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Abstract

Genetic variants in functional regions of the genome are enriched for complex trait heritabil-

ity. Here, we introduce a new method for polygenic prediction, LDpred-funct, that leverages

trait-specific functional priors to increase prediction accuracy. We fit priors using the recently

developed baseline-LD model, which includes coding, conserved, regulatory and LD-related anno-

tations. We analytically estimate posterior mean causal e↵ect sizes and then use cross-validation

to regularize these estimates, improving prediction accuracy for sparse architectures. LDpred-

funct attained higher prediction accuracy than other polygenic prediction methods in simulations

using real genotypes. We applied LDpred-funct to predict 21 highly heritable traits in the UK

Biobank. We used association statistics from British-ancestry samples as training data (avg

N=373K) and samples of other European ancestries as validation data (avg N=22K), to mini-

mize confounding. LDpred-funct attained a +4.6% relative improvement in average prediction

accuracy (avg prediction R2=0.144; highest R2=0.413 for height) compared to SBayesR (the best
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method that does not incorporate functional information). For height, meta-analyzing training

data from UK Biobank and 23andMe cohorts (total N=1107K; higher heritability in UK Biobank

cohort) increased prediction R2 to 0.431. Our results show that incorporating functional priors

improves polygenic prediction accuracy, consistent with the functional architecture of complex

traits.
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Introduction

Genetic variants in functional regions of the genome are enriched for complex trait heritability1–6. In

this study, we aim to leverage functional priors to improve polygenic prediction7,8. Several studies

have shown that incorporating prior distributions on causal e↵ect sizes can improve prediction accu-

racy9–16, compared to standard Best Linear Unbiased Prediction (BLUP) or Pruning+Thresholding

methods17–22. Recent e↵orts to incorporate functional information have produced promising re-

sults23,24 (see P+T-funct-LASSO and AnnoPred results in all main figures below), but may be lim-

ited by dichotomizing between functional and non-functional variants23 or restricting their analyses

to genotyped variants24.

Here, we introduce a new method, LDpred-funct, for leveraging trait-specific functional priors to

increase polygenic prediction accuracy. We fit functional priors using our recently developed baseline-

LD model25, which includes coding, conserved, regulatory and LD-related annotations. LDpred-funct

first analytically estimates posterior mean causal e↵ect sizes, accounting for functional priors and LD

between variants. LDpred-funct then uses cross-validation within validation samples to regularize

causal e↵ect size estimates in bins of di↵erent magnitude, improving prediction accuracy for sparse

architectures. We show that LDpred-funct attains higher polygenic prediction accuracy than other

methods in simulations with real genotypes, analyses of 21 highly heritable UK Biobank traits, and

meta-analyses of height using training data from UK Biobank and 23andMe cohorts.

Methods

Polygenic prediction methods

We compared 7 main prediction methods: Pruning+Thresholding18,19 (P+T), LDpred16, SBayesR9,

P+T with functionally informed LASSO shrinkage23 (P+T-funct-LASSO), AnnoPred24, our new

LDpred-funct-inf method, and our new LDpred-funct method; we also included LDpred-inf16, which

is known to attain lower prediction accuracy than LDpred16, in some of our secondary analyses.

P+T, LDpred-inf, LDpred and SBayesR are polygenic prediction methods that do not use functional

annotations; we did not include the recently developed RSS12 and SBLUP11 methods in our compar-

isons, because ref. 9 reported that SBayesR performed as well or better than both RSS and SBLUP

and was more computationally e�cient (Figure 2 and Figure S18 of ref. 9). P+T-funct-LASSO is a

modification of P+T that corrects marginal e↵ect sizes for winner’s curse, accounting for functional

annotations. AnnoPred is which uses a Bayesian framework to incorporate functional annotations.

LDpred-funct-inf is an improvement of LDpred-inf that incorporates functionally informed priors on

causal e↵ect sizes. LDpred-funct is an improvement of LDpred-funct-inf that uses cross-validation
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to regularize posterior mean causal e↵ect size estimates, improving prediction accuracy for sparse

architectures. Each method is described in greater detail below. In both simulations and analyses of

real traits, we used squared correlation (R2) between predicted phenotype and true phenotype in a

held-out set of samples as our primary measure of prediction accuracy.

P+T. The P+T method builds a polygenic risk score (PRS) using a subset of independent SNPs

obtained via informed LD-pruning19 (also known as LD-clumping) followed by P-value thresholding18.

Specifically, the method has two parameters, R2
LD and PT , and proceeds as follows. First, the method

prunes SNPs based on a pairwise threshold R2
LD, removing the less significant SNP in each pair.

Second, the method restricts to SNPs with an association P-value below the significance threshold

PT . Letting M be the number of SNPs remaining after LD-clumping, polygenic risk scores (PRS)

are computed as

PRS(PT ) =
MX

i=1

1{Pi<PT }�̃igi, (1)

where �̃i are normalized marginal e↵ect size estimates and gi is a vector of normalized genotypes for

SNP i. The parameters R2
LD and PT are commonly tuned using validation data to optimize predic-

tion accuracy18,19. While in theory this procedure is susceptible to overfitting, in practice, validation

sample sizes are typically large, and R2
LD and PT are selected from a small discrete set of parameter

choices, so that overfitting is considered to have a negligible e↵ect7,18,19,26. Accordingly, in this work,

we consider R2
LD 2 {0.1, 0.2, 0.5, 0.8} and PT 2 {1, 0.3, 0.1, 0.03, 0.01, 0.003, 0.001, 3 ⇤ 10�4, 10�4, 3 ⇤

10�5, 10�5, 10�6, 10�7, 10�8}, and we always report results corresponding to the best choices of these

parameters. The P+T method is implemented in the PLINK software (see Web Resources).

