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In recent years, there has been increased attention on the non-trivial role that genotype-phenotype maps play in
the course of evolution, where natural selection acts on phenotypes, but variation arises at the level of mutations.
Understanding such mappings is arguably the next missing piece in a fully predictive theory of evolution. Although
there are theoretical descriptions of such mappings for the monomorphic (Nµ� 1) and deterministic or very strong
mutation (Nµ ≫ 1) limit, given by developments of Iwasa’s free fitness and quasispecies theories, respectively,
there is no general description for the intermediate regime where Nµ ∼ 1. In this paper, we address this by
transforming Wright’s well-known stationary distribution of genotypes under selection and mutation to give the
probability distribution of phenotypes, assuming a general genotype-phenotype map. The resultant distribution
shows that the degeneracies of each phenotype appear by weighting the mutation term; this gives rise to a bias
towards phenotypes of larger degeneracy analogous to quasispecies theory, but at finite population size. On the
other hand we show that as population size is decreased, again phenotypes of higher degeneracy are favoured,
which is a finite mutation description of the effect of sequence entropy in the monomorphic limit. We also for
the first time (to the author’s knowledge) provide an explicit derivation of Wright’s stationary distribution of the
frequencies of multiple alleles.

INTRODUCTION

The past 100 years has seen our understanding of the
mechanisms of evolution develop, from its initial mathe-
matical foundations due initially to Wright and Fisher, and
later Kimura, which encompass a description of the interplay
between selection, mutation and drift, to the current day
with descriptions of multi-locus evolution with recombina-
tion, linkage and epistasis1. However, as powerful as these
studies are, they lack a crucial missing ingredient in our
understanding of evolution, which is the role of genotype-
phenotype maps, where selection acts on phenotypes, but
underlying variation arises at the genetic level. In general,
such mappings will be very complex, but a common theme
is that because these mappings will often be many-to-one,
some phenotypes will have more genotypes associated with
them than others. In the weak mutation or monomorphic
limit, where the population-scaled mutation rate is small
(Nµ � 1), there is a complete theory that predicts the
equilibrium distribution of phenotypes in the monomorphic
limit2, which naturally leads from Iwasa’s definition of free
fitness3 (subsequently rediscovered by Sella & Hirsh4). A
general prediction of these theories is that at small popula-
tion sizes, as genetic drift dominates favouring phenotypes
with larger sequence entropy, which is the log degeneracy of
the phenotype. In the opposite regime, with infinitely large
population sizes there is Eigen’s quasispecies theory, which
are deterministic sets of equations describing the growth and
mutation of many genotypes5; one of its predictions is that
at sufficiently large mutation rates regions of locally high
robustness in genotype space are favoured6,7. Translating
to phenotype space, it is trivial to see that phenotypes that
have higher (average) local robustness will be favoured over
those with lower robustness. In both the monomorphic and

quasispecies regimes, we see analogous effects related to
non-optimal degenerate (robust) phenotypes being favoured
at small population sizes (large mutation rates).

In this paper, we present a theory that straddles both
these regimes to calculate the equilibrium distribution of
phenotype frequencies at arbitrary and finite population
sizes and mutation rates. This is done by transforming
Wright’s equilibrium (stationary) distribution of multiples
alleles, cast with the mutational structure of a genotype
space, to the space of phenotypes assuming a simple many-
to-one genotype to phenotype map. The result is a distri-
bution of the same form as the distribution of the frequen-
cies of genotypes, but where the mutation term for each
phenotype is weighted by the degeneracy of that pheno-
type; this shows that phenotypes of high degeneracy will
tend to be favoured as on average there are more muta-
tional paths into them. We show explicitly in the case of
two phenotypes a phase-transition in frequency to the more
degenerate phenotype as population size is reduced and/or
mutation rate increased. This theory represent a finite pop-
ulation sized description of the analogous phenomenon to
survival of the flattest of quasispecies theory and a strong
mutation description of survival of the frequent found in the
monomorphic weak mutation regime.

TRANSFORMING DISTRIBUTION FROM
GENOTYPE TO PHENOTYPE

We assume a genotype space denoted by a vector g,
where gi = {σk}, where σk represents possible symbols
at each site i of the genome, from an alphabet of size A.
We assume each genotype has fitness fg and that the muta-
tion rate from g to g′ is µg→g′ = µ0δ(ρ(g, g′)− 1), where
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ρ(g, g′) is the Hamming distance between sequences g and
g′. The rate of mutations into any given state is then the
same as any other state, µg = µ =

∑
g′ µgg′ = L(A−1)µ0.

