bioRxiv preprint doi: https://doi.org/10.1101/374942; this version posted July 23, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

ReaDDy 2: Fast and flexible software framework for
interacting-particle reaction dynamics

Moritz Hoffmann!, Christoph Frohner!, and Frank Noé*!

'Freie Universitit Berlin, Fachbereich Mathematik und Informatik,
Arnimallee 6, 14195 Berlin, Germany
{ moritz.hoffmann,christoph. froehner, frank.noe }@fu-berlin.de

July 23, 2018

Abstract

Interacting-particle reaction dynamics (iPRD) combines the simulation of dynamical trajectories of
interacting particles as in molecular dynamics (MD) simulations with reaction kinetics, in which particles
appear, disappear, or change their type and interactions based on a set of reaction rules. This combination
facilitates the simulation of reaction kinetics in crowded environments, involving complex molecular
geometries such as polymers, and employing complex reaction mechanisms such as breaking and fusion
of polymers. iPRD simulations are ideal to simulate the detailed spatiotemporal reaction mechanism in
complex and dense environments, such as in signalling processes at cellular membranes, or in nano- to
microscale chemical reactors. Here we introduce the iPRD software ReaDDy 2, which provides a Python
interface in which the simulation environment, particle interactions and reaction rules can be conveniently
defined and the simulation can be run, stored and analyzed. A C++ interface is available to enable
deeper and more flexible interactions with the framework. The main computational work of ReaDDy 2
is done in hardware-specific simulation kernels. While the version introduced here provides single- and
multi-threading CPU kernels, the architecture is ready to implement GPU and multi-node kernels. We
demonstrate the efficiency and validity of ReaDDy 2 using several benchmark examples. ReaDDy 2 is
available at the https://readdy.github.io/| website.

1 Introduction

The physiological response of biological cells to stimuli can be a many-stage process. A widely studied example
is the MAPK pathway [56], 45]. Many of such signaling pathways incorporate G-protein coupled receptors
(GPCR) [48] and cyclic adenosine monophosphate (cAMP) [8]. These are related to various diseases [47), [1'7 [I].
An extracellular stimulus can activate the membrane bound GPCRs and lead to localized synthesis of cAMP
as second messengers. Their transport through the cell is diffusive, however due to the geometry of cellular
compartments cAMP molecules are non-uniformly distributed |2, 27]. Their presence needs to be resolved in
space and time to understand their function.

Particle-based reaction dynamics (PBRD) simulations [19] (52} [16] are amongst the most detailed approaches
to model reaction kinetics computationally as they simulate each reactive molecule as a particle and therefore
can be used as a tool to investigate systems of the aforementioned kind. Reactions can occur when reactive
particles are in proximity, resembling the physical process. PBRD is suitable when the spatial distribution
of molecules does not equilibrate rapidly and must therefore be resolved, and some reactants are locally
scarce, such that their discrete number must be kept track of [9]. There is a wide range of simulation tools
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for PBRD [43], including Smoldyn [4], MCell [31], Cell++ [37], eGFRD [45], mesoRD [24], spatiocyte [5],
SpringSaLaD [33], and SRSim [22].

PBRD simulations usually contain purely reactive particles that are not subject to interaction forces,
e.g., to model space exclusion with repulsive interactions or clustering with attractive interactions. On the
other hand, molecular dynamics (MD) simulations are designed to model particle dynamics including complex
interactions between the particles or particles and an external field. The particles in MD simulations are often
atoms or groups of atoms and higher-order structures such as molecules are represented by topology graphs
that define the bonding structure between particles and thus, together with a MD force field, imply which
pair, triplets and quadruplets or particles interact by means of bond, angle and torsion potentials. While
reactive force fields [26], [30, [50] include reactivity on the chemistry scale, and soft matter MD simulation
tools include breakable bonds [0, B2], current MD models and simulation packages do not incorporate generic
particle reactions.

Interacting-particle reaction dynamics (iPRD) was introduced in [42] to combine the benefits of PBRD
and MD simulations by modeling particle-based reaction dynamics while enabling full-blown interactions
between particles as well as particles and the environment. On mesoscopic length scales these interactions
can be used to induce structure, e.g., volume-exclusion in crowded systems [25, [42], clustering of weakly
interacting macromolecules [49], restriction of diffusing particles to arbitrarily-shaped membranes [42], 23] [43].
Furthermore it allows to study the large-scale structure of polymers and membranes [36]. When not only
considering interactions but also reactions, a wide range of reactive biochemical systems are in the scope of the
model. For example, the reaction dynamics of photoreceptor proteins in crowded membranes [39] including
cooperative effects of transmembrane protein oligomers [23] have been investigated. Another example is
endocytosis, in which different proteins interact in very specific geometries [35] [40].