LDpred-inf. The LDpred-inf method estimates posterior mean causal e↵ect sizes under an

infinitesimal model, accounting for LD16. The infinitesimal model assumes that normalized causal

e↵ect sizes have prior distribution �i ⇠ N(0,�2), where �2 = h2
g/M, h2

g is the SNP-heritability, and

M is the number of SNPs. The posterior mean causal e↵ect sizes are

E(�|�̃,D) = (
N

1� h2
l

⇤D+
1

�2
I)�1N ⇤ �̃, (2)

where D is the LD matrix between markers, I is the identity matrix, N is the training sample size,

�̃ is the vector of marginal association statistics, and h2
l ⇡ kh2/M is the heritability of the k SNPs

in the region of LD; following ref. 16 we use the approximation 1 � h2
l ⇡ 1, which is appropriate

when M >> k. D is typically estimated using validation data, restricting to non-overlapping LD

windows. We used the default LD window size, which is M/3000. h2
g can be estimated from raw

genotype/phenotype data27,28 (the approach that we use here; see below), or can be estimated from
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summary statistics using the aggregate estimator as described in ref. 16. To approximate the nor-

malized marginal e↵ect size ref. 16 uses the p-values to obtain absolute Z scores and then multiplies

absolute Z scores by the sign of the estimated e↵ect size. When sample sizes are very large, p-

values may be rounded to zero, in which case we approximate normalized marginal e↵ect sizes b�i by

bbi
p

2⇤pi⇤(1�pi)p
�2
Y

, where bbi is the per-allele marginal e↵ect size estimate, pi is the minor allele frequency

of SNP i, and �2
Y is the phenotypic variance in the training data. This applies to all the methods

that use normalized e↵ect sizes. Although the published version of LDpred requires a matrix inver-

sion (Equation 2), we have implemented a computational speedup that computes the posterior mean

causal e↵ect sizes by e�ciently solving29 the system of linear equations ( 1
�2 I+N⇤D)E(�|�̃,D) = N �̃.

LDpred. The LDpred method is an extension of LDpred-inf that uses a point-normal prior to es-

timate posterior mean e↵ect sizes via Markov Chain Monte Carlo (MCMC)16. It assumes a Gaussian

mixture prior: �i ⇠ N(0, h2
g/M ⇤ p) with probability p, and �i ⇠ 0 with probability 1� p, where p is

the proportion of causal SNPs. The method is optimized by considering di↵erent values of p (1E-4,

3E-4, 1E-3, 3E-3, 0.01,0.03,0.1,0.3,1); in the special case where 100% of SNPs are assumed to be

causal, LDpred is roughly equivalent to LDpred-inf. We excluded SNPs from long-range LD regions

(reported in ref. 30), as our secondary analyses showed that including these regions was suboptimal,

consistent with ref. 9.

SBayesR. The SBayesR method infers posterior mean causal e↵ect sizes from GWAS summary

statistics and an LD matrix9. It assumes a finite mixture of normal distributions to account for spar-

sity, defined as: �i ⇠ N(0, �ch2
g) with probability ⇡c, where c ranges from 1 to C, the total number of

components in the mixture model. We used as input the recommended parameters from ref. 9, with

C = 4 mixtures with parameters �c = (0, 0.01, 0.1, 1.0). The method requires a shrunk LD matrix12.

The authors of ref. 9 made available shrunk LD matrices estimated from 50,000 randomly selected

white British individuals from the UK Biobank30 for two di↵erent SNPs sets. The 1.1M SNP set

consists of 1,094,841 variants, constructed by restricting 1,365,446 SNPs from HapMap331 to MAF

> 0.01 and removing strand ambiguous SNPs and long-range LD regions (as reported in ref. 30). The

2.9M SNP set consists of 2,865,810 variants, constructed by applying LD-pruning (R2 > 0.99) to a

larger set of 8 million variants from the UK Biobank30 with MAF > 0.01, overlapped with a previous

large GWAS32 and present in 1000 Genomes33. We note that we could not scale the SBayesR analysis

to the full set of 6,334,603 variants used in other analyses due to computational constraints. We used

the 1.1M SNP set in our primary analyses as it achieved the highest average prediction R2 in our real

traits analyses (see Results section), but we also considered the 2.9M SNP set in secondary analyses.

For analyses that use BOLT-LMM summary statistics we used Neffective as reported in ref. 27.
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P+T-funct-LASSO. Ref. 23 proposed an extension of P+T that corrects the marginal e↵ect

sizes of SNPs for winner’s curse and incorporates external functional annotation data (P+T-funct-

LASSO). The winner’s curse correction is performed by applying a LASSO shrinkage to the marginal

association statistics of the PRS:

PRSLASSO(PT ) =
MX

i=1

sign(�̃i)||�̃i|� �(PT )|1{Pi<PT }gi, (3)

where �(PT ) = ��1(1� PT
2 )sd(�̃i), where ��1 is the inverse standard normal CDF. Functional anno-

tations are incorporated via two disjoint SNPs sets, representing ”high-prior” SNPs (HP) and ”low-

prior” SNPs (LP), respectively. We define the HP SNP set for P+T-funct-LASSO as the set of SNPs

in the top 10% of expected per-SNP heritability under the baseline-LD model25, which includes cod-

ing, conserved, regulatory and LD-related annotations, whose enrichments are jointly estimated using

stratified LD score regression5,25 (see Baseline-LD model annotations section). We also performed

secondary analyses using the top 5% (P+T-funct-LASSO-top5%). We define PRSLASSO,HP (PHP )

to be the PRS restricted to the HP SNP set, and PRSLASSO,LP (PLP ) to be the PRS restricted to

the LP SNP set, where PHP and PLP are the optimal significance thresholds for the HP and LP SNP

sets, respectively. We define PRSLASSO(PHP , PLP ) = PRSLASSO,HP (PHP )+PRSLASSO,LP (PLP ).

We also performed secondary analyses were we allow an additional regularization to the two PRS:

PRSLASSO(PHP , PLP ) = ↵1PRSLASSO,HP (PHP )+↵2PRSLASSO,LP (PLP ); we refer to this method

as P+T-funct-LASSO-weighted.

AnnoPred. AnnoPred24 uses a Bayesian framework to incorporate functional priors while ac-

counting for LD, optimizing prediction R2 over di↵erent assumed values of the proportion of causal

SNPs. Ref. 24 proposed two di↵erent priors for use with AnnoPred. The first prior assumes the same

proportion of causal SNPs but di↵erent causal e↵ect size variance across functional annotations, and

uses a point-normal prior to estimate posterior mean e↵ect sizes via Markov Chain Monte Carlo

(MCMC). In the special case where 100% of SNPs are assumed to be causal, AnnoPred is roughly

equivalent to LDpred-funct-inf (see below). The second prior assumes di↵erent proportions of causal

SNPs but the same causal e↵ect size variance across functional annotations. We only consider the

first prior, since the second prior cannot be extended to incorporate continuous-valued annotations

from the baseline-LD model. We excluded SNPs from long-range LD regions (as reported in ref. 30)

when running AnnoPred. We used the default LD window size, which is M/3000.