In this case, the equilibrium distribution of the frequency of
genotypes, xg:

p(x) =
1

Z

∏
g

e2Nfgxgx2Nµ−1
g δ(1−

∑
g

xg) (1)

which we derive in the Appendix, as to the author’s knowl-
edge this has not been done explicitly in the literature8.
Here N is the effective population size and the vector x is

a vector of the frequency of genotypes. Given a genotype-
phenotype map ξ = Ξ(g), which we assume is many to one,
we want to recast this distribution in terms of the probability
distribution of the frequency of n phenotypes zξ. It is clear
that the distribution of phenotype frequencies should be of
the same form as Eqn. 1, as changing variables to the space
of phenotypes does not change the underlying population
genetic problem, just the number of alleles to n; however,
although the fitness of each phenotype is clear, what the ef-
fective mutation rate should be is not so clear. To evaluate
the distribution explicitly we have:

p(z) =
1

Z

∫
dx
∏
g

e2Nfgxgx2Nµ−1
g δ(1−

∑
g

xg)
n∏
ξ

δ(zξ −
∑
g∈ξ

xg) (2)

∑
g xg =

∑
ξ zξ and so the first delta function constraint enforces

∑
ξ zξ = 1. The product over genotypes can be

decomposed into a product over phenotypes and a product over genotypes which map to the same phenotype, where these
genotypes have the same fitness, by definition, fξ:

p(z) =
1

Z
δ(1−

∑
ξ

zξ)
n∏
ξ

e2Nfξzξ

∫ Ωξ∏
g∈ξ

dxgx
2Nµ−1
g δ(zξ −

Ωξ∑
g∈ξ

xg) (3)

=
1

Z
δ(1−

∑
ξ

zξ)

n∏
ξ

e2Nfξzξ

∫ Ωξ−1∏
g∈ξ

dxgx
2Nµ−1
g

zξ − Ωξ−1∑
g∈ξ

xg

2Nµ−1

(4)

Integrating over the frequency of a single genotype of each
phenotype, we are left to evaluate a multidimensional inte-
gral over the remaining genotypes, which are coupled due
to the constraint that the sum over their frequencies should
be zξ. To perform the integral we modify the transfor-
mation in9, which transforms the unit simplex to the unit
cube; here we will transform the simplex over all genotypes
that belong to a given phenotype constrained to sum to
frequency zξ to the unit cube over transformed genotype
frequencies ui (switching to a linear index i corresponding
to the ith genotype gi):

ui =
xi

zξ −
∑
j<i

xj
. (5)

The inverse of this transformation is

xi = zξui
∏
j<i

(1− uj). (6)

Making the change of variable in the integral, and using the
fact that

zξ −
Ωξ−1∑
i

xi =
xΩξ

uΩξ

= zξ
∏
j<Ωξ

(1− uj)

we have:

p(z) =
1

Z
δ(1−

∑
ξ

zξ)
n∏
ξ

e2Nfξzξ

∫ ∣∣∣∣∂x∂u
∣∣∣∣Ωξ−1∏
gi∈ξ

dui

zξui∏
j<i

(1− uj)

2Nµ−1zξ ∏
j<Ωξ

(1− uj)

2Nµ−1

(7)

The determinant of the Jacobian can be simply evaluated since |∂xi/∂uj | = 0 for j > i and so the determinant is the
product of the diagonal elements:
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∣∣∣∣∂x∂u
∣∣∣∣ =

Ωξ−1∏
i

∂xi
∂ui

=

Ωξ−1∏
i

zξ∏
j<i

(1− uj)

 = z
Ωξ−1
ξ

Ωξ−1∏
i

∏
j<i

(1− uj)

 (8)

Plugging this into above we get:

p(z) =
1

Z
δ(1−

∑
ξ

zξ)
n∏
ξ

e2Nfξzξz
Ωξ−1
ξ

(
z2Nµ−1
ξ

)Ωξ−1

z2Nµ−1
ξ

∫ Ωξ−1∏
gi∈ξ

dui[ui(1− ui)]2Nµ−1
∏
j<i

(1− uj)2Nµ

 (9)

=
1

Z ′
δ(1−

∑
ξ

zξ)
n∏
ξ

e2Nfξzξz
2NµΩξ−1
ξ (10)

(11)

where Z ′ is the normalisation factor. The key result here
is that the degeneracy of phenotypes enhances the effective
mutation rate into that phenotype giving a bias to increase
the frequency of that phenotype.