The price of resolving these details is that the computation is dominated by computing particle-particle
interaction forces. Although non-interacting particles can be propagated quickly by exploiting solutions of the
diffusion equation [38} 511, (52} [T5], interacting particles are propagated with small time-steps [53} [54], restricting
the accessible simulation timescales whenever parts of the system are dense. As this computational expense
is not entirely avoidable when the particle interactions present in iPRD are needed to model the process of
interest realistically, it is important to have a simulation package that can fully exploit the computational
resources.

Here we introduce the iPRD simulation framework ReaDDy 2, which is significantly faster, more flexible,
and more conveniently usable than its predecessor ReaDDy 1 [42, [I0]. Specifically, ReaDDy 2 includes the
following new features:

e Computational efficiency and flexibility: ReaDDy 2 defines computing kernels which perform the
computationally most costly operations and are optimized for a given computing environment. The
current version provides a single-CPU kernel that is four to ten times (depending on system size) faster
than ReaDDy 1, and a multi-CPU kernel that scales with 80% efficiency to number of physical CPU
cores for large particle systems (Sec. . Kernels for GPUs or parallel multi-node kernels can be readily
implemented with relatively little additional programming work (Sec. .

e Python user interface: ReaDDy 2 can be installed via the conda package manager and used as a
regular python package. The python interface provides the user with functionality to compose the
simulation system, define particle interactions, reactions and parameters, as well as run, store and
analyze simulations.

e C++ user interface: ReaDDy 2 is mainly implemented in C++. Developers interested in extending
the functionality of ReaDDy 2 in a way that interferes with the compute kernels, e.g., by adding new
particle dynamics or reaction schemes, can do that via the C++ user interface.

e Reversible reaction dynamics: ReaDDy 2 can treat reversible iPRD reactions by using steps that
obey detailed balance, as described in [2I] (iPRD-DB), and thus ensure correct thermodynamic behavior
for such reactions (Sec. [£.1)).
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e Topologies: We enable building complex multi-particle structures, such as polymers, by defining
topology graphs (briefly: topologies, see Sec. . As in MD simulations, topologies are an efficient
way to encode which bonded interactions (bond, angle and torsion terms) should act between groups of
particles in the same topology. Note that particles in topologies can still be reactive. For example, it is
possible to define reactions that involve breaking or fusing polymers (Sec. .

This paper summarizes the features of ReaDDy 2 and the demonstrates its efficiency and validity of ReaDDy 2
using several benchmarks and reactive particle systems. With few exceptions, we limit our description to the
general features that are not likely to become outdated in future versions. Please see https://readdy.github.io/
for more details, tutorials and sample code.

2 interacting-Particle Reaction Dynamics (iPRD)

The ReaDDy 2 simulation system consists of particles interacting by potentials and reactions (Fig. [1]) at
a temperature T. Such a simulation system is confined to a box with repulsive or periodic boundaries. A
boundary always has to be either periodic or be equipped with repulsive walls so that particles cannot
diffuse away arbitrarily. To simulate iPRD dynamics in complex architectures, such as cellular membrane
environments with specific shapes, additional potentials can be defined that confine the particle to a sub-volume
of the simulation box (Sec. [2.2).

2.1 Interacting particle dynamics

ReaDDy 2 provides a developer interface to flexibly design models of how particle dynamics are propagated
in time. The default model, however, is overdamped Langevin dynamics with isotropic diffusion as this is
the most commonly used PBRD and iPRD model. In these dynamics a particle ¢ moves according to the
stochastic differential equation:

dx;(t)  Di(T),. _
G = R RO+ V2D;(T)E,(t), (1)

where x;(t) € R? contains the particle position at time ¢, D;(T) is its diffusion coefficient, kp is the Boltzmann
constant, and T the system temperature. The particle moves according to the deterministic force f; and
the stochastic velocity 1/2D;(T)&, in which &, are independent, Gaussian distributed random variables with
moments

(&) =0, (&ME (1) =Ts(t—1"),

where I is the identity matrix. The stochastic terms §; and §; are uncorrelated for particles 7 # j. In ReaDDy 2
the default assumption is that the diffusion coefficients D;(T") are given for the simulation temperature 7'
Additionally, we offer the option to define diffusion coefficients for a reference temperature Ty = 293K and then
generate the diffusion coefficients at the simulation temperature 7' by employing the Einstein-Smoluchowski
model for particle diffusion in liquids [55} [18]:

Dy(T) = Di(To)TzO-

This way, simulations at different temperatures are conventient while only having to specify one diffusion
constant. Using this model,the dynamics are

dx;(t) Di(TO)fi(t)Jr 2Di(T0)T£0£i(t)' @)

dt kT

This means that the mobility is preserved if the temperature changes and is recovered for T' = Tj.
The simplest integration scheme for , is Euler-Maruyama, according to which the particle positions
evolve as:
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Figure 1: ReaDDy 2 simulation model. (a) Potentials: Particles are subject to position-dependent external
potentials, such as boundary potentials or external fields and interaction potentials involving two, three or
four particles. As in molecular mechanics force fields, bonded potentials are defined within particle groups
called “topologies” whose bonding structure is defined by a connectivity graph. (b) Reactions: Most reactions
are unimolecular or bimolecular particle reactions. Topology reactions act on the connectivity graphs and
particle types and therefore change the particle bonding structure.
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Where 7 > 0 is a finite time step size and 1, ~ A(0,1) is a normally-distributed random variable. The
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diffusion constant D; effects the magnitude of the random displacement. The particles’ positions are loosely
bound to a cuboid simulation box with edge lengths ¢, ¢,, ¢, (Fig. . If a boundary is non-periodic it is
equipped with a repulsive wall given by the potential

; 1 .
Vean(x) = Skd(x{, W;)* (4)

acting on every component j of the single particle position x;, where k is the force constant, W = H?=1 W; =

H?:l[xf)jr?ghu x(()]r?gin + l‘g()tem] the cuboid in which there is no repulsion contribution of the potential, and
d(-,W;) := inf{d(-,w) : w € W;} the shortest distance to the set W;. The cuboid can be larger than the
simulation box in the periodic directions. In non-periodic directions there must be at least one repulsive wall
for which this is not the case.

Due to the soft nature of the walls particles still can leave the simulation box in non-periodic directions.
In that case they are no longer subject to pairwise interactions and bimolecular reactions however still are
subject to the force of the wall pulling them back into the box.

Other types of dynamical models and other integration schemes can be implemented in ReaDDy 2 via
its C++ interface. For example, non-overdamped dynamics, anisotropic diffusion [54] [34], hydrodynamic
interactions [20] or employing the MD-GFRD scheme to make large steps for noninteracting particles will all
affect the dynamical model and can be realized by writing suitable plugins.

2.2 Potentials
The deterministic forces are given by the gradient of a many-body potential energy U (Fig. ):

£ = Vi | Y Uext(%:) + D Upair(Xi:X5) + Y Uhriple (Xi, X5, X5) + - .
( i#] i#jF#k

The potentials are defined by the user. ReaDDy 2 provides a selection of standard potential terms, additional
custom potentials can be defined via the C++ interface and then included into a Python simulation script.

External potentials only depend on the absolute position of each particle. They can be used, e.g., to form
softly repulsive walls and spheres, or to attach particles to a surface, for example to model membrane
proteins. Furthermore the standard potential terms enable the user to simulate particles inside spheres and
exclude particles from a spherical volume. The mentioned potential terms can also be combined to achieve
more complex geometrical structures. Pair potentials generally depend on the particle distance and can be
used, e.g., to model space exclusion at short distances, or to model screened electrostatic interactions between
particles.

ReaDDy 2 has a special way of treating interaction potentials between bonded particles. Topologies define
graphs of particles that are bonded and imply which particle pairs interact via bond constraints, which triples
interact via angle constraints, and which quadruplets interact via a torsions potential. See Sec. [2:4] for details.

2.3 Reactions

Reactions are discrete events, that can change particle types, add, and remove particles (Fig. ) Each
reaction is associated with a microscopic rate constant A > 0 which has units of inverse time and represents
the probability per unit time of the reaction occurring. The integration time-steps used in ReaDDy 2 should
be significantly smaller than the inverse of the largest reaction rate, and we therefore compute discrete reaction
probabilities by:

pAT)=1—e. (5)

In the software it is checked whether the time step 7 is smaller than the inverse reaction rate up to a threshold
factor of 10, otherwise a warning is displayed as discretization errors might become too large. In general,
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ReaDDy 2 reactions involve either one or two reactants. At any time step, a particle that is subject to
an unary reaction will react with probability p(A; 7). If there are two products, they are placed within a
sphere of specified radius R, around the educt’s position x¢. This is achieved by randomly selecting an
orientation n € R3, distance d < R, and weights w; > 0,wy > 0, s.t. w; + wy = 1. The products are placed
at X1 = Xg + dwin and x5 = X9 — dwon. Per default, wy; = we = 0.5 and the distances d are drawn such that
the distribution is uniform with respect to the volume of the sphere. When it is necessary to produce new
particles, we suggest to use to define a producing particle A and use the unary reaction A — A + B with
corresponding placement weights w1 = 0,ws = 1 so that the A particle stays at its position.