LDpred-funct-inf. We modify LDpred-inf to incorporate functionally informed priors on causal
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e↵ect sizes using the baseline-LD model25, which includes coding, conserved, regulatory and LD-

related annotations, whose enrichments are jointly estimated using stratified LD score regression5,25.

Specifically, we assume that normalized causal e↵ect sizes have prior distribution �i ⇠ N(0, c ⇤ �2
i ),

where �2
i is the expected per-SNP heritability under the baseline-LD model (fit using training data

only) and c is a normalizing constant such that
PM

i=1 1{�2
i>0}c�

2
i = h2

g; SNPs with �2
i  0 are

removed, which is equivalent to setting �2
i = 0. The posterior mean causal e↵ect sizes are

E[�|�̃,D,�2
1 , . . . ,�

2
M+

] = W�1N ⇤ �̃ =

2

66664
N ⇤D+

1

c

0

BBBB@

1
�2
1

. . . 0
...

. . .
...

0 . . . 1
�2
M+

1

CCCCA

3

77775

�1

N ⇤ �̃, (4)

where M+ is the number of SNPs with �2
i > 0. The posterior mean causal e↵ect sizes are com-

puted by solving the system of linear equations WE[�|�̃,D,�2
1 , . . . ,�

2
M ] = N ⇤ �̃. h2

g is estimated

as described above (see LDpred-inf). D is estimated using validation data, restricting to windows

of size 0.15%M+. In principle, it is possible to use banding to define the LD matrices, where LD

between distant pair of SNPs (10 Mb or more) is rounded to zero34, but we elected to use the simpler

window-based approach (as in ref. 16).

LDpred-funct. We modify LDpred-funct-inf to regularize posterior mean causal e↵ect sizes using

cross-validation. We rank the SNPs by their (absolute) posterior mean causal e↵ect sizes, partition

the SNPs into K bins (analogous to ref. 35) where each bin has roughly the same sum of squared

posterior mean e↵ect sizes, and determine the relative weights of each bin based on predictive value

in the validation data. Intuitively if a bin is dominated by non-causal SNPs, the inferred relative

weight will be lower than for a bin with a high proportion of causal SNPs. This non-parametric

shrinkage approach can optimize prediction accuracy regardless of the genetic architecture. In detail,

let S =
P

i E[�i|�̃i]2. To define each bin, we first rank the posterior mean e↵ect sizes based on their

squared values E[�i|�̃i]2. We define bin b1 as the smallest set of top SNPs with
P

i2b1
E[�i|�̃i]2 � S

K ,

and iteratively define bin bk as the smallest set of additional top SNPs with
P

i2b1,...,bk
E[�i|�̃i]2 � kS

K .

Let PRS(k) =
P

i2bk
E[�i|�̃i]gi. We define

PRSLDpred�funct =
KX

k=1

↵kPRS(k), (5)

where the bin-specific weights ↵k are optimized using validation data via 10-fold cross-validation. For

each held-out fold in turn, we split the data so we estimate the weights ↵k using the samples from the

other nine folds (90% of the validation) and compute PRS on the held-out fold using these weights

(10% of the validation). We then compute the average prediction R2 across the 10 held-out folds. To
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avoid overfitting when K is very close to N , we set the number of bins (K) to be between 1 and 100,

such that it is proportional to h2
g and the number of samples used to estimate the K weights in each

fold is at least 100 times larger than K:

K = min(100, d
0.9N ⇤ h2

g

100
e), (6)

where N is the number of validation samples. For highly heritable traits (h2
g ⇠ 0.5), LDpred-

funct reduces to the LDpred-funct-inf method if there are ⇠200 validation samples or fewer; for less

heritable traits (h2
g ⇠ 0.1), LDpred-funct reduces to the LDpred-funct-inf method if there are ⇠1,000

validation samples or fewer. In simulations, we set K to 40 (based on 7,585 validation samples;

see below), approximately concordant with Equation 6. The value of 100 in the denominator of

Equation 6 was coarsely optimized in simulations, but was not optimized using real trait data. We

note that functional annotations are not used in the cross-validation step (although they do impact

the posterior mean causal e↵ect size provided as input to this step). Thus, it is likely that SNPs from

a given functional annotation will fall into di↵erent bins (possibly all of the bins).

Standard errors. Standard errors for the prediction R2 of each method and the di↵erence in

prediction R2 between two methods were computed via block-jackknife using 200 genomic jackknife

blocks5; this is more conservative than computing standard errors based on the number of validation

samples, which does not account for variation across a finite number of SNPs. For each method,

we first optimized any relevant tuning parameters using the entire genome and then analyzed each

jackknife block using those tuning parameters.

Simulations

We simulated quantitative phenotypes using real genotypes from the UK Biobank interim release

(see below). We used up to 50,000 unrelated British-ancestry samples as training samples, and 7,585

samples of other European ancestries as validation samples (see below). We made these choices to

minimize confounding due to shared population stratification or cryptic relatedness between train-

ing and validation samples (which, if present, could overstate the prediction accuracy that could be

obtained in independent samples36), while preserving a large number of training samples. We re-

stricted our simulations to 459,284 imputed SNPs on chromosome 1 (see below), fixed the number of

causal SNPs at 2,000 or 5,000 (we also performed secondary simulations with 1,000 or 10,000 causal

variants), and fixed the SNP-heritability h2
g at 0.5. We sampled normalized causal e↵ect sizes �i

for causal SNPs from a normal distribution with variance equal to �2
i
p , where p is the proportion

of causal SNPs and �2
i is the expected causal per-SNP heritability under the baseline-LD model25,

fit using stratified LD score regression (S-LDSC)5,25 applied to height summary statistics computed
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from unrelated British-ancestry samples from the UK Biobank interim release (N=113,660). We

computed per-allele e↵ect sizes bi as bi =
�ip

2pi(1�pi)
, where pi is the minor allele frequency for SNP

i estimated using the validation genotypes. We simulated phenotypes as Yj =
PM

i bigij + ✏j , where

✏j ⇠ N(0, 1 � h2
g). We set the training sample size to either 10,000, 20,000 or 50,000. The motiva-

tion to perform simulations using one chromosome is to be able to extrapolate performance at larger

sample sizes16 according to the ratio N/M , where N is the training sample size. We compared each

of the seven methods described above. For LDpred-funct-inf and LDpred-funct, for each simulated

trait we used S-LDSC (applied to training data only) to estimate baseline-LD model parameters. For

LDpred-funct, we report R2 as the average prediction R2 across the 10 held-out folds.

