bioRxiv preprint doi: https://doi.org/10.1101/374280; this version posted July 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

1 The association between alcohol consumption and

2 telomere length: A meta-analysis focusing on

3 observational studie

- 4
- 5
- 6 Jianqiang Li^{1,2¶}, Yu Guan^{1¶}, Faheem Akhtar^{1,3}, Xi Xu¹, Ji-Jiang Yang^{4*}, Shi Chen⁵,

8

⁹ ¹Faculty of Information Technology, Beijing University of Technology, Beijing,

10 China.

- ²Beijing Engineering Research Center for IoT Software and Systems, Beijing, China.
- ³ Department of Computer Science, Sukkur IBA University, Sukkur, Sindh, Pakistan.
- ⁴Tsinghua National Laboratory for Information Science and Technology, Tsinghua
- 14 University, Beijing, China.
- ⁵ Department of Endocrinology, Peking Union Medical College Hospital, Chinese
- 16 Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- ⁶Channing Division of Network Medicine, Brigham and Women's Hospital/Harvard
- 18 Medical School, Boston, USA.
- 19
- 20 These authors contributed equally to this work.
- 21
- ^{*}Corresponding author:
- 23 E-mail: Jijiang Yang@126.com (JY)

⁷ Qing Wang⁴, Hui Pan⁵, Weiliang Qiu⁶

bioRxiv preprint doi: https://doi.org/10.1101/374280; this version posted July 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

25 Abstract

26 Background

Both telomere length and alcohol consumption play important roles in carcinogenesis
and biological age. Many efforts have been made to investigate the association
between alcohol consumption and telomere length. However, no consensus has been
reached yet.

31 Methods

- 32 In this article, we performed a meta-analysis to integrate the investigation results in
- the literature about the association between alcohol consumption and telomere length.
- After searching articles published between 2000 and 2016, 21 articles (including 27
- analyses, total sample size 35,891) met our eligibility criteria.

36 **Results**

We found a significant association between alcohol consumption and telomere length (Fisher's combined p-value = 3.52E-8 and Liptak's weighted p-value = 8.24E-3). We also found that the significance of the association between alcohol consumption and telomere length varies with study type (cohort, case-control, or cross-sectional) and study population (Europe, Asia, American, or Australia).

42 Conclusions

- 43 Combined evidence showed that alcohol consumption is associated with telomere
- 44 length. The consistent quantifications of alcohol consumption and telomere length
- 45 would benefit the future aggregation of the evidence from different studies.

46

47

48 Introduction

49	A telomere is a segment of repetitive nucleotide sequences at both tails of a
50	chromosome, which protects the tail of the chromosome from deterioration or fusion
51	with neighboring chromosomes[1]. Over time, the end of the chromosome becomes
52	shorter during cell replications[1]. Once the telomere length (TL) is shortened to a
53	critical length, the chromosomes would become unstable and the cells will
54	immediately activate the apoptotic mechanism and lose viability[2]. So TL reflects the
55	cell copy history and replication potential, known as the "mitotic clock" of the cell's
56	lifespan[1]. Defects in telomere length have been linked to several age-related
57	diseases, premature aging syndromes, and cancers[3]. Telomere shortening may result
58	in genomic instability during the initial stage of tumorigenesis[4].
59	
60	Although telomere shortening occurs as a natural part of aging, it is known to be
61	affected by several factors including age, gender, ethnicity, paternal age at birth,
62	genetic mutations of telomerase, and telomere maintenance genes[5]. Telomere
63	shortening also could be accelerated by mechanisms like oxidative stress and
64	inflammation[5]. Furthermore, several studies suggest that psychosocial,
65	environmental, and behavioral exposures can impact TL as well[6]. Since alcohol
66	exposure is one of the behavioral exposures as well as a source of oxidation[7]. It
67	would be interesting to investigate the effect of alcohol consumption (AC) on
68	telomere length.
69	
70	Alcohol is one of the most widely used recreational drugs in the world. Alcoholic
71	drinks are classified by the International Agency for Research on Cancer (IARC) as a
72	Group 1 carcinogen (carcinogenic to humans)[8]. IARC classifies alcoholic drink

73	consumption as a cause of colorectal, larynx, liver, esophagus, oral cavity, pharynx,
74	and female breast cancers; and as a probable cause of pancreatic cancer[8-10]. The
75	World Health Organization estimates that as of 2010 there were 208 million people
76	with alcoholism worldwide[11]. AC is the world's third-largest risk factor for public
77	health; in middle-income countries, which constitute almost half of the world's
78	population, it is the greatest risk factor for public health[12]. Also, it could reduce a
79	person's life expectancy by around ten years[13].
80	
81	Many efforts have been made to investigate the association between AC and TL.
82	However, no consensus has been reached yet about the AC-TL association. Some
83	studies showed significant inverse associations between TL and alcohol use[14-16]. In
84	other words, the more alcohol consumption, the shorter TL. However, a few studies
85	reported significant positive associations between AC and TL. For example, Liu et al.
86	(2009)[17] observed significantly longer TL in ever drinkers than that in never
87	drinkers for controls of gastric cancer. Liu et al. (2011) observed significantly longer
88	TL in ever drinkers than that in never drinkers in hepatocellular carcinoma (HCC)
89	patients[18]. Also, several studies reported no association between AC and TL[19-30].
90	To facilitate the investigation of the AC-TL association, we conducted a
91	meta-analysis.
92	
93	

94 Methods

95 Search strategy and selection criteria.

96 This meta-analysis is based on a comprehensive and systematic search of ten research

97 databases: ProQuest, Science Online, Wiley-Blackwell, PubMed, Science Direct,

- 98 Google Scholar, Nature, Baidu scholar (<u>http://xueshu.baidu.com/</u>), Chinese National
- 99 Knowledge Infrastructure (CNKI, <u>https://en.wikipedia.org/wiki/CNKI</u>,
- 100 <u>http://www.cnki.net/</u>), and Chongqing VIP (<u>http://lib.cqvip.com/</u>), the last three of
- 101 which are Chinese research databases. Full-text available articles in English or
- 102 Chinese, published or in press between January 2000 and December 2016 were
- 103 considered. Since the effect of alcohol on health is usually manifested after a long
- time period and clinical trials (RCTs) were usually completed in a relatively
- short-time period, we only focused on observational studies in this meta-analysis.