The basic binary reaction scheme is the Doi scheme [I4], 46] in which a reactive complex is defined by
two reactive particles being in a distance of Ry, or less, where Ry is a parameter, e.g., see Fig. Fusion or
Enzymatic reaction. The reactive complex then forms with probability p(A; 7) while the particles are within
distance.

Optionally ReaDDy 2 can simulate reversible reactions using the reversible iPRD-DB scheme developed
in [2I]. This scheme employs a Metropolis-Hastings algorithm that ensures the reversible reaction steps to
be made according to thermodynamic equilibrium by accounting for the system’s energy in the educt and
product states.

2.4 Topologies

Topologies are a way to group particles into superstructures. For example, large-scale molecules can be
represented by a set of particles corresponding to molecular domains assembled into a topology. A topology
also has a set of potential energy terms such as bond, angle, and torsion terms associated. The specific
potential terms are implied by finding all paths of length two, three, and four in the topology connectivity
graph. The sequence of particle types associated to these paths then is used to gather the potential term
specifics, e.g., force constant, equilibrium length or angle, from a lookup table (Fig. )

Reactions are not only possible between particles, but also between a topology and a particle (Fig. )
or two topologies. In order to define such reactions, one can register topology types and then specify the
consequences of the reaction on the topology’s connectivity graph. We distinguish between global and local
topology reactions.

Global topology reactions are triggered analogously to unary reactions, i.e., they can occur at any time
with a fixed rate and probability as given in . Any edge in the graph can be removed and added. Moreover,
any particle type as well as the topology type can be changed, which may result in significant changes in the
potential energy. If the reaction causes the graph to split into two or more components, these components
are subsequently treated as separate topologies that inherit the educt’s topology type and therefore also the
topology reactions associated with it. Such a reaction is the topology analogue of a particle fission reaction.

A local topology reaction is triggered analogously to binary reactions with probability p(\; 7) if the distance
between two particles is smaller than the reaction radius. At least one of the two particles needs to be part of
a topology with a specific type. The product of the reaction is then either yielded by the formation of an
edge and/or a change of particle and topology types. In contrast to global reactions only certain changes to
particle types and graphs can occur:

e Two topologies can fuse, i.e., an additional edge is introduced between the vertices corresponding to the
two particles that triggered the reaction.

e A topology and a free particle can fuse by formation of an edge between the vertex of the topology’s
particle and a newly introduced vertex for the free particle.

e Two topologies can react in an enzymatic fashion, i.e., particle types of the triggering particles and
topology types can be changed.

e Two topologies and a free particle can react in an enzymatic fashion analogously.

In all of these cases the involved triggering particles’ types and topology types can be changed.
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2.5 Simulation setup and boundary conditions

Once the potentials, the reactions (Fig. 7b), and a temperature T have been defined, a corresponding
simulation can be set up. A simulation box can be periodic or partially periodic, see Fig. [[k. Periodicity
in a certain direction means that with respect to that direction particle wrapping and the minimum image
convention are applied. Non-periodic directions require a harmonically repelling wall as given in .

In order to define the initial condition, particles and particle complexes are added explicitly by specifying
their 3D position and type. A simulation can now be started by providing a time step size 7 and a number of
integration steps.

3 Software

ReaDDy 2 is mainly written in C+-+ and has Python bindings making usage, configuration, and extension
easy while still being able to provide high performance. To encourage usage and extension of the software, it
is Open Source and licensed under the BSD-3 license. It therefore can not only be used in other Open Source
projects without them requiring to have a similar license, but also in a commercial context.

3.1 Design

The software consists of three parts. The user-visible toplevel part is the python user interface, see Fig. 2h. It
is a language binding of the C++ user interface (Fig. ) and has additional convenience functionality. The
workflow consists out of three steps:

1. The user is creating a readdy.ReactionDiffusionSystem, including information about temperature,
simulation box size, periodicity, particle species, reactions, topologies, and physical units. Per default the
configurational parameters are interpreted in a unit set well suited for cytosolic environments (lengths
in nm, time in ns, and energy in kJ/mol), e.g., particles representing proteins in solution. The initial
condition, i.e., the positions of particles, is not yet specified.

2. The system can generate one or many instances of readdy.Simulation, in which particles and particle
complexes can be added at certain positions. When instantiating the simulation object, a compute kernel
needs to be selected, in order to specify how the simulation will be run (e.g., single-core or multi-core
implementation). Additionally, observables to be monitored during the simulation are registered, e.g.,
particle positions, forces, or the total energy. A simulation is started by entering a time step size 7 > 0
in units of time and a number of integration steps that the system should be propagated.