EXAMPLE: TWO PHENOTYPES

Let’s assume there are two phenotypes with log-fitness f1

and f2, with selection coefficient s = f1 − f2, degeneracies
Ω1, and Ω2 and a base-pair mutation rate µ. If the fre-
quency of phenotype 1 is denoted z, and phenotype 2 1−z,
the probability density is given by Eqn.9:

p(z) =
1

Z
e2Nszz2NµΩ1−1(1− z)2NµΩ2−1 (12)

where Z = Γ(2NµΩ1)Γ(2NµΩ2)
Γ(2Nµ(Ω1+Ω2)) 1F1(2NµΩ1; 2Nµ(Ω1 +

Ω2); 2Ns). As shown in Fig.1, if we allow phenotype 1
to be advantageous with s > 0, there is a shift from pheno-
type 1 being at high frequency, when the degeneracies are
equal (Ω1 = Ω2) to favouring phenotype 2 (reduction in
frequency z), when there is a strong bias in the genotype-
phenotype map towards phenotype 2 (Ω2 � Ω1). For large
population sizes (a) we are in the strong mutation regime,
where 2NµΩ1 � 1 and 2NµΩ2 � 1, and we see there is
a mutation-selection balance in favour of the advantageous
phenotype, when degeneracies are equal, and this equilib-
rium moves to smaller frequencies as the ratio of the de-
generacies Ω2/Ω1 increases; this is an analogous finite N
description of population delocalisation as found for infinite
N deterministic quasispecies modelling of populations6,7,
except here we capture the broad fluctuations around the
mutation-selection balance equilibrium. On the other hand
when the effect of mutations is weak, 2NµΩ1 � 1 and
2NµΩ2 � 1, as shown in (b), we see distributions char-
acteristic of the mostly monomorphic composition of the
population at any given time, where distributions are con-
densed at z = 0 and z = 1; nonetheless we see that when
the ratio of the degeneracies (Ω2/Ω1) becomes large, the
distributions shift from a larger density near z = 1 to one

where a larger density at z = 0. This is the correct polymor-
phic extension of the populations in the monomorphic weak
mutation regime, which has recently seen attention using
such concepts as free fitness and sequence entropy2–4,10–12.

We can also examine the effect of changing the mutation
rate or population size in a two phenotype system when
there is a large bias in degeneracy. This is most effectively
probed by calculating the mean frequency of the phenotype
〈z〉 =

∫
dzzp(z):

〈z〉 =
1

Z

∫ 1

0

dzze2Nszz2NµΩ1−1(1− z)2NµΩ2−1 (13)

=
1

2NZ

d

ds

∫ 1

0

e2Nszz2NµΩ1−1(1− z)2NµΩ2−1 (14)

=
1

2NZ

dZ

ds
(15)

=
Ω1

Ω1 + Ω2

1F1(2NµΩ1 + 1; 2Nµ(Ω1 + Ω2) + 1; 2Ns)

1F1(2NµΩ1; 2Nµ(Ω1 + Ω2); 2Ns)
(16)

where we have used the fact that d
dx 1F1(a; b;x) = a

b 1F1(a+
1; b + 1;x). We expect that in the limit that 2Nµ → 0 to
recover the monomorphic limit2–4,10, where the probability

of each phenotype is given by p1 = e2NsΩ1

e2NsΩ1+Ω2
and p2 =

Ω2

e2NsΩ1+Ω2
, such that 〈z〉 = p1 × 1 + p2 × 0 = e2NsΩ1

e2NsΩ1+Ω2
.

Using the series definition of the confluent hypergeometric
function it is straightforward to show that

lim
2Nµ→0

{1F1(2NµΩ1 + 1; 2Nµ(Ω1 + Ω2) + 1; 2Ns)} = e2Ns

(17)

lim
2Nµ→0

{1F1(2NµΩ1; 2Nµ(Ω1 + Ω2); 2Ns)} = 1 +
Ω1(e2Ns − 1)

Ω1 + Ω2
,

(18)

which leads to the following expression for the limit of the
mean frequency:
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FIG. 1. Plot of the phenotypic frequency distribution for different values for µ = 2× 10−9, s = 5× 10−5 and a) N = 106 and
b) N = 104, for various values of the degeneracy of each phenotype as shown in the legend. N.B. the probability density is
plotted on a linear scale in a) and log scale in b) for clarity.

lim
2Nµ→0

=
Ω1e

2Ns

Ω1e2Ns + Ω2
, (19)

which agrees with the monomorphic expectation.
We can also take the limit 2Ns→ 0, keeping 2Nµ finite,

which is simply evaluated as limx→0{1F1(a; b;x)} = 1, giv-
ing

lim
2Ns→0

=
Ω1

Ω1 + Ω2
. (20)

So whether in the monomorphic (2Nµ � 1) or polymor-
phic limit (2Nµ > 1), as selection becomes very weak, we
get the purely neutral result that the average frequency is
determined solely by the relative degeneracies of each phe-
notype.