106

107 First round of selection.

108 The first round of selection was based on title and abstract according to the search

terms ("telomere", "alcohol", and "ethanol"). If either the set ("telomere" and

"alcohol") or the set ("telomere" and "ethanol") were found in title or abstract, this

111 article would be included for further screening.

112

Second round of selection.

When it came to the second round of selection, only papers with full text available would be kept. The papers that did not mention any association between AC and TL were also excluded. We then grouped the remaining papers based on the types of the original studies: random clinical trial or observational study.

118

119 **Third round of selection.**

120 Since the effect of alcohol on health is usually manifested after a long time period and

121	clinical trials (RCTs) were usually completed in a relatively short-time period, we
122	excluded RCT studies in the third round. In the third round, we further excluded
123	papers with low document quality.
124	
125	Document quality evaluations were indispensable before any data processing, but
126	criteria vary depending on the type of article. We applied NEWCASTLE-OTTAWA
127	QUALITY ASSESSMENT (NOS) SCALE[31] to evaluate the quality of cohort
128	studies and case-control studies. Meanwhile, we applied the 11-item checklist that
129	was recommended by Agency for Healthcare Research and Quality (AHRQ) to
130	evaluate the quality of cross-sectional studies. Based on NOS Scale, a study can be
131	awarded a maximum of one star for each numbered item within the Selection and
132	Outcome (for cohort studies)/Exposure (for case-control studies) categories, a
133	maximum of two stars can be given for Comparability. The NOS ranges from zero up
134	to nine stars[31]. According to AHRQ checklist, an item would be scored '0' if it was
135	answered 'NO' or 'UNCLEAR'; if it was answered 'YES', then the item scored '1'.
136	Article quality was assessed as follows: low quality = $0-3$; moderate quality = $4-7$;
137	high quality = $8-11[32]$.
138	
139	To pass the third round screening, we require that a cohort study or a case-control
140	study needs to have NOS Scale \geq 6, and a cross-sectional study need to have AHRQ \geq
141	7.
142	
143	Study selection was performed by YG and double-checked by JL and WQ. All
144	disagreements were resolved through consensus by the three authors. The procedure

- 145 of study selection is illustrated in **Fig 1**.
 - 7 / 28

146 Fig 1. The flowchart of study selection

147

148

149 **Extraction of relevant information.**

- 150 After the three rounds of screening, 21 articles met the requirements and were
- selected for further analysis. We extracted the following information relevant to the
- 152 present meta-analysis: study type (case-control, cohort, or cross-sectional),
- significance of the association between AC and TL (test statistics and p-values),
- source of the population, gender, sample size, age, ethnicity, country of the
- 155 participants, statistical models, quantification of TL, and quantification of AC.

156

157 Classification of analyses.

- 158 We regarded a study as a case-control study if it compared TL between two AC
- 159 groups (e.g., alcohol abusers versus social drinkers). We regarded a study as a cohort
- study if it tested the association of AC measured at baseline to TL measured at the end
- 161 of follow-up or to the change of TL from baseline to the end of follow-up. We
- regarded a study as a cross-sectional study if it evaluated the association of
- 163 continuous-type AC to TL based on data measured at the same time period (e.g., both
- 164 measured at the baseline or both measured at the end of follow-up).

165

166 **Statistical Analysis.**

- 167 The standard method to combine evidence from independent studies is the
- 168 meta-analysis[33], in which the weighted average of the test statistics from individual
- studies is used to pool evidence. However, it is challenging to get appropriate test

170	statistics for the present meta-analysis. Several different statistical models were used
171	in the related articles to test for the association of AC to TL, such as t-test and general
172	linear regression used in case-control studies, correlation analysis and general linear
173	regression used in cross-sectional and cohort studies. In some studies, AC was treated
174	as continuous variable. In other studies, AC was treated as categorical variables with
175	different categorizations (e.g., two-category, three-category, or four-category). Even
176	for the same number of categories, the definitions of categories might also be different.
177	For example, Pavanello et al. $(2011)[14]$ defined three categories as $0 - 1$
178	drink-units/day; 2-4 drink-units/day; > 4 drink-units/day, while Houben et al.
179	(2010)[23] defined three categories as 0 gram /day; 1-19 gram/day; >=20 gram/day.
180	Similarly, the measurements of TL also varied among the 21 articles. Most of the
181	studies regarded TL as a continuous variable. Houben et al. (2010)[23] and Kozlitina
182	et al. (2012)[24] categorized TL to tertiles, Weischer et al. (2014)[34] categorized TL
183	to quartiles, while Cassidy et al. (2010)[19] categorized TL to quintiles. Hence, the
184	interpretations of the test statistics in different studies would be different, indicating
185	that it is not appropriate to combine test statistics. Moreover, some studies did not
186	provide the values of test statistics. Fortunately, almost all of the studies provided
187	p-values and sample sizes. Therefore, we performed a meta-analysis by calculating
188	the combined p-value as pooled evidence about the association of AC to TL. If the
189	combined p-value < 0.05, we claim that AC is significantly associated with TL.
190	Several methods for combining p-values have been proposed. In the present study, we
191	used Fisher's method. In addition, to utilize the information of the sample sizes, we
192	used Liptak's method[35].
193	