3. When a simulation has been performed, the observables’ outputs have been recorded into a file. The file’s
contents can be loaded again into a readdy. Trajectory object that can be used to produce trajectories
compatible with the VMD molecular viewer [2§].

Running a simulation based on the readdy.Simulation object invokes a simulation loop. The default simulation
loop is given in Alg. [1} Individual steps of the loop can be omitted. This enables the user to, e.g., perform
pure PBRD simulations by skipping the calculation of forces. Performing a step in the algorithm leads to
a call to the compute kernel interface, see Fig. 2b. Depending on the selected compute kernel the call is
then dispatched to the actual implementation. Compute kernel implementations (Fig. ) are dynamically
loaded at runtime from a plugin directory. This modularity allows ReaDDy 2 to run across many platforms
although not every computing kernel may run on a given platform, such as a CUDA-enabled computing kernel.
ReaDDy version 2.0.0 includes two iPRD computing kernels: a single threaded default computing kernel, and
a dynamically-loaded shared-memory parallel kernel.

The computing kernels contain implementations for the single steps of the simulation loop. Currently,
integrator and reaction handler are exchangable by user-written C++ extensions. Hence, there is flexibility
considering what is actually performed during one step of the algorithm or even what kind of underlying
model is applied.
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Figure 2: ReaDDy 2 software structure (a) Python user interface: Provides a Python bind-
ing to the “C++ user interface” with some additional convenience functionality. The user creates a
“readdy.ReactionDiffusionSystem” and defines particle species, reactions, and potentials. From a config-
ured system, a “readdy.Simulation” object is generated, which can be used to run a simulation of the system
given an initial placement of particles. (b) C++ core library: The core library serves as an adapter between
the actual implementation of the algorithms in a compute kernel and the user interface. (¢) Compute kernel
implementation: Implements the compute kernel interface and contains the core simulation algorithms.
Different compute kernel implementations support different hard- or software environments, such as serial
and parallel CPU implementations. The compute kernel is chosen when the “readdy.Simulation” object is
generated and then linked dynamically in order to provide optimal implementations for different computing
environments under the same user interface.

3.2 Performance

To benchmark ReaDDy 2, we use a reactive system with three particle species A, B, and C introduced in [41]
with periodic boundaries instead of softly repelling ones. The simulation temperature is set to T = 293 K
and the diffusion coefficients are given by Da = 143.1 yum?s~!, Dp = 71.6 um?s~!, and D¢ = 68.82 um? s~ 1.
Particles of these types are subject to the two reactions A + B — C with microscopic association rate
constant Aon = 1073 ns~! and reaction radius R; = 4.5nm, and C — A + B with microscopic dissociation
rate constant Aoy = 5 x 107°ns~! and dissociation radius R, = R;. Particles are subject to an harmonic
repulsion interaction potential which reads

Ur) = E(r—o)? ,forrg'a, (6)
0 , otherwise,
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Algorithm 1: ReaDDy 2 default simulation loop. Each of the calls are dispatched to the compute
kernel, see Fig. 2] Furthermore, the user can decide to switch off certain calls in the simulation loop
while configuring the simulation.

Initialize compute kernel;
if has output file then
L Write simulation setup;

Set up neighbor list;
Compute forces;

Evaluate observables;

while continue simulating do
Call integrator;

Update neighbor list;
Perform reactions;
Perform topology reactions;
Update neighbor list;
Calculate forces;

Evaluate observables;

Tear down compute kernel,

where ¢ is the distance at which particles start to interact and x = 10kJmol~! nm~2 is the force constant.
The interaction distance o is defined as sum of radii associated to the particles’ types, in this case 14 = 1.5 nm,
rg = 3nm, and r¢ = 3.12nm. All particles are contained in a cubic box with periodic boundaries. The edge
length is chosen such that the initial number density of all particles is pyo = 3141 nm~3. This total density
is distributed over the species, such that the initial density of A is pa = ptot/4, the initial density of B is
PB = pPtot/4, and the initial density of C is pc = piot/2. For the chosen microscopic rates these densities
roughly resemble the steady-state of the system. The performance is measured over a simulation timespan of
300 ns which is much shorter than the equilibration time of this system. Thus the overall number of particles
does not vary significantly during measurement and we obtain the computation time at constant density.

In the following the benchmark results are presented. A comparison between the sequential reference
compute kernel, the parallel implementation, and the previous Java-based ReaDDy 1 [42] is made with respect
to their performance when varying the number of particles in the system keeping the densityconstant. Since
the particle numbers fluctuate the comparison is based on the average computation time per particle and
per integration step (Fig.[3). The sequential kernel scales linearly with the number of particles, whereas the
parallelized implementation comes with an overhead that depends on the number of threads. The previous
Java-based implementation does not scale linearly for large particle numbers, probably owing to Java’s garbage
collection. The parallel implementation starts to be more efficient than the sequential kernel given sufficiently
many particles.