In Fig.2, we investigate the mean frequency 〈z〉 for
Ω1 = 100 and Ω2 = 10000 and s = 5 × 10−5, for various
values of N and µ. We see there is a strong delocalisa-
tion transition for both µ and N ; as has been essentially
described previously for deterministic quasispecies in what
is known as the “survival of the flattest”6,7, for an increas-
ing mutation rate, we find the less advantageous, but more
genotypically degenerate phenotype is favoured. However,
here this calculation also shows that concurrently decreas-
ing the effective population size increases progress towards
this delocalisation transition, again favouring the more de-
generate phenotype.

In Fig.3, we have an equivalent plot for the case when the
degeneracies of each phenotype is the same. We see that
we have a transition to the neutral state for increasing µ or

decreasing N , giving an equal likelihood of each phenotype,
signified by 〈z〉 = 1/2.

DISCUSSION & CONCLUSIONS

In this paper, we have derived the equilibrium distribution
of the frequency of phenotypes, assuming a general many-
to-one genotype phenotype map and that the mutation rates
between nearest neighbour genotypes is uniform. The re-
sult shows that the equilibrium distribution is of the same
form as genotypes but the mutation terms are weighted by
the degeneracy of each phenotype. This gives rise to a bias
towards phenotypes of higher degeneracy as the mutation
rate is increased and/or the population size decreased, as
we show explicitly for the two phenotype case. This calcu-
lation generalises the equilibrium distribution of phenotypes
in the monomorphic regime to the polymorphic, describing
the analogous effect of the increasing effect of sequence en-
tropy (log degeneracy of phenotypes), as population size is
decreased. However, here we note that there is no obvi-
ous way to express the equilibrium frequency distribution in
terms of an analogous quantity such as sequence entropy.
Iwasa3 and Barton & Coe10 describe a free fitness of the
frequencies of genotypes, in terms the mean fitness, a ge-
netic diversity and an entropy term. It is possible here to
construct an analogous free fitness of the frequency of phe-
notypes, by separating out the terms that depend only on
fitness, mutation and drift, however, it is not clear that this
is meaningful; here the mutation term is weighted by the
degeneracy, giving an effective mutation driven delocalisa-
tion to more frequent phenotypes, yet this same degeneracy
in the small population size monomorphic limit gives rise to
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FIG. 2. Plot of the mean frequency of phenotype 1, 〈z〉, as function of effective population size N and mutation rate µ for a
selection coefficient s = 5× 10−5 (favouring phenotype 1) and degeneracies Ω1 = 100 and Ω2 = 10000.

FIG. 3. Plot of the mean frequency of phenotype 1, 〈z〉, as function of effective population size N and mutation rate µ for a
selection coefficient s = 5× 10−5 (favouring phenotype 1) and degeneracies Ω1 = 10000 and Ω2 = 10000.

the (Boltzmann) sequence entropy of phenotypes.

This calculation is also a finite population size description

of the quasispecies limit, which are deterministic infinite
population size models5. Quasispecies models predict the
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phenomenon of survival of the flattest, which is a delocali-
sation transition due to higher robustness or smaller ’local
curvature’ being favoured at larger mutation rates6,7; here
we make no explicit statement about robustness, and we see
an analogous phenomenon arises irrespective of how differ-
ent genotypes of the same phenotype are connected; the
difference between this and the quasispecies is that here we
have an equilibrium calculation, which assumes a certain er-
godicity or accessibility of a representative number of states
for each phenotype. Whether this equilibrium is reached on
relevant evolutionary timescales is an open question; as dis-
cussed in13, certain phenotypes may be more likely to arrive
as they arise more frequently in the local neighbourhood.
On the other hand there are broad reasons to expect the
structure of genotype-phenotype maps to be ergodic14; in
particular, simulations of the genotype-phenotype map for
spatial patterning in development studied in11 was found to
be ergodic, despite simulation times which could not ex-
haustively search the whole genotype space.