194 Since different studies used different statistical models to investigate the association

195	of AC to TL and did not report test statistics and their standard errors of the effect
196	sizes, we could not directly access the potential publication bias and heterogeneity
197	among studies. In this article, to roughly assess the heterogeneity, we used
198	-log10(p-value) to surrogate the effect size of each study and used the inverse of
199	sample size to surrogate the variance of the effect size. We then used -log10(Fisher's
200	combined p-value) and -log10(Liptak's combined p-value), respectively, as the
201	pooled effect size to calculated I^2 . To roughly assess the publication bias, we drew
202	funnel plot by using signed -log10(p-value) to surrogate the effect size and using the
203	square root of the inverse of sample size as the standard error. The sign of the effect
204	size for a study is the same as the sign of the test statistic. If test statistic is missing,
205	we assumed negative sign (i.e., the higher AC, the shorter TL). R package metafor
206	was used to draw the funnel plot.

207

208 In this meta-analysis, we also applied Fisher's exact test to check if the following 209 factors affect the significance of the association between AC and TL: (1) study type 210 (cohort study, case-control study, or cross-sectional study), (2) article goal (if testing 211 for AC-TL association is the primary goal of the article), (3) sex-specificity (men only 212 study, female only study, or both sex study), (4) categorization of AC (whether 213 containing never-drinker category), and (5) study population (American, Asian, 214 Australian, or European). For binary factors (e.g., article goal), p-values of Fisher's 215 exact test are obtained by directly using the hypergeometric distribution. Otherwise, 216 the network developed by Mehta and Patel (1983, 1986)[36] and improved by 217 Clarkson, Fan, and Joe (1993)[37] was used to calculate the p-values of Fisher's exact 218 test. We also applied two-sample Wilcoxon rank sum tests to check if sample size and 219 mean age affect the AC-TL association.

bioRxiv preprint doi: https://doi.org/10.1101/374280; this version posted July 23, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

2	2	0

A test is claimed as significant if its two-sided p-value < 0.05 . All analyses	cs were
---	---------

- performed by using IBM SPSS Statistics Version 22.0 or R Version 3.4.2.
- 223
- 224

225 **Results**

- After the three rounds of screening, we obtained 21 articles. The information
- 227 (including quality scores) of these 21 articles is listed in Table 1. Six of the 21 articles
- 228 performed more than one analyses. There were 44 analyses in total that evaluated the
- association between AC and TL in the 21 articles. The information (including quality
- scores) of these 44 analyses is listed in **S1 Table** online. We evaluated the 27
- 231 independent analyses and discussed the remaining 17 analyses in the Discussion
- section. Among the 27 analyses (**Table 1**), there are four case-control studies[14, 15,
- 17, 18], three cohort studies [16, 34, 38], and 20 cross-sectional studies [14, 16, 19-30,
- 34, 38-40]. Among the remaining 17 analyses, there are ten case-control studies, three
- cohort studies, and four cross-sectional studies.

236

Since different studies used different statistical models to investigate the association of AC to TL and did not report test statistics and their standard errors of the effect sizes, we could not directly access the potential publication bias and heterogeneity among studies. In this article, we used surrogate test statistics and surrogate standard errors. If we used $-\log 10$ (Fisher's combined p-value) as the pooled effect size, the value of I² is equal to 34.42, indicating small to medium heterogeneity. If we used $-\log 10$ (Liptak's combined p-value) as the pooled effect size, the value of I² is equal to

- 244 0, indicating small heterogeneity. Fig 2 shows roughly symmetric funnel plot,
- 245 indicating no publication bias.

Fig 2. Funnel plot of surrogate effect size and surrogate standard error

- 247
- 248

Study type	First Author	publish Year	studyDesign Original	primary Analysis	sigAssoc	both Sex	Pvalue	testStat	nTotal	mean Age	sepNon Drinker	continent
crossSectional	Harris [21]	2006	cross-sectional	No	No	both	0.962	NA	185	79.1	Ν	Europe
crossSectional	Bekaert [30]	2007	Longitudinal study	No	No	women only	0.682	-7.453	1,291	45.9	Ν	Europe
crossSectional	Bekaert[30]	2007	Longitudinal study	No	No	men only	0.63	-8.033	1,218	46.1	Ν	Europe
crossSectional	Hou [22]	2009	case-control study	No	No	both	0.06	NA	416	65.5	Y	Europe
crossSectional	Mirabello [27]	2009	nested case-control study	No	No	men only	0.799	0.006	1,661	64	Ν	America
crossSectional	Houben [23]	2010	Longitudinal study	No	No	men only	0.28	NA	203	78.47	Y	Europe
crossSectional	Mather [39]	2010	cross-sectional	No	Yes	both	0.008	-0.155	646	56.75	Ν	Australia
crossSectional	Cassidy [19]	2010	cross-sectional	Yes	No	women only	0.59	NA	2,284	58.86	Ν	America
crossSectional	Fyhrquist [20]	2011	Longitudinal study	No	No	women only	0.962	NA	668	65	NA	Europe
crossSectional	Fyhrquist [20]	2011	Longitudinal study	No	No	men only	0.962	NA	603	63	NA	Europe
crossSectional	Pavanello [14]	2011	case-control study	Yes	Yes	men only	0.003	NA	457	41	Y	Europe
crossSectional	Strandberg [16]	2012	Longitudinal study	Yes	No	men only	0.11	-0.08	499	75.7	Ν	Europe
crossSectional	Kozlitina [24]	2012	Longitudinal study	No	No	both	0.526	NA	3,157	50	Ν	America
crossSectional	Sun [29]	2012	cross-sectional	Yes	No	women only	0.93	0.001	5,862	58.7	Ν	America
crossSectional	Marcon [26]	2012	cross-sectional	No	No	both	0.962	-0.006	56	56	Ν	Europe

