithm) were nearly indistinguishable from those of GEMMA, except in the rare cases 669

where the REML surface was not unimodal. This was generally restricted to a small 670

subset of rare markers with small-moderate effect sizes, and only occurred for a few 671

traits. In these cases, the complete — but more coarse — grid search of Grid-LMM with 672

step sizes of 0.1 was more accurate. 673

S3 Fig. Genomic control inflation factors for simulated data. Simulated 674

datasets were created based on the Atwell genotype data and the G×E analysis. We 675

randomly selected 10,000 markers, generated simulated data with different proportions 676

of additive (G) and gene-environment interaction (G× E) variation for each marker, and 677

calculated Wald F -statistics for an interaction between the marker and the environment. 678

Bars show an estimate of genomic control inflation factors [1] for each of the following 679

five methods. exact-LMM-G+GxE is an exact LMM algorithm fit with LDAK. This model 680

included both random effects and the marker effect. At a genome-wide scale, it is very 681

slow, with computational complexity O(ptn3). exact-LMM-G and exact-LMM-GxE are 682

exact LMM algorithms, similar to GEMMA, which included only one random effect and 683

the marker effect. null-LMM is an approximate method similar to pylmm that conditions 684

on variance components estimated under a null model with no marker effect. It was run 685

with both random effects. Grid-LMM was run with a grid size of 0.1 h2-units and 686

included both random effects and the marker effect. The λ values were calculated as the 687

ratio between the median value of the the F -statistics returned by each model and the 688

median value of a F1,316−4 distribution. The horizontal line shows the expected value 689

λ = 1 under the true model. 690

S4 Fig. Power analysis for simulated data. Bars show the genome-wide power 691

for randomly selected SNPs in the Atwell genotype data under simulations with 692

different proportions of additive (G) and gene-environment interaction (G×E) variation 693

with different marker effect sizes. Simulations were generated as described in S3 Fig, 694

and included only a single marker with zero main effect and G×E effects scaled to a 695

defined percentage of the phenotypic variation. The remaining phenotypic variation was 696

simulated from a multivariate normal distribution constructed by appropriately 697

weighting the additive relationship matrix, the G×E covariance matrix, and the 698

uncorrelated residual variation. Each simulation was run separately for 10,000 randomly 699

selected markers. Wald F -statistics from each method were normalized by dividing by 700

the genomic control inflation factor computed for Figure , and then p-values were 701

calculated and compared to the Bonferroni corrected threshold P = 2× 10−7 to 702

determine significance. 703

S5 Fig. Comparison of REML estimates between Grid-LMM and LDAK for 704

20,843 Arabidopsis genes. (a) REML estimates for the additive genetic variance 705

(variance component for KA). (b) REML estimates for the epistatic genetic variance 706

(variance component for KE). 707

S6 Fig. Comparison of REML estimates for the additive genetic variance 708

between models with and without an additional pairwise-epistasis random 709

effect for 20,843 Arabidopsis genes. Both models were fit using Grid-LMM with a 710

grid size of 0.05 h2 units. Point positions are jittered for clarity. 711
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S7 Fig. Posterior distributions of variance components for two genes 712

under the half-Student-t(3,0,10) prior. Panels (b) and (c) of Figure 3 in the main 713

text are repeated, except the half-Student-t(3,0,10) prior on the standard deviation of 714

the variance components of KA and KE for the random effects was applied to each grid 715

vertex. The prior was approximated by simulating 1× 104 independent draws for σA, 716

σE and σe, converting these to prior draws for h2A and h2E , and then measuring the 717

proportion of draws closest to each grid vertex. 718

S8 Fig. Inverse-Gamma and half-Student-t priors are informative for 719

variance component proportions. We compare the implied prior distributions on 720

variance component proportions for three classes of priors in a two-random effect model 721

(e.g. KA and KE as random effects plus uncorrelated random error). (a)-(b) Each 722

standard deviation parameter was assigned a half-Student-t prior with 3 degrees of 723

freedom and scale parameter of 10. (c)-(d) Each variance parameter was assigned an 724

inverse-Gamma prior with shape parameter 2 and scale parameter 1. (e)-(g) A uniform 725

prior was applied to the 2-dimensional simplex of [h2A, h
2
E , h

2
e]. This is the default prior 726

in GridLMM and equivalent to all analyses reported in the main text. (a)-(c)-(e) 727

2D-density plots for the two variance component proportions. Lighter blue denotes 728

higher prior density. (b)-(d)-(f) Marginal densities for the KA variance component 729

proportion under each prior. The half-Student-t prior implies high probability that only 730

one variance component is important. The inverse-Gamma prior implies high 731

probability that all variance component proportions are non-zero. 732

S1 Table Markers associated with heterogenous stock mice body weight 733

only when accounting for non-additive genetic covariance. Markers with 734

-log10(p) > 3 on chromosomes 4 and 11 are shown. Position information for each marker 735

is derived from [72]. Other studies that identified the same marker associations are 736

listed. WTC: Wellcome Trust Center Heterogeneous Stock Mice. LG,SM Advanced 737

Intercross: F9 and F10 generation mice from of an intercross between LG/J and SM/J 738

strains selected for differences in body size. 739

S1 Supplementary Methods Derivation of Bayesian posterior and Bayes Factors. 740
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