Fig. ] shows the strong scaling behavior of the parallel kernel, i.e. the speedup and efficiency for a fixed
number of particles as a function of the used number of threads. For sufficiently large particle numbers, the
kernel scales linear with the number of physical cores and an efficiency of around 80%. In hyperthreading
mode, it then continues to scale linear with the number of virtual cores with an efficiency of about 55-60%.

The number of steps per day for a selection of particle numbers and kernel implementation is displayed in
Tab. [1} For a system with 13,000 particles and a time step size of 7 = 1ns (e.g., membrane proteins [41]), a
total of 17 ms simulation time per day can be collected on a six-core machine (Fig. [3[for details). The current
ReaDDy kernels are thus suited for the detailed simulation of processes in the millisecond- to second timescale,
which include many processes in sensory signalling and signal transduction at cellular membranes.
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Figure 3: Average computation time per particle and integration step for the benchmark system of Sec. [3.2]
using a machine with an Intel Core i7 6850K processor, i.e., six physical cores at 3.8 GHz, and 32 GB DDR4
RAM at 2.4 GHz (dual channel). The number of particles is varied, but the particle density is kept constant.
The sequential kernel (orange) has a constant per-particle CPU cost independent of the particle number. For
large particle numbers, the parallel kernels are a certain factor faster (see scaling plot Fig. [4]). For small
particle numbers of a few hundred the sequential kernel is more efficient. ReaDDy 2 is significantly faster and
scales much better than the previous Java-based ReaDDy 1 [42].

Approximate Steps per day Peak performance steps per day Number of
number of particles sequential kernel parallel kernel threads
250 2.8 x 108 2.6 x 108 4
1000 7.9 x 107 1.2 x 108 7
13000 5.6 x 10° 1.7 x 107 11
40000 1.8 x 106 6.3 x 108 11

Table 1: Number of time steps per day for benchmark system of Sec. [3.2] using the machine described in
Fig.[3l In case of the parallelized implementation the peak performance with respect to the number of threads
is shown.
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Figure 4: Parallel speedup and efficiency of the benchmark system of Sec. as a function of the number
of cores using the machine described in Fig. (a) Speedup with different numbers of cores compared to
one core. Optimally one would like to have a speedup that behaves like the identity (black dashed line).
(b) Efficiency is the speedup divided by the number of threads, i.e., how efficiently the available cores were
used.

4 Results

In the following, several aspects of the model applied in ReaDDy 2 are validated and demonstrated by
considering different application scenarios and comparing the results to analytically obtained results, simulations
from other packages, or literature data.

4.1 Reaction kinetics and detailed balance

We simulate the time evolution of particle concentrations of the benchmark system described in Sec. In
contrast to the benchmarks, the considered system initially only contains A and B particles at equal numbers.
It then relaxes to its equilibrium mixture of A, B, and C particles (Fig. . Since the number of A and B
molecules remain equal by construction, only the concentrations of A and C are shown.

In addition we compare the solutions with and without harmonic repulsion potentials @ between all
particles, as well as two different methods for executing the reactions: The Doi reaction scheme as described
in Sec. and the detailed-balance reaction scheme iPRD-DB described in [21].

In contrast to Sec. we construct a macroscopic reference system with rate constants ko, = 3.82 x
107! nm3s™! and kog = 5 x 107°s~! resembling a cellular system. The microscopic reaction rate constants
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Aon and Aog are then chosen with respect to the reference system taking interaction potentials between
A and B into account by a method presented in [21] under the assumption that the system is sufficiently
well-mixed. This yields Aog = 5 X 107°ns~! for the microsopic dissociation rate constant. The microscopic
association rate constant reads Ao, = 1072 ns™! for the noninteracting system and Ao = 2.89 x 10 3ns~!
for the interacting system. Note that for non-reversible binary reactions without interaction potentials the
formula provided by [I3], [19] describes the relation between A and k for slow diffusion encounter. In the case
of non-reversible binary reactions with interaction potentials and slow diffusion encounter such a relation can
still be numerically computed [12].

Using the macroscopic rate constants ko, and kog, a solution can be calculated for the mass-action reaction
rate equations (RRE). This solution serves as a reference for the noninteracting system (no potentials), because
the system parameters put the reaction kinetics in the mass-action limit.