Table 1 The information of the 27 independent studies

(Continued)

Study	First	publish	studyDesign	primary	sigAssoc	both	Pvalue	testStat	nTotal	mean	sepNon	continent
type	Author	Year	Original	Analysis	0	Sex				Age	Drinker	
crossSectional	Bendix [38]	2014	Longitudinal study	No	No	both	0.078	-0.001	2,214	55	Ν	Europe
crossSectional	Weischer [34]	2014	Longitudinal study	Yes	Yes	both	0.01	NA	4,576	54.25	Ν	Europe
crossSectional	Latifovic [25]	2015	cross-sectional	Yes	No	both	0.57	(coef=-0.014)+/-(se=0.046) for abstainer; -0.055+/-0.039 for moderate AC; -0.024+/-0.050 for high AC	477	35	Y	America
crossSectional	Starnino [28]	2016	Longitudinal study	No	No	both	0.23	-1.205	132	45.34	Ν	America
crossSectional	Shin [40]	2016	cross-sectional	Yes	Yes	both	0.04	NA	1,771	57.23	Y	Asia
cohort	Strandberg [16]	2012	Longitudinal study	Yes	Yes	men only	0.004	-0.13	499	46.7	Ν	Europe
cohort	Bendix [38]	2014	Longitudinal study	No	Yes	both	0.032	-0.001	1,356	44.7	Ν	Europe
cohort	Weischer [34]	2014	Longitudinal study	Yes	No	both	0.61	-0.154	4,535	54.25	Ν	Europe
case-control	Liu [17]	2009	case-control study	No	Yes	both	0.016	meanDiff=0.07	378	53	Y	Asia
case-control	Pavanello [14]	2011	case-control study	Yes	Yes	men only	0.00009	NA	457	38	Y	Europe
case-control	Aida [15]	2011	case-control study	Yes	Yes	both	0.002	NA	50	67.25	Y	Asia
case-control	Liu [18]	2011	case-control study	No	Yes	both	0.043	meanDiff=0.04	240	50.5	Y	Asia

N, No; Y=Yes, NA=Not Available (i.e., missing value); studytype, indicating the study type of the AC-TL association; firstAuthor, indicating

the last name of the first author; publishYear, indicating the article publication year; studyDesignOriginal, indicating the original study design of

the article; primaryAnalysis, indicating if the primary goal of the study is to investigate the AC-TL association; sigAssoc, indicating if the AC-TL association is significant (*p<0.05); bothSex, indicating if the AC-TL association study is based on women-only data, men-only data, or based on both women and men data; pvalue, the p-value for testing the AC-TL association; testStat, test statistic; nTotal, the number of total sample size in the AC-TL association study; meanAge, mean age of subjects in the AC-TL association study; sepNonDrinker, indicating if the AC-TL association study includes a non-drinker category; continent, indicating which continent the subjects were from.

249	Among the 27 studies, 11 studies have primary goals to detect the AC-TL association.
250	Among the 11 studies, two were cohort studies[16, 34], two were case-control
251	studies[14, 15], and seven were cross-sectional studies[14, 16, 19, 25, 29, 34, 40]. The
252	other 16 studies had various primary goals, from the association between TL and red
253	blood cell size[24] to the association between TL and mortality in humans[38].
254	
255	As for sex-specificity, eight studies are men only studies[14, 16, 20, 23, 27, 30], four
256	studies are women only studies[19, 20, 29, 30], and 15 studies contain both men and
257	women[15, 17, 18, 21, 22, 24-26, 28, 34, 38-40]. As for the categorization of AC, nine
258	studies have the category of non-alcohol drinkers[14, 15, 17, 18, 22, 23, 25, 40], while
259	two studies did not provide this information[20]. As for study population, 16 studies
260	were based on populations in Europe[14, 16, 20-23, 26, 30, 34, 38], six studies were
261	based on populations in America[19, 24, 25, 27-29], four studies were based on
262	Asian[15, 17, 18, 40], and one study was based on Australian[39]. The range of total
263	number of samples among the 27 articles is from 50[15] to 5862[29]. The mean age is
264	ranged from 35 year old[25] to 79 year old[21]. The p-value is ranged from 9.00E-5 to
265	0.962.
266	
267	Ten out of the 27 studies reported significant associations between AC and TL (i.e.,
268	p-value < 0.05). The Fisher's combined p-value of the 27 studies is 5.75E-8 and the
269	Liptak's combined p-value is 8.76E-3.
270	
271	Two out of the three cohort studies and all four case-control studies reported
272	significant AC-TL associations, while only four out of the 20 (20%) cross-sectional
273	studies reported significant AC-TL associations. For the association between study

type and AC-TL association, the cross-table is in S2 Table online and the p
--

- chart is in Fig 3. Fisher's exact tests showed that study type is significantly associated
- with the significance of AC-TL association (p-value=1.86E-3).
- 277 Fig 3. Parallel pie chart: The association between study type and AC-TL
- 278 association
- 279