Full UK Biobank data set

The full UK Biobank data set includes 459,327 European-ancestry samples and ⇠20 million imputed

SNPs30 (after filtering as in ref. 27, excluding indels and structural variants). We selected 21 UK

Biobank traits (14 quantitative traits and 7 binary traits) with phenotyping rate > 80% (> 80% of

females for age at menarche, > 80% of males for balding), SNP-heritability h2
g > 0.2 for quantitative

traits, observed-scale SNP-heritability h2
g > 0.1 for binary traits, and low correlation between traits

(as described in ref. 27). We restricted training samples to 409,728 British-ancestry samples30,

including related individuals (avgN=373K phenotyped training samples; see Table S1 for quantitative

traits and Table S2 for binary traits). We computed association statistics from training samples using

BOLT-LMM v2.327. We have made these association statistics publicly available (see Web Resources).

We restricted validation samples to 24,436 samples of non-British European ancestry, after removing

validation samples that were related (> 0.05) to training samples and/or other validation samples (avg

N=22K phenotyped validation samples; see Table S1 and S2). As in our simulations, we made these

choices to minimize confounding due to shared population stratification or cryptic relatedness between

training and validation samples (which, if present, could overstate the prediction accuracy that could

be obtained in independent samples36), while preserving a large number of training samples. We

analyzed 6,334,603 genome-wide imputed SNPs, after removing SNPs with minor allele frequency

< 1%, removing SNPs with imputation accuracy < 0.9, and removing A/T and C/G SNPs to

eliminate potential strand ambiguity. We used h2
g estimates from BOLT-LMM v2.327 as input to

LDpred, AnnoPred, LDpred-funct-inf and LDpred-funct.

UK Biobank interim release

The UK Biobank interim release includes 145,416 European-ancestry samples37. We used the UK

Biobank interim release both in simulations using real genotypes, and in a subset of analyses of height

phenotypes (to investigate how prediction accuracy varies with training sample size).
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In our analyses of height phenotypes, we restricted training samples to 113,660 unrelated ( 0.05)

British-ancestry samples for which height phenotypes were available. We computed association statis-

tics by adjusting for 10 PCs38, estimated using FastPCA39 (see Web Resources). For consistency,

we used the same set of 24,351 validation samples of non-British European ancestry with height

phenotypes as defined above. We analyzed 5,957,957 genome-wide SNPs, after removing SNPs with

minor allele frequency < 1%, removing SNPs with imputation accuracy < 0.9, removing SNPs that

were not present in the 23andMe height data set (see below), and removing A/T and C/G SNPs to

eliminate potential strand ambiguity.

In our simulations, we restricted training samples to up to 50,000 of the 113,660 unrelated British-

ancestry samples, and restricted validation samples to 8,441 samples of non-British European ancestry,

after removing validation samples that were related (> 0.05) to training samples and/or other valida-

tion samples. We restricted the 5,957,957 genome-wide SNPs (see above) to chromosome 1, yielding

459,284 SNPs after QC.

23andMe height summary statistics

The 23andMe data set consists of summary statistics computed from 698,430 European-ancestry

samples (23andMe customers who consented to participate in research) at 9,898,287 imputed SNPs,

after removing SNPs with minor allele frequency < 1% and that passed QC filters (which include

filters on imputation quality, avg.rsq< 0.5 or min.rsq< 0.3 in any imputation batch, and imputation

batch e↵ects). Analyses were restricted to the set of individuals with > 97% European ancestry,

as determined via an analysis of local ancestry40. Summary association statistics were computed

using linear regression adjusting for age, gender, genotyping platform, and the top five principal

components to account for residual population structure. The summary association statistics will be

made available to qualified researchers (see Web Resources).

We analyzed 5,808,258 genome-wide SNPs, after removing SNPs with minor allele frequency < 1%,

removing SNPs with imputation accuracy < 0.9, removing SNPs that were not present in the full

UK Biobank data set (see above), and removing A/T and C/G SNPs to eliminate potential strand

ambiguity.

Meta-analysis of full UK Biobank and 23andMe height data sets

We meta-analyzed height summary statistics from the full UK Biobank and 23andMe data sets. We

define

PRSmeta = �1PRS1 + �2PRS2, (7)
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where PRSi is the PRS obtained using training data from cohort i. The PRS can be obtained using

P+T, P+T-funct-LASSO, LDpred-inf or LDpred-funct. The meta-analysis weights �i can either be

specified via fixed-e↵ect meta-analysis (e.g. �i = NiP
Ni

) or optimized using validation data26. We

use the latter approach, which can improve prediction accuracy (e.g. if the cohorts di↵er in their

heritability as well as their sample size). In our primary analyses, we fit the weights �i in-sample

and report prediction accuracy using adjusted R2 to account for in-sample fitting26. We also report

results using 10-fold cross-validation: for each held-out fold in turn, we estimate the weights �i using

the other nine folds and compute PRS on the held-out fold using these weights. We then compute

the average prediction R2 across the 10 held-out folds.

When using LDpred-funct as the prediction method, we perform the meta-analysis as follows.

First, we use LDpred-funct-inf to fit meta-analysis weights �i. Then, we use �i to compute (meta-

analysis) weighted posterior mean causal e↵ect sizes (PMCES) via PMCES = �1PMCES1 +

�2PMCES2, which are binned into k bins. Then, we estimate bin-specific weights ↵k (used to com-

pute (meta-analysis + bin-specific) weighted posterior mean causal e↵ect sizes
PK

k=1 ↵kPMCES(k))

using validation data via 10-fold cross validation.

Baseline-LD model annotations

The baseline-LD model (v1.1) contains a broad set of 75 functional annotations (including coding,

conserved, regulatory and LD-related annotations), whose enrichments are jointly estimated using

stratified LD score regression5,25. For each trait, we used the ⌧c values estimated for that trait to

compute �2
i , the expected per-SNP heritability of SNP i under the baseline-LD model, as

�2
i =

X

c

ac(i)⌧c, (8)

where ac(i) is the value of annotation c at SNP i.

Joint e↵ect sizes ⌧c for each annotation c are estimated via

E[�2
i ] = N

X

c

⌧cl(i, c) + 1, (9)

where l(i, c) is the LD score of SNP i with respect to annotation ac and �2
i is the chi-square statistic

for SNP i. We note that ⌧c quantifies e↵ects that are unique to annotation c. In all analyses of real

phenotypes, ⌧c and �2
i were estimated using training samples only.

In our primary analyses, we used 489 unrelated European samples from phase 3 of the 1000

Genomes Project33 as the reference data set to compute LD scores, as in ref. 25.