We also present for the first time, to the author’s knowl-
edge, an explicit derivation of Wright’s multi-allele fre-
quency distribution8. The derivation makes clear the “curl-
free” or “potential” assumption that gives rise to the sta-
tionary or equilibrium distribution of allele frequencies. In
other words there cannot be any circulating fluxes of proba-
bility in the equilibrium state; this arises due to the uniform
mutation assumption, and we expect that for arbitrary mu-
tation structure the curl-free assumption will not be satis-

fied. It is an open question as to which forms of mutation
structure can give rise to potential solutions of the form
of Wright’s stationary distribution. We believe the results
of this paper will likely be robust to such considerations in
the limit of large degeneracies of each phenotype, where
the product of degeneracy and mutation rate into a phe-
notype becomes some effective average mutation rate over
microscopic mutation rates.

To conclude these results provide a quantitative theory
to calculate the equilibrium distribution of the frequency
of phenotypes for a general genotype-phenotype map. As
such it provides a bridge between recent results showing the
importance of degeneracy of phenotypes in the weak muta-
tion, monomorphic, regime and infinite population size, de-
terministic, quasispecies calculations that demonstrate de-
localisation phenomena due to increasing mutation rates.
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APPENDIX

The Fokker-Planck equation describing the stochastic dy-
namics of the gene frequencies of multiple alleles is given
by

∂p(x, t)

∂t
= −

n−1∑
i=1

∂

∂xi
(Ai(x)p(x, t)) +

1

2

n−1∑
i=1

n−1∑
j=1

∂

∂xi

∂

∂xj
(Bij(x)p(x, t)) (21)

where n is the number of alleles, and the mean change in
allele frequency (convective force) on the ith allele is

Ai(x) = (fi − f̄(x))xi + µ(1− nxi) (22)

and the co-variance of the change in allele frequencies of
the ith and jth allele (effective diffusion matrix) is

Bij(x) =
1

N
(δij − xi)xj (23)

The equilibrium solution p∗(x, t) can be found by setting the
flux J(x) = 0, where the flux is defined by the continuity
equation to be ∂tp(x, t) = −∇ · J :

Ji(x) = Ai(x)p∗ − 1

2

n−1∑
j=1

∂

∂xj
(Bij(x)p∗) (24)

=

Ai(x)− 1

2

n−1∑
j=1

∂Bij
∂xj

 p∗ − 1

2

n−1∑
j=1

Bij(x)
∂p∗

∂xj
.

(25)

Multiplying through by the inverse B−1
ij and summing it is

simple to show that

∂p∗

∂xi
= 2

n−1∑
j=1

B−1
ij

Ai(x)− 1

2

n−1∑
j=1

∂Bij
∂xj

 p∗ (26)

= ψi(x)p∗ (27)

Now if the vector field is conservative, i.e. it is the gradient
of a scalar function, ψ = ∇Ψ(x), then the solution to
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Eqn.26 can be found using the standard integrating factor
method:

p∗(x) =
1

Z
e
∫ x
0
ψ(x′)·dx′

=
1

Z
eΨ(x). (28)

The vector field ψ is conservative if it is free from rotation,
which in 3 dimensions or less means it is curl free. In higher
dimensions an equivalent condition is:

∂ψi
∂xj

=
∂ψj
∂xi

(29)

which we loosely refer to as the “curl-free” condition. We
can evaluate ψi(x), by using the fact that the inverse of
Bij is given by15:

B−1
ij = N

(
δij
xi

+
1

xn

)
(30)

where xn = 1−
∑n−1
i=1 xi to give

ψi(x) = 2N(fi − fn) + (2Nµ− 1)

(
1

xi
− 1

xn

)
. (31)

Evaluating the partial derivative wrt xj we find:

∂ψi
∂xj

= −2Nµ

x2
n

. (32)

As this does not depend on xi or xj then this satisfies
Eqn.29 and ψ is a curl-free vector field. Note that this
is essentially a restatement of the fact that in order to find
an equilibrium solution we are assuming detailed balance is
obeyed. To find Ψ(x) we can integrate by inspection to
get:

Ψ(x) = 2N
n∑
i=1

fixi + (2Nµ− 1)
n∑
i=1

ln(xi), (33)

where note that the summations run to the index i = n.
Plugging into Eqn.28, we find our final result

p∗(x) =
1

Z

n∏
i=1

e2Nfixix2Nµ−1
i . (34)

To the author’s knowledge this is the first time this deriva-
tion has appeared explicitly in the literature.
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