280

- All six studies from America reported non-significance of the AC-TL association,
- while all four studies from Asia and the only one study from Australia reported
- significant AC-TL association. Five out of 16 studies from Europe reported
- significant AC-TL association. For the association between continent and AC-TL
- association, the cross-table is in **S3 Table** online and the parallel pie chart is in **Fig 4.**
- Fisher's exact test showed that study population (p-value = 2.67E-3) is significantly
- associated with the significance of the AC-TL association.
- **Fig 4.** Parallel pie chart: The association between continent and AC-TL
- 289 association

290

- 291
- 292 The significance of AC-TL association is not related to whether a study's primary
- 293 goal is to test for AC-TL association (p-value=0.22), whether a study is based only on
- 294 men, only on women, or on both men and women (p-value=0.39), or whether a study
- has an AC category: never drinker (p-value=0.09). Cross-tables of the association
- between these factors and AC-TL association are in S4-S6 Tables online,
- 297 respectively.
- 298

- 299 Wilcoxon rank sum tests showed that both the total number of sample size
- 300 (p-value=0.51) and mean age (p-value=0.11) are not associated with the significance
- of AC-TL association. Parallel boxplots of the association between these factors and
- 302 AC-TL association are in **S1** and **S2 Figs** online.
- 303
- 304

305 **Discussion**

- 306 In this article, we conducted a meta-analysis to summarize the pieces of evidence in
- the literature of observational studies about the association between alcohol
- 308 consumption (AC) and telomere length (TL), and to identify factors that might affect
- the significance of the AC-TL association. There are 21 eligible articles included in
- this meta-analysis, containing 44 studies of the AC-TL association. The pooled
- evidence from the 27 independent studies showed that AC is significantly associated
- with TL (Fisher's combined p-value=3.52E-8; Liptak's combined p-value=8.24E-3).
- Study type (p-value=1.86E-3) and study population (p-value=2.67E-3) are
- significantly associated with the significance of the AC-TL association.
- 315

```
Using all 44 studies and ignoring the dependency among the 44 studies, The AC-TL
```

- association still remained significant (Fisher's combined p-value=1.11E-16 and
- 318 Liptak's combined p-value=3.57E-5).
- 319
- 320 If we considered only the four case-control studies and the 20 cross-sectional studies,
- 321 whether or not having an AC category "never drinker" is significantly associated with
- the significance of the AC-TL association (p-value=0.026). All four case-control
- studies reported significant AC-TL associations, while only four out of 20
 18 / 28

324	cross-sectional studies reported significant AC-TL association. By observing that the
325	controls in all four case-control studies are never drinkers and that only five out of the
326	20 cross-sectional studies had the never-drinker category, we guess that the effect of
327	study type on the significance of the AC-TL association is probably due to the
328	comparison of ever drinkers to never drinkers. Parallel pie chart and the cross-table of
329	the association between whether a study has an AC category as never-drinker and the
330	AC-TL association are in S3 Fig and S7 Table online.
331	
332	Since there is only one study from Australia, we regroup study population to four Asia
333	studies and 23 non-Asia studies; the study population is still significantly associated
334	with the significance of the AC-TL association (p-value=0.012). Parallel pie chart and
335	the cross-table of the association between whether the population of a study was
336	Asian and the AC-TL association are in S4 Fig and S8 Table online. It would be
337	interesting to investigate why all four studies from Asia reported significant AC-TL
338	association.
339	
340	It is interesting to observe that all four women-only studies reported non-significant
341	associations between AC-TL, although sex-specificity is not significantly associated
342	with the significance of the AC-TL association (p-value=0.3948). More women-only
343	studies are needed to confirm if this observation is by chance or not.
344	
345	Theoretically, longitudinal study (cohort study) would be better than cross-sectional
346	study or case-control study in that cohort study could infer if heavy alcohol
347	consumption causes shorter telomere length. However, there are several challenges

for cohort studies[38]. First, it would be hard to make sure the procedure to measure

19 / 28

348

349	TL at the end of long follow-up is the same as that at the baseline. Second, the blood
350	storage method would also be different between baseline and the end of follow-up.
351	Third, it would be difficult to make sure TL technically behaves in the same manner
352	at baseline as that at the end of follow-up.
353	
354	Genetics may play an important role in the AC-TL association. Pavanello et al. (2011)
355	showed that carriers of the common ADH1B*1/*1 (rs1229984) genotype were more
356	likely to be alcohol abusers, while exhibiting shorter TL[14]. Shin et al. (2016)
357	showed that heavy alcohol consumption was inversely associated with leukocyte TL
358	only among carriers of the mutant alleles (CT and TT) of rs2074356 (ALDH2)[40].
359	These studies indicate genetics could help identify subtypes of subjects that have
360	significant AC-TL associations.
361	
362	Several studies only provided lower or upper boundaries of p-values. For instance,
363	when evaluating the effect of interaction between AC and ADH1B genotypes on TL
364	among 255 controls, Pavanello et al. (2011) showed that the p-value $< 0.001[14]$.
365	Pavanello et al. (2011) showed p-values < 0.0001 for another four studies[14]. Harris
366	et al. (2006) showed p-value $> 0.05[21]$. When we calculated Fisher's combined
367	p-value and Liptak's weighted p-value, we set p-value = 0.0009 for the study with
368	p-value < 0.001 , set p-value $= 0.00009$ for the four studies with p-value < 0.0001 , and
369	set p-value = 0.962 (the maximum p-value among the 44 studies) for the study with
370	p-value > 0.05.
371	

372 Several studies provided mean age only for each group of subjects (e.g., for each TL

tertile in Houben et al. (2010)[23]). We took the average of the means of these groups

374 when we investigated if age would affect the significance of the AC-TL association.