To verify that our 1000 Genomes reference data set produces reliable LD estimates, we repeated
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our LDpred-funct analyses using S-LDSC with 3,567 unrelated individuals from UK10K41 as the

reference data set (as in ref. 42), ensuring a closer ancestry match with British-ancestry UK Biobank

samples. We also repeated our LDpred-funct analyses using S-LDSC with the baseline-LD+LDAK

model (instead of the baseline-LD model), with UK10K as the reference data set. The baseline-

LD+LDAK model (introduced in ref. 42) consists of the baseline-LD model plus one additional

continuous annotation constructed using LDAK weights43, which has values (pj(1� pj))
1+↵ wj ,

where ↵ = �0.25, pj is the allele frequency of SNP j, and wj is the LDAK weight of SNP j computed

using UK10K data.

Results

Simulations

We performed simulations using real genotypes from the UK Biobank interim release and simulated

phenotypes (see Methods). We simulated quantitative phenotypes with SNP-heritability h2
g = 0.5,

using 476,613 imputed SNPs from chromosome 1. We selected either 2,000 or 5,000 variants to be

causal; we refer to these as ”sparse” and ”polygenic” architectures, respectively. We sampled normal-

ized causal e↵ect sizes from normal distributions with variances based on expected causal per-SNP

heritabilities under the baseline-LD model25, fit using stratified LD score regression (S-LDSC)5,25

applied to height summary statistics from British-ancestry samples from the UK Biobank interim

release. We randomly selected 10,000, 20,000 or 50,000 unrelated British-ancestry samples as train-

ing samples, and we used 7,585 unrelated samples of non-British European ancestry as validation

samples. By restricting simulations to chromosome 1 (⇡ 1/10 of SNPs), we can extrapolate results

to larger sample sizes (⇡ 10x larger; see Application to 21 UK Biobank traits), analogous to previous

work16.

We compared prediction accuracies (R2) for seven main methods: P+T18,19, LDpred16, SBayesR9,

P+T-funct-LASSO23, AnnoPred24, LDpred-funct-inf and LDpred-funct (see Methods). Results are

reported in Figure 1 (main simulations) and Figure S1 (additional values of number of causal vari-

ants); numerical results are reported in Table S3 and Table S4. Among methods that do not use

functional information, the prediction accuracy of LDpred was higher than P+T (particularly for the

polygenic architecture), consistent with previous work8,16 (see Table S5 and Table S6 for optimal

tuning parameters; surprisingly, at N=50K training samples, LDpred is optimized by assuming that

100% of SNPs are causal). SBayesR attained a substantial improvement vs. LDpred at N=10K

training samples (+19% relative improvement for sparse architecture and +8.6% relative improve-

ment for polygenic architecture) but attained prediction R2 close to 0 at larger sample sizes (N=20K
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and N=50K), perhaps because the algorithm failed to converge (Table S3; results not included in

Figure 1).

Incorporating functional information via LDpred-funct-inf (a method that does not model sparsity)

produced improvements that varied with sample size (+4.7% relative improvement for sparse ar-

chitecture and +4.8% relative improvement for polygenic architecture at N=50K training samples,

compared to LDpred; smaller improvements at smaller sample sizes). These results are consistent

with the fact that LDpred is known to be sensitive to model assumptions at large sample sizes16.

Accounting for sparsity using LDpred-funct further improved prediction accuracy, particularly for the

sparse architecture (+7.3% relative improvement for sparse architecture and +5.4% relative improve-

ment for polygenic architecture at N=50K training samples, compared to LDpred; smaller improve-

ments at smaller sample sizes). LDpred-funct attained substantially higher prediction accuracy than

P+T-funct-LASSO in most settings (+11% relative improvement for sparse architecture and +18%

relative improvement for polygenic architecture at N=50K training samples; smaller improvements at

smaller sample sizes). LDpred-funct also attained higher prediction accuracy than AnnoPred at large

sample sizes (+5.7% relative improvement for sparse architecture and +3.7% relative improvement

for polygenic architecture at N=50K training samples; smaller di↵erences at smaller sample sizes)

(see Table S7 for optimal tuning parameters; surprisingly, at N=50K training samples, AnnoPred

is optimized by assuming that 100% of SNPs are causal, analogous to LDpred). The di↵erence in

prediction accuracy between LDpred and each other method, as well as the di↵erence in prediction

accuracy between LDpred-funct and each other method, was statistically significant in most cases

(see Table S4 e.g. vs. AnnoPred: P < 10�125 for sparse architecture and P < 10�75 for polygenic

architecture at N=50K training samples). Simulations with 1,000 or 10,000 causal variants generally

recapitulated these findings, although SBayesR, P+T-funct-LASSO and AnnoPred performed better

than LDpred-funct for the extremely sparse architecture at N=10K (Table S3).

The average running time for all 7 methods is reported in Table S8. We separately report the time

to estimate posterior mean causal e↵ect sizes, and the time to compute LD matrices (not applicable

for LDpred-funct-inf and LDpred-funct) (we do not include the time to compute polygenic risk scores,

which is small in comparison and depends on the number of validation samples). For the two methods

with highest prediction R2 in analyses of real UK Biobank traits (LDpred-funct and AnnoPred; see

below), the average running time was 71 minutes for LDpred-funct vs. 5,249 minutes for AnnoPred,

not including the time to compute LD matrices.

We performed four secondary analyses. First, we assessed the calibration of each method by

checking whether a regression of true vs. predicted phenotype yielded a slope of 1. We determined

that LDpred-funct was well-calibrated (regression slope 0.98-0.99), LDpred and AnnoPred were fairly

well-calibrated (regression slope 0.85-1.00), and other methods were not well-calibrated (Table S9).

13

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 13, 2020. ; https://doi.org/10.1101/375337doi: bioRxiv preprint 

https://doi.org/10.1101/375337
http://creativecommons.org/licenses/by-nc-nd/4.0/


Second, we assessed the sensitivity of LDpred-funct to the choice of K=40 posterior mean causal

e↵ect size bins to regularize e↵ect sizes in our main simulations. We determined that results were not

sensitive to this parameter (Table S10); slightly higher values of K performed slightly better, but we

did not finely optimize this parameter. Third, we evaluated a ”cheating” version of LDpred-funct that

utilized the true baseline-LD model parameters used to simulate the data, instead of estimating these

parameters from the data (LDpred-funct-cheat). LDpred-funct-cheat performed only slightly better

than LDpred-funct, indicating that LDpred-funct is not sensitive to imperfect estimation of functional

enrichment parameters (see Table S11). Fourth, we simulated traits with lower SNP-heritability

(h2
g = 0.25) (see Table S12). We determined that the improvements attained by LDpred-funct were

smaller in these simulations (e.g. +6.9% relative improvement vs. AnnoPred and -1.0% relative

improvement vs. LDpred for sparse architecture, +3.4% improvement vs. AnnoPred and +0.6%

relative improvement vs. LDpred for polygenic architecture at N=50K training samples; smaller

improvements at smaller sample sizes).