In the noninteracting system, the ReaDDy solution and the RRE solution indeed agree (Fig. , c). In the
case of interacting particles, see Fig. [Bb, d, an exact reference is unknown. We observe deviations from the
RRE solution that become more pronounced with increasing particle densities. A difference between the two
reaction schemes can also be seen. The Doi reaction scheme shows faster equilibration compared to RRE
for increasing density, whereas the iPRD-DB scheme shows slower equilibration, as it has a chance to reject
individual reaction events based on the change in potential energy. Thus an increased density leads to more
rejected events, consistent with the physical intuition that equilibration in a dense system should be slowed
down. Furthermore the equilibrated states differ depending on the reaction scheme, showing a dependence on
the particle density. For denser systems the iPRD-DB scheme favors fewer A and B particles than the Doi
scheme, consistent with the density-dependent equilibria described in [21].

4.2 Diffusion

Next we simulate and validate the diffusive behavior of noninteracting particle systems and the subdiffusive
behavior of dense interacting particle system. The simulation box contains the particles with diffusion
coefficient D and is equipped with softly repelling walls, in order to introduce finite size effects. The
observations are carried out without interaction potentials and with harmonic repulsion potentials @ and, if
available, compared to an analytic solution. Particle diameters are o, time ¢ is given in units of o2/D, length
x is given in units of o, and energy is given in units of kgT". The cubic box has an edge length of ¢ ~ 20.6¢.

The noninteracting particle simulation has a mean square displacement of particles in agreement with the
analytic solution given by Fick’s law for diffusion in three dimensions

((x: —x0)*) = 6Dt, (7)

where x is the position of a particle and ¢ is time (Fig. @ For long timescales ¢ > 10! transport is obstructed
by walls, resulting in finite size saturation.

Fig. [6] also shows that more complex transport can be modeled, as, e.g., found in crowded systems.
Particles interact via harmonic repulsion (Eq. @ with a force constant of kK ~ 79kpTc~2, o being the
particle diameter. The particle system is dense, having a volume occupation of 84%. In such a dense particle
system, the mean squared displacement differs significantly from the analytical result for free diffusion after
an initial time ¢ > 102 in which particles travel their mean free path length with diffusion constant D. At
intermediate timescales ¢ € [1072,107!), particle transport is subdiffusive due to crowding. At long timescales,
t € [1071,10'), the particles are again diffusive with an effective diffusion coefficient that is reduced to reflect
the effective mobility in the crowded systems. For large timescales ¢ > 10! finite size saturation can be
observed again, as previously.

4.3 Thermodynamic equilibrium properties

We validate that ReaDDy 2’s integration of equations of motion yields the correct thermodynamics of a
Lennard-Jones colloidal fluid in an (N, V,T) ensemble. To this end, we simulate a system of N particles
confined to a periodic box with volume V' at temperature T'. The results and comparisons with other simulation
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Figure 5: Concentration time series of a the reaction-diffusion system introduced in Sec. [3.2] with the reversible
reaction A + B = C. Compared are cases with and without harmonic repulsion @ Additionally we compare
two different reaction mechanisms, the Doi reaction scheme and the detailed balance (iPRD-DB) method for
reversible reactions. (a) 30% volume occupation and no interaction potentials. (b) 30% volume occupation
with harmonic repulsion between all particles. (¢) 60% volume occupation and no interaction potentials.
(d) 60% volume occupation with harmonic repulsion between all particles.

frameworks and analytical results are shown in Tab. 2] The particles interact via the Lennard-Jones potential

v =[(5)"- (5)]

with € being the depth of the potential well and o the diameter of particles. The potential is cut off at
rc = 40 and shifted to avoid a discontinuity. The rescaled temperature is T* = kgTe~! = 3. We perform
simulations of the equilibrated Lennard-Jones system for 10° integration steps with rescaled time step size
7% = 10~*. Time units are 02/D and are determined by the self-diffusion coefficient D of the particles. We
measure the rescaled pressure P* = Po3c~! by estimating the virial term from forces acting in the system as
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Figure 6: Mean squared displacement as a function of time for multiple particles diffusing with diffusion
coefficient D in a cubic box with harmonically repulsing walls. Without interaction potentials, the mean
square displacement agrees with the analytical result for free diffusion, see Eq. . Using harmonic repulsion
potentials between all particles results in reduced mobility. On timescales ¢ € [1071,10') the mean squared
displacement is linear with a reduced effective diffusion coefficient, indicated by the dashed line.