375

376	Six of the 21 articles included more than one study that investigated the association
377	between AC and TL. Among the 27 studies, two studies (one is men only study and
378	the other is women-only study) were from Bekaert et al. (2007)[30]. The same is for
379	Fyhrquist et al. (2011)[20]. Pavanello et al. (2011) included two studies: one is
380	case-control study, and the other is cross-sectional study[14]. Stranberg et al. (2012)
381	and Weischer (2014) both included two studies: one is cross-sectional study, and the
382	other is cohort study[16, 34]. We assumed that the significance of the AC-TL
383	association in different types of studies within the same article is independent.
384	
385	The quantifications of TL are quite different among the 27 analyses. Sixteen analyses
386	quantified TL as proportion or ratio. Among the 16 analyses, one study used
387	normalized telomere-to-centromere ratio (NTCR)[15] and fifteen studies used the
388	relative telomere to single copy gene (T/S) ratio[14, 17-19, 22, 25, 27, 28, 34, 38-40].
389	One study assessed TL with Z-score of T/S ratio[29]. One study assessed TL by
390	terminal restriction fragment (TRF)[26]. Nine analyses used kilobase (kb) as the unit
391	of TL. Three analyses divided TL into three[23, 24] or four categories[34]. Three
392	analyses took the logarithm of TL[20, 40]. The difference in the TL quantification
393	makes it difficult to aggregate data and interpret results. In future, it would be
394	beneficial to have guidance on how to standardize the quantification of TL.
395	
396	The quantifications of AC are also quite different among the 27 analyses.
397	Twenty-three analyses measured AC on a continuous scale as alcoholic beverages per
398	week[17, 21, 25, 28, 30, 38, 39], beverages per day[14, 29, 34], grams (g) per

399	week[16], and g per day[18, 19, 23, 24, 26, 27, 40]. Among them, a standard alcoholic
400	beverage widely varied from 12 oz. beer (1 bottle), 5 oz. wine (1 glass), 1.5 oz. liquor,
401	to 12 g alcohol. One analysis measured AC as total drink-years (yearly frequency $*$
402	total years of alcohol use)[22]. Other studies used categorized AC. One defined an
403	ever-drinker as a person drinking at least one serving of beer (12 oz.), wine (4 oz.), or
404	liquor (1.5 oz.) per month for \geq 6 months, while a study used a four-category AC
405	categorization: nondrinker, <10, 10-29, and >29 years of drinking alcohol[22]. Two
406	analyses took the natural logarithm of AC[30]. Three analyses did not report the
407	quantifications of AC[15, 20]. In future, it would be beneficial to have guidance on
408	how to standardize the quantification of AC.
409	
410	Among the 27 main studies investigated in the present study, 15 studies reported test
411	statistic values, four of which reported positive associations between AC and TL[17,
412	18, 27, 29]. That is, the more alcohol consumption is, the longer telomere length is.
413	Two of the four positive associations are statistically significant[17, 18]. Liu et al.
414	(2009)[17] gave a potential explanation the significant positive association:
415	telomerase activation by alcohol drinking in target tissues. They also mentioned that
416	they could not rule out the possibility of chance findings because of the limited size in
417	each subgroup[17]. We hypothesize that the positive AC-TL association is due to
418	moderate drinking, which is beneficial to human health. However, Liu et al. (2009)
419	did not mention how they defined "ever drinkers" [17]. Further investigation is
420	warranted to study the differences of the AC-TL association among never drinkers,
421	moderate drinkers, and heavy drinkers.
422	

423 In summary, the present meta-analysis aggregated the p-values of 27 related studies

424	(total sample size 35,891) and showed a significant association between alcohol
425	consumption and telomere length based on Fisher's combined p-value and Liptak's
426	weighted p-value, although the different quantification methods of AC and TL
427	hindered the use of meta-analysis to aggregate the evidence for the AC-TL association.
428	Factors, such as study type (case-control, cross-sectional, or cohort study), study
429	population (American, Asian, or European), and subject gender, might affect the
430	AC-TL association. In future, it would help us uncover the true relationship between
431	alcohol consumption and telomere length if we standardize the quantifications of AC
432	and TL and if we take account for both beneficial and deteriorating effects of AC to
433	human health.
434	

435

436 **Supporting information**

- 437 S1 Fig. Parallel boxplots of the association between total number of sample size
- 438 and AC-TL association.
- 439 (PDF)

440 S2 Fig. Parallel boxplots of the association between mean age and AC-TL

- 441 association.
- 442 (PDF)

443 S3 Fig. Parallel pie chart: The association between whether a study has an AC

444 category as never-drinker and the AC-TL association (no cohort).

445 (PDF)

446 S4 Fig. Parallel pie chart: The association between whether the population of a

- 447 study was Asian and the AC-TL association
- 448 (PDF)
 - 23 / 28

- 449 S1 Checklist. PRISMA checklist.
- 450 (DOC)
- 451 S1 Table. The information of the 44 analyses in the 21 articles.
- 452 (xlsx)
- 453 S2 Table. Cross table: The relationship between study type and the significance
- 454 of the AC-TL association. Note: ratio: the ratio of number of studies with
- 455 significant AC-TL association to the number of total studies
- 456 (xlsx)
- 457 S3 Table. Cross table: The relationship between continent and the significance of
- 458 the AC-TL association.
- 459 (xlsx)
- 460 S4 Table. Cross table: The relationship between a study's primary goal and the
- 461 significance of the AC-TL association.
- 462 (xlsx)
- 463 S5 Table. Cross table: The relationship between gender of a study's participants
- 464 and the significance of the AC-TL association.
- 465 (xlsx)
- 466 S6 Table. Cross table: The relationship between whether a study has an AC
- 467 category as never-drinker and the significance of the AC-TL association.
- 468 (xlsx)
- 469 S7 Table. Cross table: The relationship between whether a study has an AC
- 470 category as never-drinker and the significance of the AC-TL association (cohort
- 471 study excluded).
- 472 (xlsx)