Application to 21 UK Biobank traits

We applied P+T, LDpred, SBayesR, P+T-funct-LASSO, AnnoPred, LDpred-funct-inf and LDpred-

funct to 21 UK Biobank traits (14 quantitative traits and 7 binary traits; Table S1 and Table S2). We

analyzed training samples of British ancestry (avg N=373K) and validation samples of non-British

European ancestry (avg N=22K). We included 6,334,603 imputed SNPs in our analyses (see Meth-

ods). We computed summary statistics and h2
g estimates from training samples using BOLT-LMM

v2.327 (see Table S13). We estimated trait-specific functional enrichment parameters for the baseline-

LD model25 by running S-LDSC5,25 on these summary statistics. Results for quantitative traits are

reported in Figure 2 and Table S14, and results for binary traits are reported in Figure 3 and Table

S15. Di↵erences between each main prediction method and either LDpred or LDpred-funct (and

block-jackknife standard errors on these di↵erences) are reported in Table S16, and averages across

all 21 traits for main and secondary prediction methods are reported in Table S17.

Among methods that do not use functional information, LDpred outperformed P+T (+18% rela-

tive improvement in average predictionR2), consistent with simulations under a polygenic architecture

(see Table S18 and Table S19 for optimal tuning parameters) and with previous work8,16. LDpred

also outperformed LDpred-inf, a method that does not model sparsity (see Table S17). The exclu-

sion of long-range LD regions (see Methods) was critical to LDpred performance, as running LDpred

without excluding long-range LD regions (as implemented in a previous version of this paper44) per-

formed much worse (see Table S17). SBayesR outperformed LDpred (+5.3% relative improvement

in average prediction R2), with no convergence issues in the full UK Biobank analysis (but see below
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for 113K interim UK Biobank analysis); we note that expanding the set of SNPs analyzed worsened

the performance of SBayesR (see below).

Incorporating functional information via LDpred-funct-inf (a method that does not model spar-

sity) performed only slightly better than LDpred (+0.9% improvement in average prediction R2),

but greatly outperformed LDpred-inf (+19% relative improvement, P < 10�20 for di↵erence using

two-sided z-test based on block-jackknife standard error in Table S20). Accounting for sparsity using

LDpred-funct substantially improved prediction accuracy (+10%, +4.6%, +7.4% relative improve-

ments in average prediction R2 vs. LDpred, SBayesR, LDpred-funct-inf; P < 2 ⇤ 10�4, P = 0.04,

P < 2 ⇤ 10�4 for di↵erences using two-sided z-test based on block-jackknife standard error in Table

S16; average prediction R2=0.144; highest R2=0.413 for height), consistent with simulations. The

relative improvement in avg prediction R2 for LDpred-funct vs. LDpred was +9.7% for quantitative

traits (higher prediction R2 for 14/14 traits), and +11% for binary traits (higher prediction R2 for 5/7

traits). We observed a positive but non-significant correlation across traits between h2
g and relative

improvement (Figure S2), perhaps due to the limited number of data points and/or contribution of

other factors (e.g. polygenicity). LDpred-funct also performed substantially better than P+T-funct-

LASSO (+20% relative improvement in avg. prediction R2), consistent with simulations under a

polygenic architecture. AnnoPred performed slightly but non-significantly worse than LDpred-funct

(-2.7% relative change in average prediction R2 for AnnoPred vs. LDpred-funct, P = 0.35 for di↵er-

ence using two-sided z-test based on block-jackknife standard error in Table S16; see Table S21 for

optimal tuning parameters).

In the above experiments, LDpred-funct analyzed 373K training samples and 22K validation sam-

ples and used 90% of the validation samples to estimate regularization weights. It is possible that

incorporating data from an additional 20K samples could confer an unfair advantage for LDpred-funct

compared to other methods. To assess this, we performed two new experiments. First, we repeated

the LDpred-funct analyses using smaller validation sample sizes (as low as 1K). We determined that

results were little changed (Table S22). Second, we repeated the LDpred-funct analyses using all 22K

validation samples but using only 1K samples to estimate validation weights. Again, we determined

that results were little changed (Table S23). As the use of 1K samples to estimate validation weights

is a trivial number of additional samples compared to 373K training samples, we conclude from these

experiments that LDpred-funct does not owe its advantage to incorporating data from a substantial

number of additional samples.

We performed 13 secondary analyses. First, we assessed the calibration of each method by checking
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whether a regression of true vs. predicted phenotype yielded a slope of 1. As in our simulations,

we determined that LDpred-funct was well-calibrated (average regression slope: 0.98), LDpred and

AnnoPred were fairly well-calibrated (average regression slope: 0.89 and 0.83, respectively), and other

methods were not well-calibrated (Table S24). Second, we assessed the sensitivity of LDpred-funct

to the average value of K = 58 posterior mean causal e↵ect size bins to regularize e↵ect sizes in these

analyses (see Equation 6 and Table S13). We determined that results were not sensitive to the number

of bins (Table S25). Third, we determined that functional enrichment information is far less useful

when restricting to genotyped variants (e.g. �6.9% relative change in avg prediction R2 for LDpred-

funct vs. LDpred when both methods are restricted to typed variants; Table S17), likely because

tagging variants may not belong to enriched functional annotations. Fourth, we repeated the SBayesR

analysis using the 2.9M SNP set instead of the 1.1M SNP set (see Methods), but determined that this

substantially worsened the performance of SBayesR (Table S17). Fifth, we evaluated a modification

of P+T-funct-LASSO in which di↵erent weights were allowed for the two predictors (P+T-funct-

LASSO-weighted; see Methods), but results were little changed (+1.1% relative improvement in avg

prediction R2 vs. P+T-funct-LASSO; Table S17). Sixth, we obtained similar results for P+T-

funct-LASSO when defining the ”high-prior” (HP) SNP set using the top 5% of SNPs with the

highest per-SNP heritability, instead of the top 10% (see Table S17). Seventh, we determined that

incorporating baseline-LD model functional enrichments that were meta-analyzed across traits (31

traits from ref. 25), instead of the trait-specific functional enrichments used in our primary analyses,

slightly reduced the prediction accuracy of LDpred-funct-inf (Table S17). Eigth, to assess whether the

improvement of LDpred-funct is specific to the 75 functional annotations of the baseline-LD model,

we implemented an analogous method that uses 75 random annotations (LDpred-funct (random)).