density p* pressure P* energy u*

ReaDDy 2 0.3 1.0253 + 0.0004 —1.6704 + 0.0003
HALMD [11] 0.3 1.0234 + 0.0003 —1.6731 £ 0.0004
Johnson et al. [29] 0.3 1.023 +0.002 —1.673 +£0.002
Ayadim et al. [7] 0.3 1.0245 —1.6717
ReaDDy 2 0.6 3.711 £0.002 —3.2043 £ 0.0004
HALMD [11] 0.6 3.6976 £ 0.0008 —3.2121 + 0.0002
Johnson et al. [29] 0.6 3.69 £0.01 —3.212 £0.003
Ayadim et al. [7] 0.6 3.7165 —3.2065

Table 2: Thermodynamic equilibrium properties of a Lennard—Jones colloidal fluid in a (N, V,T) ensemble.
Results of the ReaDDy 2 framework are compared to other simulation frameworks and analytical results for
validation.
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Figure 7: Illustrative simulation of polymer assembly/disassembly using topology reactions. (a) Sketch of the
involved topology reactions. Association: When two ends of different topologies come closer than R, there is a
rate \; that an edge is formed. Dissociation: The inverse of association with a rate Ay and a randomly drawn
edge that is removed. (b) The number of beads in a polymer (n(t)) over time averaged over 15 realizations.
(c) Two representative particle configurations showing the initial state and the end state at time tpeginand
tend, respectively.

described in [3]. Additionally we measure the rescaled potential energy per particle u* = UN~'e~!. Both
pressure and potential energy are calculated every 100th time step. This sampling gives rise to the mean and
its error of the mean given for the ReaDDy 2 results in Tab. 2 Comparing HALMD [II] and ReaDDy 2,
the latter shows larger energy and pressure in the third decimal place for the lower density p* = 0.3. For
the higher density p* = 0.6 pressure differs in the first decimal place and energy in the second. This can be
explained by ReaDDy 2 using an Euler scheme to integrate motion of particles, which has a discretization
error of first order in the time step size O(7). On the other hand HALMD uses a Velocity-Verlet method [44],
which has a discretization error of second order in the time step size O(72).

4.4 Topology reactions

Finally, we illustrate ReaDDy 2’s ability to model complex reactions between multi-particle complexes, called
“topology reactions”. We model polymers as linear chains of beads, held together by harmonic bonds and
stiffened by harmonic angle potentials. These beads can have two different particle types. Either they are
head particles and located at the ends of a polymer chain or they are core particles and located between the
head particles, as shown in Fig. [Th, ¢ in blue and orange, respectively.

There are two different topology reactions in the system (Fig. [7h):

1. Association: Two nearby head particles (distance < R) can connect with rate A;. The topology is
changed by adding an edge between the connected particles, resulting in the addition of one bond and
two angle potentials. Additionally, the particle types of the two connected particles change from “head”
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to “core”.

2. Dissociation: A chain with n particles can dissociate with microscopic rate nAs, such that longer chains
have a higher probability to dissociate than shorter chains. When a dissociation occurs, a random edge
between two core particles is removed. The particle types of the respective core particles are changed to
“head”. As a result, the graph decays into two connected components which subsequently are treated as
autonomous topology instances.

The temporal evolution of the average length of polymer chains is depicted in Fig. [Tp. The simulation was
performed 15 times with an initial configuration of 500 polymers containing four beads each. After sufficient
time (n(t)) reaches an equilibrium value. Over the course of the simulation the polymers diffuse and form
longer polymers. This can also be observed from the two snapshots shown in Fig. [Tk, depicting a representative
initial configuration at tnegin and a representative configuration at the end of the simulation at time. In that
case, there are polymers of many different lengths.

5 Conclusions and outlook

We have described the iPRD simulation framework ReaDDy 2, a simulation framework for combined particle
interaction dynamics and reaction kinetics, which permits to conduct highly realistic simulations of signal
transduction in crowded cellular environments or chemical nanoreactors with complex geometries. ReaDDy 2
follows up upon and significantly extends the simulation package ReaDDy 1. ReaDDy 2 is significantly faster
than its predecessor, it can be easily installed as a Python conda package, and it can be flexibly used and
reconfigured via its Python interface.

We have conducted a set of numerical studies, showing that ReaDDy 2 produces quantitatively accurate
results where references from analytical solutions or other simulation packages were available, and physically
meaningful results where reference solutions were not available.

For a quick and easy start into simulating and developing with ReaDDy 2 step by step tutorials, sample
code, and further details are available online (https://readdy.github.io/). The software itself is Open Source
and available under a permissive licence in order to enable a broad group of people to run simulations without
forcing them to make their own work public.

ReaDDy 2 has been designed to be easily extensible. Planned extensions include simulation kernels for
specialized hardware platforms, such as graphics processors and highly parallel HPC environments. Also
planned is a MD-GFRD integrator [38] to speed up computations in dilute systems, and a particle-based
membrane model as described in [36] that reproduces mechanical properties of cellular membranes.
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