- 473 S8 Table. Cross table: The relationship between whether the population of a
- 474 study was Asian and the significance of the AC-TL association.
- 475 (xlsx)
- 476

477 Author Contributions

- **Conceptualization:** Jianqiang Li, Ji-Jiang Yang, Weiliang Qiu.
- **Data curation:** Yu Guan, Faheem Akhtar, Xi Xu.
- **Investigation:** Yu Guan, Jianqiang Li, Weiliang Qiu.
- **Methodology:** Jianqiang Li, Ji-Jiang Yang, Weiliang Qiu.
- **Project administration:** Jianqiang Li, Ji-Jiang Yang.
- **Software:** Yu Guan, Faheem Akhtar, Xi Xu.
- **Supervision:** Shi Chen, Qing Wang, Hui Pan.
- 485 Validation: Yu Guan, Weiliang Qiu.
- 486 Writing original draft: Faheem Akhtar, Xi Xu, Shi Chen, Qing Wang, Hui Pan.
- 487 Writing review & editing: Shi Chen, Qing Wang, Hui Pan.

491 **References**

492 1. Wong J, Collins K. Telomere maintenance and disease. Lancet. 2003;362(9388):983-8. 493 2. Hayashi MT, Cesare AJ, Rivera T, Karlseder J. Cell death during crisis is mediated by mitotic 494 telomere deprotection. Nature. 2015;522(7557):492-6. 495 Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 3. 496 2005:6:611-22. 497 Londoño-Vallejo JA. Telomere instability and cancer. Biochimie. 2008;90(1):73-82. 4. 498 Zglinicki Tv. Replicative senescence and the art of counting. Exp Gerontol. 5. 499 2003;38(11-12):1259-64. 500 6. Ornish D, Lin J, Chan JM, Epel E, Kemp C, Weidner G, et al. Effect of comprehensive lifestyle 501 changes on telomerase activity and telomere length in men with biopsy-proven low-risk prostate 502 cancer: 5-year follow-up of a descriptive pilot study. Lancet Oncol. 2013;14(11):1112-20. 503 7. Wu D, Cederbaum AI. Alcohol, Oxidative Stress, and Free Radical Damage. Alcohol Res Health. 504 2003;27(4):277-84. 505 Secretan B, Straif K, Baan R, Grosse Y, Ghissassi FE, Bouvard V, et al. A review of human 8. 506 carcinogens--Part E: tobacco, areca nut, alcohol, coal smoke, and salted fish. Lancet Oncol. 507 2009;10(11):1033-4. 508 Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and 9. 509 site-specific cancer risk: a comprehensive dose-response meta-analysis. Br J Cancer. 510 2014;112(3):580-93. 511 10. Smyth A, Teo KK, Rangarajan S, O'Donnell M, Zhang X, Rana P, et al. Alcohol consumption and 512 cardiovascular disease, cancer, injury, admission to hospital, and mortality: a prospective cohort study. 513 Lancet. 2015:386(10007):1945-54. 514 11. DESA UN. Global Population Estimates by Age, 1950–2050. United Nations, Department of 515 Economic and Social Affairs, 2013. 516 12. World Health Organization. Global Status Report on Alcohol and Health. Geneva, Switzerland: 517 World Health Organization, 2011. 518 13. Schuckit MA. Recognition and management of withdrawal delirium (delirium tremens). N Engl J 519 Med. 2014;371(22):2109-13. 520 14. Pavanello S, Hoxha M, Dioni L, Bertazzi PA, Snenghi R, Nalesso A, et al. Shortened telomeres in 521 individuals with abuse in alcohol consumption. Int J Cancer. 2011;129(4):983-92. 522 15. Aida J, Yokoyama A, Izumiyama N, Nakamura K, Ishikawa N, Poon SS, et al. Alcoholics show 523 reduced telomere length in the oesophagus. J Pathol. 2011;223(3):410-6. 524 16. Strandberg TE, Strandberg AY, Saijonmaa O, Tilvis RS, Pitkala KH, Fyhrquist F. Association 525 between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki 526 Businessmen Study. Eur J Epidemio. 2012;27(10):815-22. 527 17. Liu X, Bao G, Huo T, Wang Z, He X, Dong G. Constitutive telomere length and gastric cancer risk: 528 case-control analysis in Chinese Han population. Cancer Sci. 2009;100(7):1300-5. 529 18. Liu J, Yang Y, Zhang H, Zhao S, Liu H, Ge N, et al. Longer leukocyte telomere length predicts 530 increased risk of hepatitis B virus-related hepatocellular carcinoma: a case-control analysis. Cancer. 531 2011;117(18):4247-56. 532 19. Cassidy A, De Vivo I, Liu Y, Han J, Prescott J, Hunter DJ, et al. Associations between diet, lifestyle 533 factors, and telomere length in women. Am J Clin Nutr. 2010;91(5):1273-80. 534 20. Fyhrquist F, Silventoinen K, Saijonmaa O, Kontula K, Devereux RB, de Faire U, et al. Telomere 535 length and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE 536 study. J Hum Hypertens. 2011;25(12):711-8. 537 21. Harris SE, Deary IJ, MacIntyre A, Lamb KJ, Radhakrishnan K, Starr JM, et al. The association 538 between telomere length, physical health, cognitive ageing, and mortality in non-demented older 539 people. Neurosci Lett. 2006;406(3):260-4. 540 22. Hou L, Savage SA, Blaser MJ, Perez-Perez G, Hoxha M, Dioni L, et al. Telomere Length in 541 Peripheral Leukocyte DNA and Gastric Cancer Risk. Cancer Epidemiol Biomarkers Prevent. 542 2009;18(11):3103-9. 543 23. Houben JM, Giltay EJ, Rius-Ottenheim N, Hageman GJ, Kromhout D. Telomere length and 544 mortality in elderly men: the Zutphen Elderly Study. J Gerontol A Biol Sci Med Sci. 2011;66(1):38-44.