We determined that LDpred-funct attained a 13% relative improvement in average prediction R2 vs.

LDpred-funct (random), which performed similarly to LDpred (3.1% decrease in average prediction

R2 vs. LDpred) (Table S17). This implies that the improvement of LDpred-funct is specific to

the 75 functional annotations of the baseline-LD model. We further note that a method that does

not use functional priors but applies the regularization step of LDpred-funct on top of LDpred-

inf (LDpred-inf + sparsity) performed similarly to LDpred-funct (random) (Table S17).Ninth, we

determined that using our previous baseline model5, instead of the baseline-LD model25, slightly

reduced the prediction accuracy of LDpred-funct-inf and LDpred-funct (Table S17). Tenth, to assess

how much of the improvement of LDpred-funct derives from the removal of uninformative SNPs, we

implemented an analogous method that uses functional annotations to restrict to the same set of

SNPs with expected per-SNP heritability �2
i > 0 (2,981,166-4,306,498 SNPs depending on the trait;

see Methods) but then imposes a constant prior on causal e↵ect sizes (LDpred-funct (constant prior)).

We determined that LDpred-funct attained a 4.3% relative improvement in average prediction R2 vs.
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LDpred-funct (constant prior), which attained a 5.5% relative improvement in average prediction R2

vs. LDpred (Table S17). Thus, some but not all of the improvement of LDpred-funct derives from

the removal of (relatively) uninformative SNPs. Eleventh, we determined that inferring functional

enrichments using only the SNPs that passed QC filters and were used for prediction had no impact

on the prediction accuracy of LDpred-funct-inf (Table S17). Twelveth, we determined that using

UK10K (instead of 1000 Genomes) as the LD reference panel had virtually no impact on prediction

accuracy (Table S17). Thirteenth, we determined that using UK10K (instead of 1000 Genomes) as

the LD reference panel had virtually no impact on prediction accuracy (Table S17).

Application to height in meta-analysis of UK Biobank and 23andMe cohorts

We applied P+T, LDpred-inf, SBayesR, P+T-funct-LASSO, AnnoPred, LDpred-funct-inf and LDpred-

funct to predict height in a meta-analysis of UK Biobank and 23andMe cohorts (see Methods).

Training sample sizes were equal to 408,092 for UK Biobank and 698,430 for 23andMe, for a total

of 1,106,522 training samples. For comparison purposes, we also computed predictions using the

UK Biobank and 23andMe training data sets individually, as well as a training data set consisting

of 113,660 British-ancestry samples from the UK Biobank interim release. (The analysis using the

408,092 UK Biobank training samples was nearly identical to the analysis of Figure 2, except that we

used a di↵erent set of 5,957,935 SNPs, for consistency throughout this set of comparisons; see Meth-

ods.) We used 24,351 UK Biobank samples of non-British European ancestry as validation samples

in all analyses.

Results are reported in Figure 4 and Table S26. The relative improvements attained by LDpred-

funct-inf and LDpred-funct were broadly similar across all four training data sets (also see Figure

2), implying that these improvements are not specific to the UK Biobank data set. Interestingly,

compared to the full UK Biobank training data set (R2=0.415 for LDpred-funct; slightly di↵erent

from R2 = 0.413 in Figure 2 due to slightly di↵erent SNP set), prediction accuracies were only

slightly higher for the meta-analysis training data set (R2=0.431 for LDpred-funct), and were lower

for the 23andMe training data set (R2=0.344 for LDpred-funct), consistent with the ⇡ 30% higher

heritability in UK Biobank as compared to 23andMe and other large cohorts25,27,28; the higher

heritability in UK Biobank could potentially be explained by lower environmental heterogeneity. We

note that in the meta-analysis, we optimized the meta-analysis weights using validation data (similar

to ref. 26), instead of performing a fixed-e↵ect meta-analysis. This approach accounts for di↵erences

in heritability as well as sample size, and attained a +3.3% relative improvement in prediction R2

compared to fixed-e↵ects meta-analysis (see Table S26). We note that SBayesR performed similarly

to LDpred in height analyses with � 408K training samples (-10% to +0.2% change in average

prediction R2) but attained prediction R2 close to 0 in the height analysis with 113K training samples,
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perhaps because the algorithm failed to converge (Table S26; results not included in Figure 4).

Discussion

We have shown that leveraging trait-specific functional enrichments inferred by S-LDSC with the

baseline-LD model25 substantially improves polygenic prediction accuracy. Across 21 UK Biobank

traits, we attained substantial improvements in average prediction R2 using a method that leverages

functional enrichment and performs an additional regularization step to account for sparsity (LDpred-

funct). LDpred-funct attained +10% (P < 2 ⇤ 10�4) and +4.6% (P = 0.04) relative improvements

compared to LDpred16 and SBayesR9, two state-of-the-art methods that do not model functional

enrichment. Thus incorporating functional annotations improves polygenic prediction accuracy. We

note that our main analyses used baseline-LD model v1.1, but using the updated baseline-LD model

v2.1 yields slightly higher prediction R2 for LDpred-funct-inf and LDpred-funct (Table S17).

Two previous studies have highlighted the potential advantages of leveraging functional enrich-

ment to improve prediction accuracy23,24. We included both of these methods in all of our analyses.

First, ref. 23 introduced a method (which we call P+T-funct-LASSO) that corrects marginal e↵ect

sizes for winner’s curse using LASSO and incorporates functional data to define high-prior and low-

prior SNP sets. LDpred-funct attained a +19% average relative improvement vs. P+T-funct-LASSO

across 21 UK Biobank traits. Second, ref. 24 introduced AnnoPred, which uses a Bayesian framework

to incorporate functional annotations. AnnoPred models sparsity di↵erently than LDpred-funct, as

it uses a point-normal prior to estimate posterior mean e↵ect sizes via Markov Chain Monte Carlo

(MCMC), whereas LDpred-funct performs a regularization step to account for sparsity. We note

that ref. 24 considered only genotyped variants and binary annotations. As noted above, functional

enrichment information is far less useful when restricting to genotyped variants (Table S17), likely

because tagging variants may not belong to enriched functional annotations; thus, the utility of Anno-

Pred in more general settings is currently unknown. Here, we determined that AnnoPred performed

slightly but non-significantly worse than LDpred-funct(-2.3% relative change in average prediction

R2; P = 0.35 for di↵erence) across 21 UK Biobank traits, consistent with slightly worse results for

AnnoPred in simulations at large sample sizes. We emphasize that our current work represents, to

our knowledge, the first e↵ort to combine binary and continuous-valued functional annotations to

improve polygenic risk prediction using imputed variants.

Our work has several limitations. First, LDpred-funct analyzes summary statistic training data

(which are publicly available for a broad set of diseases and traits45), but methods that use raw

genotypes/phenotypes as training data have the potential to attain higher accuracy27; incorporating

functional enrichment information into prediction methods that use raw genotypes/phenotypes as
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training data remains a direction for future research. Second, the regularization step employed by

LDpred-funct to account for sparsity relies on heuristic cross-validation instead of inferring posterior

mean causal e↵ect sizes under a prior sparse functional model; we made this choice because the ap-

propriate choice of sparse functional model is unclear, and because inference of posterior means via

MCMC may be subject to convergence issues. As a consequence, the improvement of LDpred-funct

over LDpred-funct-inf may be contingent on the number of validation samples available for cross-

validation; in particular, for very small validation samples, the number of cross-validation bins is

equal to 1 (Equation 6) and LDpred-funct is identical to LDpred-funct-inf. However, we determined

that results of LDpred-funct were little changed when restricting to smaller validation sample sizes

(as low as 1,000; see Table S22) or using all 22K validation samples but using only 1K samples to

estimate validation weights (Table S23); this implies that LDpred-funct does not owe its advantage

to incorporating data from a substantial number of additional samples. Third, we have considered

only single-trait analyses, but leveraging genetic correlations among traits has considerable potential

to improve prediction accuracy46,47. Fourth, we have not considered how to leverage functional en-

richment for polygenic prediction in related individuals48. Fifth, we have not thoroughly investigated

the application LDpred-funct to polygenic prediction in diverse populations26,49–51 (for which very

similar functional enrichments have been reported52,53), as our simulations focused exclusively on

prediction in Europeans. However, we evaluated the performance of LDpred-funct in predicting 21

UK Biobank traits in diverse populations using European training data (as in recent studies49,50).

The results were promising, particularly in Africans (+23% vs. LDpred (P < 10�5), +18% vs.

SBayesR (P = 0.001); see Table S27) , for which distinguishing causal vs. non-causal variants is

particularly important due to di↵erences in LD vs. Europeans54. A more thorough investigation, e.g.

incorporating non-European training data26, is an important direction for future research. Sixth, we

have not performed a comprehensive assessment of how much di↵erent functional annotation models

contribute to improvements in prediction accuracy, which remains as an important future direction,

particularly as functional annotation models will improve as increasingly rich functional data is gen-

erated. Specifically, the improvements in prediction accuracy that we reported are a function of the

baseline-LD model25, but there are many possible ways to improve this model, e.g. by incorporating

tissue-specific enrichments1–6,55–58, modeling MAF-dependent architectures59–61, and/or employing

alternative approaches to modeling LD-dependent e↵ects43; we anticipate that future improvements

to the baseline-LD model will yield even larger improvements in prediction accuracy. As an initial

step to explore alternative approaches to modeling LD-dependent e↵ects, we repeated our analyses

using the baseline-LD+LDAK model (introduced in ref. 42), which consists of the baseline-LD model

plus one additional continuous annotation constructed using LDAK weights43. (Recent work has

shown that incorporating LDAK weights increases polygenic prediction accuracy in analyses that do
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not include the baseline-LD model62.) We determined that results were virtually unchanged (avg pre-

diction R2=0.1350 for baseline-LD+LDAK vs. 0.1354 for baseline-LD using LDpred-funct-inf with

UK10K SNPs; see Table S17 and Table S28). Despite these limitations and open directions for future

research, our work demonstrates that leveraging functional enrichment using the baseline-LD model

substantially improves polygenic prediction accuracy.
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com/collaborate/#publication for more information and to apply to access the data.

AnnoPred: https://github.com/yiminghu/AnnoPred
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trices can be downloaded from Zenodo public repository, for both 1.09 million HapMap3 (10.5281/
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Figure 1: Accuracy of 6 polygenic prediction methods in simulations using UK Biobank geno-
types. We report results for P+T, LDpred, P+T-funct-LASSO, AnnoPred, LDpred-funct-inf and LDpred-
funct in chromosome 1 simulations with 2,000 causal variants (sparse architecture) and 5,000 causal variants
(polygenic architecture). Results are averaged across 100 simulations. Top dashed line denotes simulated
SNP-heritability of 0.5. Bottom dashed lines denote di↵erences vs. LDpred; error bars represent 95% con-
fidence intervals. Results for other values of the number of causal variants are reported in Figure S1, and
numerical results are reported in Table S3 and Table S4.
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Figure 2: Accuracy of 7 polygenic prediction methods across 14 UK Biobank quantitative
traits. We report results for P+T, LDpred, SBayesR, P+T-funct-LASSO, AnnoPred, LDpred-funct-inf and
LDpred-funct. Dashed lines denote estimates of SNP-heritability. Numerical results are reported in Table
S14.
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Figure 3: Accuracy of 7 polygenic prediction methods across 7 UK Biobank binary traits. We
report results for P+T, LDpred, SBayesR, P+T-funct-LASSO, AnnoPred, LDpred-funct-inf and LDpred-
funct. Dashed lines denote estimates of SNP-heritability. Numerical results are reported in Table S15.
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Figure 4: Accuracy of 6 prediction methods in height meta-analysis of UK Biobank and
23andMe cohorts. We report results for P+T, LDpred, P+T-funct-LASSO, AnnoPred, LDpred-funct-inf
and LDpred-funct, for each of 4 training data sets: UK Biobank interim release (113,660 training samples), UK
Biobank (408,092 training samples), 23andMe (698,430 training samples) and meta-analysis of UK Biobank
and 23andMe (1,107,430 training samples). Nested training data sets are connected by solid lines (e.g. UK
Biobank (408k) and 23andMe are both connected to Meta-Analysis, but not to each other). Dashed line
denotes estimate of SNP-heritability in UK Biobank. Numerical results are reported in Table S26.
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