545 24. Kozlitina J, Garcia CK. Red blood cell size is inversely associated with leukocyte telomere length in 546 a large multi-ethnic population. PloS one. 2012;7(12):e51046.

547 25. Latifovic L, Peacock SD, Massey TE, King WD. The Influence of Alcohol Consumption, Cigarette

548 Smoking, and Physical Activity on Leukocyte Telomere Length. Cancer Epidemiol Biomarkers Prevent. 549 2016;25(2):374-80.

550 26. Marcon F, Siniscalchi E, Crebelli R, Saieva C, Sera F, Fortini P, et al. Diet-related telomere 551 shortening and chromosome stability. Mutagenesis. 2012;27(1):49-57.

552 27. Mirabello L, Huang WY, Wong JY, Chatterjee N, Reding D, Crawford ED, et al. The association

553 between leukocyte telomere length and cigarette smoking, dietary and physical variables, and risk of 554 prostate cancer. Aging cell. 2009;8(4):405-13.

555 28. Starnino L, Busque L, Tardif JC, D'Antono B. Psychological Profiles in the Prediction of Leukocyte 556 Telomere Length in Healthy Individuals. PloS one. 2016;11(10):e0165482.

- 557 29. Sun Q, Shi L, Prescott J, Chiuve SE, Hu FB, De Vivo I, et al. Healthy lifestyle and leukocyte 558 telomere length in U.S. women. PloS one. 2012;7(5):e38374.
- 559 30. Bekaert S, Meyer TD, Rietzschel ER, Buyzere MLD, Bacquer DD, Langlois M, et al. Telomere
- 560 length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. 561 Aging cell. 2007;6(5):639–47.

562 31. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of 563 nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603-5.

564 32. Hu J, Dong Y, Chen X, Liu Y, Ma D, Liu X, et al. Prevalence of suicide attempts among Chinese 565 adolescents: A meta-analysis of cross-sectional studies. Compr Psychiatry. 2015;61:78-89.

566

- 33. DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clin Trials. 1986;7(3):177-88.
- 567 34. Weischer M, Bojesen SE, Nordestgaard BG. Telomere shortening unrelated to smoking, body 568 weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat

569 measurements 10 years apart. Plos Genetics. 2014;10(3):e1004191.

570 35. Won S, Morris N, Lu Q, Elston RC. Choosing an optimal method to combine P-values. Stat Med. 571 2009;28(11):1537-53.

572 36. Mehta CR, Patel NR. A network algorithm for performing Fisher's exact test in r * c contingency 573 tables. J Am Stat Assoc. 1983; 78:427-34.

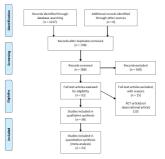
574 37. Clarkson DB, Fan Y-a, Joe H. A Remark on Algorithm 643: FEXACT: An Algorithm for Performing 575 Fisher's Exact Test in r x c Contingency Tables. ACM Trans Math Softw. 1993;19:484-8.

576 38. Bendix L, Thinggaard M, Fenger M, Kolvraa S, Avlund K, Linneberg A, et al. Longitudinal changes

577 in leukocyte telomere length and mortality in humans. J Gerontol A Biol Sci Med Sci.

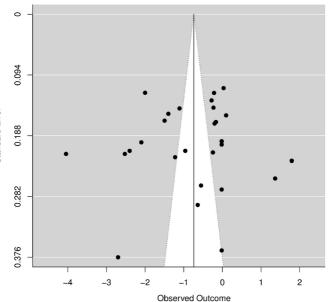
578 2014;69(2):231-9.

579 39. Mather KA, Jorm AF, Milburn PJ, Tan X, Easteal S, Christensen H. No associations between

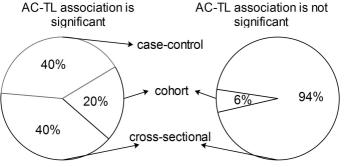

580 telomere length and age-sensitive indicators of physical function in mid and later life. J Gerontol A Biol 581 Sci Med Sci. 2010;65(8):792-9.

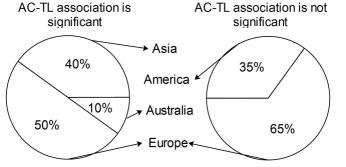
- 582 40. Shin C, Baik I. Associations Between Alcohol Consumption and Leukocyte Telomere Length
- 583 Modified by a Common Polymorphism of ALDH2. Alcohol Clin Exp Res. 2016;40(4):765–71.

584



PRISMA 2009 Flow Diagram




From: Moter D, Liberal A, Tetzart J, Abran DD, The PREIRIN Group (2008). Proteined Reporting forms for Dystematic Reviews and Mila Analyses: The PREIRIN Statement. Next See 47(7) +1000081. doi:10.1107/sizenal.eme/1000081

Standard Error

Standard Error

